Verifiable Security of Boneh-Franklin Identity-Based Encryption

Federico Olmedo
Gilles Barthe Santiago Zanella Béguelin
IMDEA Software Institute, Madrid, Spain

$5^{\text {th }}$ International Conference on Provable Security 2011.10.17

Problem of standard PKE:

key management is involved and troublesome

Problem of standard PKE:

key management is involved and troublesome
Proposed solution by Shamir:
to use recipient's ID as public key

Problem of standard PKE:

key management is involved and troublesome
Proposed solution by Shamir:
to use recipient's ID as public key

Alice

Bob

Identity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:
to use recipient's ID as public key
(1)

Encrypt with public key
bob@comp.com

Alice

Bob

Identity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:
to use recipient's ID as public key

Identity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:
to use recipient's ID as public key

Should we rely on IBE schemes?

1984: Conception of identity-based cryptography
2001: First practical provably-secure IBE scheme.
2002-2005: Used as building block for many other protocols
2005: Security proof is flawed (but can be patched)

Verifiable security paradigm

Use formal methods to build certified security proofs of cryptographic systems

- Gives strong evidence of correctness of security arguments
- Enables automation in proofs
- Demonstrated applicability and effectiveness
(1) The provably-secure BasicIdent scheme
© CertiCrypt framework
- Machine-checked proof of BasicIdent security
- Summary and perspectives

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

- Extend the notions of IND-CPA and IND-CCA to IBE schemes
(2) Build an IND-CPA-secure IBE scheme BasicIdent
- Apply a variant of Fujisaki-Okamoto transformation to turn BasicIdent into an IND-CCA-secure IBE scheme

Consider

- \mathbb{G}_{1} and \mathbb{G}_{2}, two cyclic groups of prime order q,
- ê : $\mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$, an efficiently computable bilinear map

$$
\begin{gathered}
\hat{e}(a P, b Q)=\hat{e}(P, Q)^{a b} \\
\langle P\rangle=\mathbb{G}_{1} \Longrightarrow\langle\hat{e}(P, P)\rangle=\mathbb{G}_{2}
\end{gathered}
$$

- Two hash functions

$$
\begin{aligned}
& \mathcal{H}_{1}:\{0,1\}^{\star} \rightarrow \mathbb{G}_{1}^{+} \\
& \mathcal{H}_{2}: \mathbb{G}_{2} \rightarrow\{0,1\}^{n}
\end{aligned}
$$

The BasicIdent IBE-scheme is defined as
$\operatorname{Setup}(k) \quad: P \& \mathbb{G}_{1}^{+} ; m k \& \mathbb{Z}_{q}^{+} ; P_{\text {pub }} \leftarrow m k \cdot P ;$ return $\left(\left(P, P_{\text {pub }}\right), m k\right)$
$\operatorname{Extract}(m k, I D) \quad: Q_{I D} \leftarrow \mathcal{H}_{1}(I D)$; return $m k \cdot Q_{I D}$
$\operatorname{Encrypt}(I D, m) \quad: Q_{I D} \leftarrow \mathcal{H}_{1}(I D) ; c \nleftarrow \mathbb{Z}_{q}^{+} ; m^{\prime} \leftarrow \mathcal{H}_{2}\left(e\left(Q_{I D}, P_{p u b}\right)^{c}\right)$; return $\left(c \cdot P, m \oplus m^{\prime}\right)$
$\operatorname{Decrypt}(s k,(u, v)):$ return $v \oplus \mathcal{H}_{2}(\hat{e}(s k, u))$

- Proof by reduction (in the random oracle model)
- Define security goal (and adversarial model)
- Consider a computational assumption
- Reduce the security of the scheme to the intractability assumption.

- Proof by reduction (in the random oracle model)
- Define security goal (and adversarial model)
\Leftrightarrow Indistinguishability under Chosen Plaintext Attack Strengthened notion of PKE IND-CPA for IBE
- Consider a computational assumption
- Reduce the security of the scheme to the intractability assumption.

$$
\operatorname{Pr}\left[\begin{array}{l}
\mathcal{A} \text { breaks } \\
\text { the scheme }
\end{array}\right] \leq \mathscr{F}\left(\operatorname{Pr}\left[\begin{array}{l}
\mathcal{B} \text { solves the } \\
\text { hard problem }
\end{array}\right]\right)
$$

- Proof by reduction (in the random oracle model)
- Define security goal (and adversarial model)
\Leftrightarrow Indistinguishability under Chosen Plaintext Attack Strengthened notion of PKE IND-CPA for IBE
- Consider a computational assumption
\Leftrightarrow Bilinear Diffie-Hellman assumption
It is hard to compute $\hat{e}(P, P)^{a b c}$ given a random tuple $(P, a$. $P, b \cdot P, c \cdot P)$.
- Reduce the security of the scheme to the intractability assumption.

- Proof by reduction (in the random oracle model)
- Define security goal (and adversarial model)
\Leftrightarrow Indistinguishability under Chosen Plaintext Attack Strengthened notion of PKE IND-CPA for IBE
- Consider a computational assumption
\Leftrightarrow Bilinear Diffie-Hellman assumption
It is hard to compute $\hat{e}(P, P)^{a b c}$ given a random tuple (P, a. $P, b \cdot P, c \cdot P)$.
- Reduce the security of the scheme to the intractability assumption.

$\operatorname{Pr}\left[\begin{array}{l}\mathcal{A} \text { breaks } \\ \text { the scheme }\end{array}\right] \leq \mathscr{F}\left(\operatorname{Pr}\left[\begin{array}{l}\mathcal{B} \text { solves the } \\ \text { hard problem }\end{array}\right]\right)$
$\Rightarrow \quad A d v_{\text {IND-ID-CPA }}^{\mathcal{A}} \leq \operatorname{Adv}_{\text {BDH }}^{\mathcal{B}} \frac{\exp (1) q_{\mathcal{H}_{2}}\left(1+q_{\mathcal{E} X}\right)}{2}$

The game-playing technique

Certified framework for building and verifying crypto proofs in the Coq proof assistant

- Combination of programming language techniques and cryptographic-specific tools
- Game-based methodology, natural to cryptographers
- Several case studies:
- Encryption schemes: EIGamal, Hashed EIGamal, OAEP
- Signature schemes: FDH, BLS
- Zero-Knowledge protocols: Schnorr, Okamoto, Diffie-Hellman, Fiat-Shamir

Inside CertiCrypt (language syntax)

Language-based proofs

Formalize security definitions, assumptions and games using a probabilistic programming language.
pWhile: a probabilistic programming language

\mathcal{C}	$:=$	skip
	$\mathcal{C} ; \mathcal{C}$	nop
	$\mathcal{V} \leftarrow \mathcal{E}$	sequence
	$\mathcal{V} \leftarrow \mathcal{D}$	assignment
	if \mathcal{E} then \mathcal{C} else \mathcal{C}	random sampling
	while \mathcal{E} do \mathcal{C}	whilitional loop
	$\mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})$	

- $x \& d$: sample the value of x according to distribution d
- The language of expressions (\mathcal{E}) and distribution expressions (\mathcal{D}) admits user-defined extensions

Observational equivalence

$$
\models c_{1} \simeq_{o}^{\prime} c_{2}
$$

Example

$$
\vDash x \nLeftarrow\{0,1\}^{k} ; y \leftarrow x \oplus z \simeq_{\{x, y, z\}}^{\{z\}} y \leftarrow\{0,1\}^{k} ; x \leftarrow y \oplus z
$$

- Useful to relate probabilities

$$
\frac{\mathrm{fv}(A) \subseteq O \quad \models c_{1} \simeq_{O}^{1} c_{2} \quad m_{1}=, m_{2}}{\operatorname{Pr}\left[c_{1}, m_{1}: A\right]=\operatorname{Pr}\left[c_{2}, m_{2}: A\right]}
$$

Fundamental lemma of game-playing

Two identical up to bad games

Lemma

If G_{1} and G_{2} are identical up to bad, then

$$
\left|\operatorname{Pr}\left[\mathrm{G}_{1}, m: A\right]-\operatorname{Pr}\left[\mathrm{G}_{2}, m: A\right]\right| \leq \max \left\{\operatorname{Pr}\left[\mathrm{G}_{1}, m: \text { bad }\right], \operatorname{Pr}\left[\mathrm{G}_{2}, m: \text { bad }\right]\right\}
$$

We extended CertiCrypt with:

- Types and operators for the groups $\mathbb{G}_{1}, \mathbb{G}_{2}$
- An operator for a bilinear map ê: $\mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
- Simplification rules for computing normal forms of applications of the bilinear map ê
- An instruction for sampling from Bernoulli distributions

Formalizing the security goal:

$$
\begin{aligned}
& \text { Game GIND-ID-CPA: } \\
& (\text { params }, m k) \leftarrow \operatorname{Setup}(k) ; \\
& \left(m_{0}, m_{1}, I D_{\mathcal{A}}\right) \leftarrow \mathcal{A}_{1}(\text { params }) ; \\
& b \leftarrow\{0,1\} ; \\
& c \leftarrow \operatorname{Encrypt}\left(I D_{\mathcal{A}}, m_{b}\right) ; \\
& b_{\mathcal{A}} \leftarrow \mathcal{A}_{2}(c)
\end{aligned}
$$

- The adversary is modeled by two procedures (of unknown code) \mathcal{A}_{1} and \mathcal{A}_{2} that communicate through shared variables
- \mathcal{A}_{1} and \mathcal{A}_{2} have oracle access to the extraction algorithm and to both random oracles
- Neither \mathcal{A}_{1} nor \mathcal{A}_{2} is allowed to query the challenge $I D_{\mathcal{A}}$ to the extraction oracle.

$$
\operatorname{Adv}_{\text {IND-ID-CPA }}^{\mathcal{A}} \stackrel{\text { def }}{=}\left|\operatorname{Pr}_{G_{\text {IND-ID-CPA }}}\left[b=b_{\mathcal{A}}\right]-\frac{1}{2}\right|
$$

Formalizing the assumptions

- The Bilinear Diffie-Hellman assumption

$$
\begin{aligned}
& \text { Game } \mathrm{G}_{\mathrm{BDH}}^{\mathcal{B}}: \\
& P \longleftarrow \mathbb{G}_{1}^{+} ; a, b, c \longleftarrow \mathbb{Z}_{q}^{+} \\
& z \leftarrow \mathcal{B}(P, a \cdot P, b \cdot P, c \cdot P)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{BDH}}^{\mathcal{B}} \stackrel{\text { def }}{=} \operatorname{Pr}_{\mathrm{G}_{\mathrm{BDH}}^{\mathcal{B}}}\left[z=\hat{e}(P, P)^{a b c}\right] \\
& \forall \mathcal{B} \cdot \operatorname{PPT}(\mathcal{B}) \Longrightarrow \operatorname{negl}\left(\mathbf{A d v}_{\mathrm{BDH}}^{\mathcal{B}}\right)
\end{aligned}
$$

- The random oracle model

$$
\begin{aligned}
& \text { Oracle } \mathcal{H}_{1}(I D): \\
& \text { if } I D \notin \operatorname{dom}\left(L_{1}\right) \text { then } \\
& \quad R \& \mathbb{G}_{1}^{+} ; \\
& L_{1}(I D) \leftarrow R \\
& \text { return } L_{1}(I D)
\end{aligned}
$$

```
Oracle \(\mathcal{H}_{2}(r)\) :
    if \(r \notin \operatorname{dom}\left(L_{2}\right)\) then
        \(m \stackrel{\&}{\&}\{0,1\}^{n}\);
        \(L_{2}(r) \leftarrow m\)
    return \(L_{2}(r)\)
```

Building the reduction...

> Game GIND-ID-CPA:
> $($ parm, mk $) \leftarrow \operatorname{Setup}(k) ;$ $\left(m_{0}, m_{1}, I D_{\mathcal{A}}\right) \leftarrow \mathcal{A}_{1}($ parm $) ;$
> $b \leftarrow\{0,1\} ;$
> $c \leftarrow \operatorname{Encrypt}\left(I D_{\mathcal{A}}, m_{b}\right) ;$
> $b_{\mathcal{A}} \leftarrow \mathcal{A}_{2}(c)$

$$
\begin{aligned}
& \text { Game } \mathrm{G}_{\mathrm{BDH}}^{\mathcal{B}}: \\
& P \leftrightarrow \mathbb{G}_{1}^{+} ; a, b, c \longleftarrow \mathbb{Z}_{q}^{+} \\
& z \leftarrow \mathcal{B}(P, a \cdot P, b \cdot P, c \cdot P)
\end{aligned}
$$

$$
\operatorname{Adv}_{\text {IND-ID-CPA }}^{\mathcal{A}} \quad \leq \quad \cdots \quad \leq \operatorname{Adv}_{\mathrm{BDH}}^{\mathcal{B}} \frac{\exp (1) q_{\mathcal{H}_{2}}\left(1+q_{\mathcal{E} \mathcal{X}}\right)}{2}
$$

- Seven intermediate games
- Lazy sampling, fundamental lemma, Coron's technique
- Same bound as Boneh \& Franklin proof
- Our reduction is direct in contrast to Boneh-Franklin proof that goes through an intermediate IND-CPA-secure (non-IBE) encryption scheme
- Used a simpler argument instead of an inductive argument in Boneh-Franklin's proof that we could not reproduce
- 5000 lines of Coq script
- Built in 3 man-months (but automatically verifiable in 10 minutes)

Contributions

- Presented a machine-checked reduction of the security of the BasicIdent IBE scheme to the Bilinear Diffie-Hellman assumption
- Demonstrated that CertiCrypt can be extended to deal with complex security proofs of cryptographic schemes

Perspectives

- Formalize Fujisaki-Okamoto meta-result.
- Eliminate RO assumption on \mathbb{G}_{1} : formalize Brier et al work about indifferentiability of hash functions into elliptic curves.

Questions?

Get CertiCrypt (and EasyCrypt) from: http://certicrypt.gforge.inria.fr

Programs map an initial memory to a distribution of final memories:

$$
\llbracket c \in \mathcal{C} \rrbracket: \mathcal{M} \rightarrow \mathcal{D}(\mathcal{M})
$$

We use Paulin's measure monad to represent distributions:

$$
\mathcal{D}(A) \stackrel{\text { def }}{=}(A \rightarrow[0,1]) \rightarrow[0,1]
$$

For instance

$$
\llbracket x \&\{\text { true }, \text { false }\} \rrbracket m=\lambda f \cdot\left(\frac{1}{2} f(m[x / \text { true }])+\frac{1}{2} f(m[x / \text { false }])\right)
$$

To compute probabilities, just measure the characteristic function of the event:

$$
\operatorname{Pr}[c, m: A] \stackrel{\text { def }}{=} \llbracket c \rrbracket m \mathbb{1}_{A}
$$

- You need to
- trust the type checker of Coq
- trust the definition of the language semantics
- make sure the security statement and the computational assumption (a few lines in Coq) are what you expect it to be
- You don't need to
- understand or even read the proof
- trust proof tactics, program transformations
- trust program logics, wp-calculus
- be an expert in Coq

```
```

Game CPA :

```
```

Game CPA :
$L_{1}, L_{2}, L_{3} \leftarrow \mathrm{nil} ;$
$L_{1}, L_{2}, L_{3} \leftarrow \mathrm{nil} ;$
$\boldsymbol{P}<\mathbb{G}_{1}^{+} ; \boldsymbol{a} \mathbb{Z}_{q}^{+}$;
$\boldsymbol{P}<\mathbb{G}_{1}^{+} ; \boldsymbol{a} \mathbb{Z}_{q}^{+}$;
$\boldsymbol{P}_{\text {pub }} \leftarrow \mathbf{a P}$;
$\boldsymbol{P}_{\text {pub }} \leftarrow \mathbf{a P}$;
$\left(m_{0}, m_{1}, I D_{\mathcal{A}}\right) \leftarrow \mathcal{A}_{1}\left(\boldsymbol{P}, \boldsymbol{P}_{\text {pub }}\right) ;$
$\left(m_{0}, m_{1}, I D_{\mathcal{A}}\right) \leftarrow \mathcal{A}_{1}\left(\boldsymbol{P}, \boldsymbol{P}_{\text {pub }}\right) ;$
d ${ }^{s}\{0,1\} ;$
d ${ }^{s}\{0,1\} ;$
$y \leftarrow \mathcal{E}\left(I D_{\mathcal{A}}, m_{d}\right)$;
$y \leftarrow \mathcal{E}\left(I D_{\mathcal{A}}, m_{d}\right)$;
$d_{\mathcal{A}} \leftarrow \mathcal{A}_{2}(y)$

```
```

 \(d_{\mathcal{A}} \leftarrow \mathcal{A}_{2}(y)\)
    ```
```

Oracle $\mathcal{E X}(I D)$:
if $I D \notin \boldsymbol{L}_{3}$ then
$\mathbf{L}_{3} \leftarrow I D:: \mathbf{L}_{3}$
$Q \leftarrow \mathcal{H}_{1}(I D) ;$
return $\boldsymbol{a} Q$

Oracle $\mathcal{H}_{1}(I D)$:
if $I D \notin \operatorname{dom}\left(\boldsymbol{L}_{1}\right)$ then $R \notin \mathbb{G}_{1}^{+} ;$
$L_{1}(i d) \leftarrow R$
return $L_{1}(I D)$
Oracle $\mathcal{H}_{2}(r)$:
if $r \notin \operatorname{dom}\left(\boldsymbol{L}_{2}\right)$ then $m \stackrel{s}{\leftrightarrows}\{0,1\}^{n}$; $L_{2}(r) \leftarrow m$
return $\boldsymbol{L}_{2}(r)$

Game BDH :

$$
\begin{aligned}
& P \leftarrow \mathbb{G}_{1}^{+} ; a, b, c \leftarrow \mathbb{Z}_{q}^{+} ; \\
& z \leftarrow \mathcal{B}(P, a P, b P, c P) \\
& \mathcal{B}\left(P_{0}, P_{1}, P_{2}, P_{3}\right): \\
& \boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \boldsymbol{L}_{3}, \boldsymbol{V}, \boldsymbol{T} \leftarrow \text { nil; } \\
& \text { while }|\boldsymbol{T}|<q_{\mathcal{H}} \text { do } \\
& t \leftarrow \text { true } \oplus_{p} \text { false; } \boldsymbol{T} \leftarrow t:: \boldsymbol{T} \\
& \boldsymbol{P} \leftarrow P_{0} ; \boldsymbol{P}_{\text {pub }} \leftarrow P_{1} ; \boldsymbol{P}^{\prime} \leftarrow P_{2} ; \\
& \left(m_{0}, m_{1}, I D_{\mathcal{A}}\right) \leftarrow \mathcal{A}_{1}\left(\boldsymbol{P}, \boldsymbol{P}_{\text {pub }}\right) ; \\
& Q_{\mathcal{A}} \leftarrow \mathcal{H}_{1}\left(I D_{\mathcal{A}}\right) ; v^{\prime} \leftarrow \boldsymbol{V}\left(I D_{\mathcal{A}}\right)^{-1} ; \\
& R \leftarrow\{0,1\}^{n} ; y \leftarrow\left(v^{\prime} P_{3}, R\right) ; \\
& d_{\mathcal{A}} \leftarrow \mathcal{A}_{2}(y) ; \\
& i \leftarrow\left[1 .\left|\boldsymbol{L}_{2}\right|\right] ; \text { return fst }\left(\boldsymbol{L}_{2}[i]\right)
\end{aligned}
$$

Oracle $\mathcal{E X}(I D)$:
if $I D \notin \boldsymbol{L}_{3}$ then $L_{3} \leftarrow I D:: L_{3}$ $Q \leftarrow \mathcal{H}_{1}(I D) ;$
return $\boldsymbol{a} Q$

Oracle $\mathcal{H}_{1}(I D)$:
if $I D \notin \operatorname{dom}\left(\boldsymbol{L}_{1}\right)$ then

$$
\begin{aligned}
& v \stackrel{\subseteq}{s} \mathbb{Z}_{q}^{+} \\
& v(I D) \leftarrow v ;
\end{aligned}
$$

if $\boldsymbol{T}\left[\left|\boldsymbol{L}_{1}\right|\right]$ then
$L_{1}(I D) \leftarrow v P^{\prime}$
else
$L_{1}(I D) \leftarrow v P$
return $L_{1}(I D)$

Oracle $\mathcal{H}_{2}(r)$:
if $r \notin \operatorname{dom}\left(\boldsymbol{L}_{2}\right)$ then $m \notin\{0,1\}^{n}$;
$L_{2}(r) \leftarrow m$
return $\boldsymbol{L}_{2}(r)$

Semantic security of an IBE scheme

An IBE scheme is IND-ID-CPA-secure iff

$$
\forall \mathcal{A} \cdot \operatorname{PPT}(\mathcal{A}) \Longrightarrow\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right| \text { is negligible }
$$

Semantic security of an IBE scheme

An IBE scheme is IND-ID-CPA-secure iff

$$
\forall \mathcal{A} \cdot \operatorname{PPT}(\mathcal{A}) \Longrightarrow\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right| \text { is negligible }
$$

Semantic security of an IBE scheme

An IBE scheme is IND-ID-CPA-secure iff

$$
\forall \mathcal{A} \cdot \operatorname{PPT}(\mathcal{A}) \Longrightarrow\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right| \text { is negligible }
$$

Semantic security of an IBE scheme

An IBE scheme is IND-ID-CPA-secure iff
$\forall \mathcal{A} \cdot \operatorname{PPT}(\mathcal{A}) \wedge \operatorname{Pr}\left[\bigwedge_{i=1}^{m} i d_{i} \neq i d_{\mathcal{A}}\right]=1 \Longrightarrow\left|\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right|$ is negligible

