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Cryptanalysis-driven Security

Propose a cryptographic scheme

Wait for someone to come out with an attack

Declare the scheme secure

Attack found
Patch the scheme

Enough waiting

Can’t we do better?



Reductionist Cryptographic Proofs

1 Define a security goal and an adversarial model
2 Propose a cryptographic scheme
3 Reduce security of the scheme to a cryptographic

assumption

IF an adversary A can break the security of the scheme
THEN the assumption can be broken with little extra effort

Conversely,

IF the security assumption holds
THEN the scheme is secure



Proof by Reduction

Assume an efficient adversary A breaks the security of a
scheme within time t

Build an adversary B that uses A to solve a computational
hard problem within time t + p(t)

We are interested in efficient reductions, were p is a
polynomial, so that

IF the problem is intractable
THEN the cryptographic scheme is asymptotically secure



Practical interpretation

Asymptotic Security
As long as p(t) is polynomial, attacking the scheme is
intractable provided the problem is intractable.

The smaller p(t), the tighter the reduction

p(t) matters

Exact Security
What is the best known method to solve the problem?
If the best method solves the problem in time t ′, choose scheme
parameters so that the reduction yields a better method,

t + p(t) < t ′



The Game-playing methodology

Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in
taming the complexity of security proofs that might
otherwise become so messy, complicated, and subtle
as to be nearly impossible to verify
V. Shoup
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CertiCrypt: language-based game-playing proofs

Formalize security definitions, assumptions and games using a
probabilistic programming language.

PWHILE: a probabilistic programming language

C ::= skip nop
| C; C sequence
| V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

x $← d : sample the value of x according to distribution d

The language of expressions (E) and distribution
expressions (D) admits user-defined extensions



Computing probabilities

JGηK :M→ (M→ [0, 1])→ [0, 1]

Interpret JGηK m as the expectation operator of the
probability distribution induced by the game

Probability: PrGη ,m[A] def
= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη,m[x 6= y ] = JGKη m 1x 6=y =
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4 1x 6=y (m[x 7→ 1, y 7→ 1])



Computing probabilities

JGηK :M→ (M→ [0, 1])→ [0, 1]

Interpret JGηK m as the expectation operator of the
probability distribution induced by the game

Probability: PrGη ,m[A] def
= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη,m[x 6= y ] = JGKη m 1x 6=y =

0 + 1
4 +

1
4 + 0



Computing probabilities

JGηK :M→ (M→ [0, 1])→ [0, 1]

Interpret JGηK m as the expectation operator of the
probability distribution induced by the game

Probability: PrGη ,m[A] def
= JGKη m 1A

Example.

Let G def
= x $← {0, 1}; y $← {0, 1}

PrGη,m[x 6= y ] = JGKη m 1x 6=y =

1
2



Program equivalence

Observational equivalence

f =X g def
= ∀m1 m2, m1 =X m2 =⇒ f m1 = g m2

� G1 ≃
I
O G2

def
= ∀m1 m2 f g, m1 =I m2 ∧ f =O g =⇒

JG1K m1 f = JG2K m2 g

Only a Partial Equivalence Relation

� G ≃I
O G not true in general

Generalizes information flow security (take I = O = Vlow)

Eample

� x $← {0, 1}k ; y ← x ⊕ z ≃{z}
{x,y ,z} y $← {0, 1}k ; x ← y ⊕ z
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Using program equivalence to relate probabilities

Let A be an event that depends only on variables in O

To prove PrG1,m1
[A] = PrG2,m2

[A] it suffices to find a set of
variables I such that

m1 =I m2

� G1 ≃
I
O G2



Proving program equivalence

Goal

� G1 ≃
I
O G2

A Relational Hoare Logic

� c1 ∼ c2 : Φ⇒ Φ′
� c′

1 ∼ c′
2 : Φ′ ⇒ Φ′′

� c1; c′
1 ∼ c2; c′

2 : Φ⇒ Φ′′ [R-Seq]

. . .



Proving program equivalence

Goal

� G1 ≃
I
O G2

Mechanized program transformations

Transformation: T (G1, G2, I, O) = (G′
1, G′

2, I′, O′)

Soundness theorem

T (G1, G2, I, O) = (G′
1, G′

2, I′, O′) � G′
1 ≃

I′
O′ G′

2

� G1 ≃
I
O G2

Reflection-based Coq tactic
(replace reasoning by computation)



Proving program equivalence

Goal

� G1 ≃
I
O G2

Mechanized program transformations

Dead code elimination (deadcode)

Constant folding and propagation (ep)

Procedure call inlining (inline)

Code movement (swap)

Common suffix/prefix elimination (eqobs_hd, eqobs_tl)



Proving program equivalence

Goal

� G ≃I
O G

An –incomplete– tactic for self-equivalence
(eqobs_in)

Does � G ≃I
O G hold?

Analyze dependencies to compute I′ s.t. � G ≃I′
O G

Check that I′ ⊆ I

Think about information flow security...



The Fundamental Lemma of Game-Playing

Fundamental lemma
If two games G1 and G2 behave identically in an initial memory
m unless a failure event “bad” fires, then

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2
[bad]



The Fundamental Lemma of Game-Playing

Syntactic criterion

Game G1 :
. . .
bad← true; c1

. . .

Game G2 :
. . .
bad← true; c2

. . .

PrG1,m[A | ¬bad] = PrG2,m[A | ¬bad]

PrG1,m[bad] = PrG2,m[bad]

Corollary

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2
[bad]



Digital Signature Schemes

A digital signature scheme is composed of three algorithms
(KG, Sign, Verify)

Key generation : (pk , sk) ← KG(η : N)

sk is the private signing key
pk is the public verification key

Signing : σ ← Sign(sk , m)

Verification : 0/1← Verify(pk , m, σ)

∀m, Verify(pk , m, Sign(sk, m)) = 1



The Full-Domain Hash Signature Scheme

Consider

A family of oneway trapdoor permutations (KG f , f , f−1) on
a cyclic group Gη (e.g. RSA)

A family of hash functions Hη : {0, 1}∗ → Gη (e.g. SHA-1)

The Full-Domain Hash scheme is defined as follows

KGη (pk , sk) = KG f (η)

Sign
sk
m

σ = f−1
sk (H(m))

Verify
pk
m
σ

if fpk (σ) = H(m) then 1 else 0



Existential Unforgeability

We want a signature for a message m to be hard to forge.
Even if...

...the adversary knows the signatures of many messages

...the adversary chose those messages

...the adversary gets to choose m

Definition (Existential unforgeability)
No efficient adversary A with access to a signing oracle
Sign(sk , ·) can forge a fresh signature for a message of its
choice.

Pr
[

(pk , sk) ← KG(η);

(m, σ)← ASign(sk ,·)(pk)

∣

∣

∣

∣

Verify(pk , m, σ) = 1 ∧
m is fresh

]

≤ ǫ(η)



Existential Unforgeability as a game

Game Gη

EF :
S ← nil;
(pk , sk)← KG(η);
(m, σ)← A(pk);
h← H(m)

Oracle H(m) def
=

return Hη(m)

Oracle Sign(m) def
=

S ← m :: S;

return f−1
sk (H(m))

∀A, Pr
[

Gη

EF | fpk (σ) = h ∧m /∈ S
]

≤ ǫ(η)



Existential Unforgeability as a game

Game Gη

EF :
S ← nil;
(pk , sk)← KG(η);
(m, σ)← A(pk);
h← H(m)

Oracle H(m) def
=

return Hη(m)

Oracle Sign(m) def
=

S ← m :: S;

return f−1
sk (H(m))

∀A,∀pk sk , Pr
[

Gη

EF | fpk (σ) = h ∧m /∈ S
]

≤ ǫ(η)

For most signature schemes (including FDH) we can exhibit a
reduction independent of the way (pk , sk) are generated.



Formalizing assumptions

(KG f , f , f−1) is a family of oneway trapdoor permutations

Game Gη

OW :
(pk , sk)← KG f (η);
y $← G;
x ← I(pk , y)

∀I, Pr[Gη

OW | x = f−1
sk (y)] is negligible



Formalizing assumptions

(KG f , f , f−1) is a family of oneway trapdoor permutations

Game Gη

OW :
(pk , sk)← KG f (η);
y $← G;
x ← I(pk , y)

∀I, Pr[Gη

OW | x = f−1
sk (y)] is negligible

Random Oracle Model (Hη behaves as a random function)

Oracle H(m) def
=

return Hη(m)
≡

Oracle H(m) def
=

if m 6∈ dom(L) then
h $← G; L← (m, h) ::L

return L(m)



Code-based proof of unforgeability of FDH

Game Gη

EF :
S ← nil;
(m, σ)← A(pk);
h ← H(m)

· · · ? · · ·

PrGη

EF
[fpk (σ) = h ∧m /∈ S] ≤ · · · ≤ h(PrGOW

[x = f−1
sk (x)])

Game Gη

OW :
y $← G;
x ← I(pk , y)

The probability loss (given by h) depends on the sequence
of games of the reduction

For some inverters there exist tighter reductions than for
others

Some inverters have a larger simulation overhead than
others



Existential unforgeability of FDH

Consider an adversary A s.t.

A makes at most qH(η) hash queries

A makes at most qS(η) signature queries

Suppose

A runs within time t(η)

A forges a signature with probability ǫ(η)
i.e. ǫ(η) = PrGη

EF
[fpk (σ) = h ∧m /∈ S]

We show two different inverters I that use A to invert the
trapdoor permutation f

The first admits a simple, suboptimal reduction

The second admits an optimal reduction, due to Coron



Unforgeability of FDH – suboptimal bound

Theorem
There exists an I that inverts f with probability ǫ′(η) within time
t ′(η), where

ǫ′(η) ≥ (qH(η) + qS(η) + 1)−1 ǫ(η)
t ′(η) ≤ t(η) + (qH(η) + qS(η)) Θ(Tf )



Unforgeability of FDH – suboptimal bound

Game GOW :
y $← G;
x ← I(y)

I(y) def
=

y ′ ← y ;
j $← [0..qH + qS];
i ← 0;
P, L← nil;
(m, σ)← A();
return σ

Oracle H(m) def
=

if m 6∈ dom(L) then
if i = j then h← y ′;
else r $← G; h← fpk (r)
P ← (m, r) :: P;
L← (m, h) :: L;
i ← i + 1

return L(m)

Oracle Sign(m) def
=

h← H(m); return P(m)

Inverter succeeds when m is the j-th hash query

That occurs with probability (qH(η) + qS(η) + 1)−1

Overhead is just one extra f computation per hash call

Signing is simulated without knowing sk , I keeps the
preimages under f of all but the j-th hash value



Unforgeability of FDH – optimal bound

Theorem
Assume f is homomorphic w.r.t. the group operation.
There exists an I that inverts f with probability ǫ′(η) within time
t ′(η), where

ǫ′(η) ≥
1

qS(η) + 1

(

1−
1

qS(η) + 1

)qS(η)

ǫ(η)

≈ exp(−1) qS(η)−1 ǫ(η)

t ′(η) ≤ t(η) + (qH(η) + qS(η)) Θ(Tf )



Unforgeability of FDH – optimal bound

Game GOW :
y $← G;
x ← I(y)

I(y) def
=

y ′ ← y ;
T ← nil; InitT ;
i ← 0;
P, L← nil;
(m, σ)← A();
h← H(m);
return σ×P(m)−1

Oracle H(m) def
=

if m 6∈ dom(L) then
r $← G;
if T (i) then h← y ′ × f (r)
else h← f (r)
P ← (m, r) :: P;
L← (m, h) :: L;
i ← i + 1

return L(m)

Oracle Sign(m) def
=

h← H(m); return P(m)

InitT def
= while |T | ≤ q do (b $← 〈true 7→ p, false 7→ 1− p〉; T ← b :: T )

Each entry in T is true with probability p
Inverter succeeds when

The T -entry for m is true
The T -entries of messages in sign queries are all false

That occurs with probability p (1− p)qS(η)



Unforgeability of FDH – optimal bound

Game GOW :
y $← G;
x ← I(y)

I(y) def
=

y ′ ← y ;
T ← nil; InitT ;
i ← 0;
P, L← nil;
(m, σ)← A();
h← H(m);
return σ×P(m)−1

Oracle H(m) def
=

if m 6∈ dom(L) then
r $← G;
if T (i) then h← y ′ × f (r)
else h← f (r)
P ← (m, r) :: P;
L← (m, h) :: L;
i ← i + 1

return L(m)

Oracle Sign(m) def
=

h← H(m); return P(m)

InitT def
= while |T | ≤ q do (b $← 〈true 7→ p, false 7→ 1− p〉; T ← b :: T )

Indeed, thanks to the homomorphic property of f ,
h = fpk (σ) =⇒ y × P(m) = fpk (σ)

=⇒ f−1
sk (y × P(m)) = σ

=⇒ f−1
sk (y) = σ × P(m)−1



Unforgeability of FDH – optimal bound

Game GOW :
y $← G;
x ← I(y)

I(y) def
=

y ′ ← y ;
T ← nil; InitT ;
i ← 0;
P, L← nil;
(m, σ)← A();
h← H(m);
return σ×P(m)−1

Oracle H(m) def
=

if m 6∈ dom(L) then
r $← G;
if T (i) then h← y ′ × f (r)
else h← f (r)
P ← (m, r) :: P;
L← (m, h) :: L;
i ← i + 1

return L(m)

Oracle Sign(m) def
=

h← H(m); return P(m)

InitT def
= while |T | ≤ q do (b $← 〈true 7→ p, false 7→ 1− p〉; T ← b :: T )

Overhead is just one extra f computation and one group
operation per hash call
The bound is maximized for p = (qS(H) + 1)−1



Practical Interpretation for RSA-FDH

Assume a reasonable bound on the number of hash
queries, e.g. qH ≤ 260

Assume a reasonable bound on the number of sign
queries, e.g. qS ≤ 220

Note that the owner of this private key can enforce this limit

You want a reduction to yield a method to invert RSA better
than the best known method

The best known method to invert RSA is to factor the
modulus

The best known method to factor large integers is the
Number Field Sieve



Practical Interpretation for RSA-FDH

The overhead is the same (up to constant factors) in both
reductions: (qH + qS)Tf ≈ 260Tf , for RSA Tf = O(|n|2).

To invert f with probability close to 1, the first inverter has
to be iterated qH + qS + 1 ≈ 260 times, the second has to
be iterated only exp(1) qS ≈ 222 times

Modulus size NFS First reduction Optimal reduction

512 258 260t + 2138 222t + 2100

1024 280 260t + 2140 222t + 2102

2048 2111 260t + 2142 222t + 2104

4096 2149 260t + 2144 222t + 2106



Practical Interpretation for RSA-FDH

The overhead is the same (up to constant factors) in both
reductions: (qH + qS)Tf ≈ 260Tf , for RSA Tf = O(|n|2).

To invert f with probability close to 1, the first inverter has
to be iterated qH + qS + 1 ≈ 260 times, the second has to
be iterated only exp(1) qS ≈ 222 times

Modulus size NFS First reduction Optimal reduction

512 258 2140 2102

1024 280 2141 2103

2048 2111 2142 2104

4096 2149 2144 2106

For t = 280, the optimal reduction allows to use a modulus
half as large as the original reduction would suggest



What does it take to trust a proof in CertiCrypt

Proof verification is fully-automated!
(but proof construction is still time-consuming)

You need to

trust the type checker of Coq
trust the definition of the language semantics
make sure the security statement (a few lines in Coq) is
what you expect it to be

You don’t need to

understand or even read the proof
trust proof tactics, program transformations
trust program logics, wp-calculus
be an expert in Coq




