
Probabilistic Relational Reasoning
for Differential Privacy

Gilles Barthe Boris Köpf
Federico Olmedo Santiago Zanella Béguelin

IMDEA Software Institute, Madrid

POPL 2012
1

2

2

2

Utility of
mining process

2

Utility of
mining process

2

Utility of
mining process

User
privacy

2

Utility of
mining process

User
privacy

2

Conflicting requirements!

Utility of
mining process

User
privacy

2

Need to achieve
flexible balance

Conflicting requirements!

Utility of
mining process

User
privacy

Differential Privacy
Dwork [ICALP’06]

3

K

Differential Privacy
Dwork [ICALP’06]

• Fix a (symmetric) adjacency relation Φ on databases

3

K

Differential Privacy
Dwork [ICALP’06]

• Fix a (symmetric) adjacency relation Φ on databases

• Fix a privacy budget ε

3

K

Differential Privacy
Dwork [ICALP’06]

• Fix a (symmetric) adjacency relation Φ on databases

• Fix a privacy budget ε

A randomized algorithm K is ε-differentially private w.r.t. Φ iff,
for all databases D1 and D2, and events S

3

K

Φ(D1, D2) =⇒ Pr[K(D1) ∈ S] ≤ exp(�)× Pr[K(D2) ∈ S]

• Fundamentals

• Laplacian mechanism

• Composition theorems

Differential Privacy Primer

4

ε1+ε2
ε1

ε2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

• Fundamentals

• Laplacian mechanism

• Composition theorems

Differential Privacy Primer

4

ε1+ε2
ε1

ε2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

• Fundamentals

• Laplacian mechanism

• Composition theorems

Differential Privacy Primer

4

Language-based
tool support

available

ε1+ε2
ε1

ε2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

• Fundamentals

• Laplacian mechanism

• Composition theorems

• Expanding frontiers

• Mechanisms: exponential, median...

• Algorithms: streaming/graph/... algorithms

• Definitions: approximate differential privacy, pan privacy...

Differential Privacy Primer

4

Language-based
tool support

available

ε1+ε2
ε1

ε2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

• Fundamentals

• Laplacian mechanism

• Composition theorems

• Expanding frontiers

• Mechanisms: exponential, median...

• Algorithms: streaming/graph/... algorithms

• Definitions: approximate differential privacy, pan privacy...

Differential Privacy Primer

4

Language-based
tool support

available

Increasingly complex,
but not supported by

existing tools!

ε1+ε2
ε1

ε2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

Our Contribution: CERTIPRIV

• Allows reasoning about approximate quantitative properties of
randomized computations

• Built from first principles and fully formalized in COQ

• Machine-checked proofs of differential privacy

• Correctness of Laplacian and Exponential mechanisms

• State-of-art graph and streaming algorithms

• Generalizes CERTICRYPT and opens new applications to crypto

5

Differential privacy as quantitative 2-safety

• K is (ε, δ)-diff. private w.r.t. Φ iff for all D1 and D2 and S

6

Φ(D1, D2) =⇒ Pr[K(D1) ∈ S] ≤ exp(�)× Pr[K(D2) ∈ S] + δ

Relational
pre-condition

(Quantitative) relational
post-condition

Differential privacy as quantitative 2-safety

• K is (ε, δ)-diff. private w.r.t. Φ iff for all D1 and D2 and S

• We propose a quantitative probabilistic relational Hoare Logic

6

Φ(D1, D2) =⇒ Pr[K(D1) ∈ S] ≤ exp(�)× Pr[K(D2) ∈ S] + δ

Relational
pre-condition

(Quantitative) relational
post-condition

c1 ∼α,δ c2 : Φ =⇒ Ψ

such that c is (ε, δ)-diff. private w.r.t. Φ iff

c ∼exp(�),δ c : Φ =⇒≡

Differential privacy as quantitative 2-safety

• K is (ε, δ)-diff. private w.r.t. Φ iff for all D1 and D2 and S

• We propose a quantitative probabilistic relational Hoare Logic

6

Φ(D1, D2) =⇒ Pr[K(D1) ∈ S] ≤ exp(�)× Pr[K(D2) ∈ S] + δ

Relational
pre-condition

(Quantitative) relational
post-condition

c1 ∼α,δ c2 : Φ =⇒ Ψ

such that c is (ε, δ)-diff. private w.r.t. Φ iff

c ∼exp(�),δ c : Φ =⇒≡

Needs to be lifted
to distributions

 is valid iff for all D1 and D2

Characterizing differential privacy

We define α-distance such that:

7

Φ(D1, D2) =⇒ liftα,δ Ψ (�c1� D1) (�c2� D2)
c1 ∼α,δ c2 : Φ⇒ Ψ

 is valid iff for all D1 and D2

Characterizing differential privacy

We define α-distance such that:

• c is (ε, δ)-diff. private w.r.t. Φ iff for all D1 and D2

7

Φ(D1, D2) =⇒ liftα,δ Ψ (�c1� D1) (�c2� D2)
c1 ∼α,δ c2 : Φ⇒ Ψ

 is valid iff for all D1 and D2

Characterizing differential privacy

We define α-distance such that:

• c is (ε, δ)-diff. private w.r.t. Φ iff for all D1 and D2

7

Φ(D1, D2) =⇒ liftα,δ Ψ (�c1� D1) (�c2� D2)

Φ(D1, D2) =⇒ ∆α(�c1� D1, �c2� D2) ≤ δ

c1 ∼α,δ c2 : Φ⇒ Ψ

 is valid iff for all D1 and D2

Characterizing differential privacy

We define α-distance such that:

• c is (ε, δ)-diff. private w.r.t. Φ iff for all D1 and D2

• Fundamental property of lifting

7

∆α(µ1, µ2) ≤ δ ⇐⇒ liftα,δ ≡ µ1 µ2

Φ(D1, D2) =⇒ liftα,δ Ψ (�c1� D1) (�c2� D2)

Φ(D1, D2) =⇒ ∆α(�c1� D1, �c2� D2) ≤ δ

c1 ∼α,δ c2 : Φ⇒ Ψ

Lifting relations to distributions

8

Lifting relations to distributions

8

0.3
3

0.12

0.22
0.33

a

b

c

d

Lifting relations to distributions

8

0.3
3

0.12

0.22
0.33

a

b

c

d

z

0.11

0.44

0.34

x

y

Lifting relations to distributions

8

Given R = {(a,x), (a,y), (c,y), (d,z)}

0.3
3

0.12

0.22
0.33

a

b

c

d

z

0.11

0.44

0.34

x

y

Lifting relations to distributions

8

Given R = {(a,x), (a,y), (c,y), (d,z)}

0.3
3

0.12

0.22
0.33

a

b

c

d

z

0.11

0.44

0.34

x

y

p1

p2

p3

p4

, α=1.1 and δ=0.01

Lifting relations to distributions

8

p1

p1 + p2

p3

p4

p4

p2 + p3

0

Given R = {(a,x), (a,y), (c,y), (d,z)}

0.3
3

0.12

0.22
0.33

a

b

c

d

z

0.11

0.44

0.34

x

y

p1

p2

p3

p4

, α=1.1 and δ=0.01

Lifting relations to distributions

8

p1

p1 + p2

p3

p4

p4

p2 + p3

0

p1 + p2 ≤ 0.33
δa = max{0, 0.33 - α (p1 + p2)}

δa + δb + δc + δd ≤ δ

Given R = {(a,x), (a,y), (c,y), (d,z)}

0.3
3

0.12

0.22
0.33

a

b

c

d

z

0.11

0.44

0.34

x

y

p1

p2

p3

p4

, α=1.1 and δ=0.01

Lifting relations to distributions

8

X×Y μ(⋅,⋅)

(a, x) 0.10

(a, y) 0.20

(c, y) 0.20

(d, z) 0.30

… 0

Witness distribution

p1

p1 + p2

p3

p4

p4

p2 + p3

0

p1 + p2 ≤ 0.33
δa = max{0, 0.33 - α (p1 + p2)}

δa + δb + δc + δd ≤ δ

Given R = {(a,x), (a,y), (c,y), (d,z)}

0.3
3

0.12

0.22
0.33

a

b

c

d

z

0.11

0.44

0.34

x

y

p1

p2

p3

p4

, α=1.1 and δ=0.01

Selected rules

9

|= c1 ∼α,δ c2 : Ψ⇒ Φ� |= c �1 ∼α�,δ� c �2 : Φ� ⇒ Φ
|= c1; c �1 ∼αα�,δ+δ� c2; c �2 : Ψ⇒ Φ

Laplacian Mechanism

Sequential composition

|= x $← Lλ(r) ∼exp(�),0 y $← Lλ(s) : |r�1� − s�2�| ≤ λ�⇒ x�1� = y�2�

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

VertexCover(V, E)
1 π ← nil;
2 while E �= ∅ do
3 v $← pick(V, E);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 end

pick(V, E) ∝ degE(v)

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

VertexCover(V, E)
1 π ← nil;
2 while E �= ∅ do
3 v $← pick(V, E);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 end

pick(V, E) ∝ degE(v)

VertexCover(V, E) ∼exp(�),0 VertexCover(V, E) :
V �1� = V �2� ∧ E�1� = E�2� ∪ {(t, u)} =⇒ π�1� = π�2�

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

VertexCover(V, E)
1 π ← nil;
2 while E �= ∅ do
3 v $← pick(V, E);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 end

pick(V, E) ∝ degE(v) Not satisfied!

VertexCover(V, E) ∼exp(�),0 VertexCover(V, E) :
V �1� = V �2� ∧ E�1� = E�2� ∪ {(t, u)} =⇒ π�1� = π�2�

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

VertexCover(V, E)
1 π ← nil;
2 while E �= ∅ do
3 v $← pick(V, E);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 end

pick(V, E) ∝ degE(v)

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

π = [b, g, e, h, l , k,

j, i , f , d, c, a]

VertexCover(V, E)
1 π ← nil;
2 while E �= ∅ do
3 v $← pick(V, E);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 end

pick(V, E) ∝ degE(v)

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

π = [b, g, e, h, l , k,

j, i , f , d, c, a]

VertexCover(V, E, �)
1 π ← nil; n ← |V |; i ← 0;
2 while i < n do
3 v $← pick(V, E, �, n, i);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 i ← i + 1
7 end

pick(V, E, �, n, i) ∝ degE(v)+
4

�

�
n

n − i

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

VertexCover(V, E, �)
1 π ← nil; n ← |V |; i ← 0;
2 while i < n do
3 v $← pick(V, E, �, n, i);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 i ← i + 1
7 end

pick(V, E, �, n, i) ∝ degE(v)+
4

�

�
n

n − i

VertexCover(V, E, �) ∼exp(�),0 VertexCover(V, E, �) :
V �1� = V �2� ∧ E�1� = E�2� ∪ {(t, u)} =⇒ π�1� = π�2�

Application: Vertex Cover
Gupta et al. [SODA ’10]

10

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. Aminimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

degree. This base algorithm can be transformed into a privacy-
preserving algorithm by perturbing the distribution according to
which vertices are sampled by a carefully calibrated weight factor
that grows as more vertices are appended to the output permutation.
This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses
a vertex v from V with probability proportional to dE(v) + wi,
where dE(v) denotes the degree of v in E and

wi =
4
ε

√

n
n− i

Put otherwise, the expression choose(V,E, ε, n, i) denotes the dis-
crete distribution over V whose density function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) andG2 = (V,E ∪ {(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ε-differentially private we
must show that the probability of obtaining a permutation π of
the vertices in the graph when the input is G1 differs at most by
a multiplicative factor exp(ε) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.
To establish the ε-differential privacy of algorithm VERTEX-

COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼eε,0VERTEXCOVER(V,E, ε) : Ψ ⇒ Φ

where
Ψ def

= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}
Φ def

= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.
To prove the judgment above, we show privacy bounds for each

iteration of the loop in the algorithm. Proving a bound for the i-
th iteration boils down to proving a bound for the ratio between

function VERTEXCOVER(V, E, ε)
1 n ← |V |; π ← nil; i ← 0;
2 while i < n do
3 v $← choose(V, E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2
(n− i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.
Pr[v〈1〉 = t]
Pr[v〈2〉 = t]

≤ 1

Pr[v〈2〉 = t]
Pr[v〈1〉 = t]

=
(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ε) : π = #v]
Pr [VERTEXCOVER(G2, ε) : π = #v]

≤ exp

(

n−2
∑

i=0

2
(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = #v]
Pr [VERTEXCOVER(G1, ε) : π = #v]

≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops
parametrized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

VertexCover(V, E, �)
1 π ← nil; n ← |V |; i ← 0;
2 while i < n do
3 v $← pick(V, E, �, n, i);
4 π ← v :: π;
5 V ← V \{v}; E ← E \ ({v}× V);
6 i ← i + 1
7 end

pick(V, E, �, n, i) ∝ degE(v)+
4

�

�
n

n − i
Proven correct
using CertiPriv

VertexCover(V, E, �) ∼exp(�),0 VertexCover(V, E, �) :
V �1� = V �2� ∧ E�1� = E�2� ∪ {(t, u)} =⇒ π�1� = π�2�

Conclusions

• Framework for reasoning about quantitative relational
properties of randomized computations

• Laplacian and Exponential mechanisms

• Differential privacy for streaming and graph algorithms

• Asymmetric logic

• Further work:

• Computational differential privacy

• Hash functions unto elliptic curves and statistical zero-knowledge

• Challenge: logic for arbitrary quantitative relational properties

11

Thanks for your attention!

12

13

liftα,δ R (d1 : DA) (d2 : DB) = ∃(d : DA∗B),
π1(d) ≤ d1 ∧∆α(π1(d), d1) ≤ δ ∧
π2(d) ≤ d2 ∧∆α(π2(d), d2) ≤ δ ∧ range R d

(α,δ)-lifting of relations to distributions:

Define α-distance as:

∆α(d1, d2) = max
A

(max(d1 1A − α (d2 1A), d2 1A − α (d1 1A)))

Output perturbation makes numerical queries ε-diff. private

• The Φ-sensitivity of a query is defined as:

• The randomized computation

is ε-differentially private

14

f : D → R

K(D) = f(D) + Lap(∆(f)/�)

Density proportional to
exp(−�/∆(f))

∆(f) = max{f(D1)− f(D2) | Φ(D1, D2)}

Composition theorems

• Sequential composition

• Parallel composition

15

(max{ε1, ε2}, max{δ1,δ2})-diff. private

(ε1+ε2, δ1+δ2)-diff. private

If K1 is (ε1 , δ1)-diff. private and K2 is (ε2 , δ2)-diff. private

K1 and K2 depend
on disjoint parts of
the database

Composition theorems

• Sequential composition

• Parallel composition

15

(max{ε1, ε2}, max{δ1,δ2})-diff. private
K1

K2

(ε1+ε2, δ1+δ2)-diff. private
K1

K2

If K1 is (ε1 , δ1)-diff. private and K2 is (ε2 , δ2)-diff. private

K1 and K2 depend
on disjoint parts of
the database

