
Object-Oriented Programming Languages:
Application and Interpretation

Éric Tanter

June 22, 2023

last updated: Thursday, June 22nd, 2023

Copyright © 2010-2023 by Éric Tanter

The electronic version of this work is licensed under the Creative Commons Attribution Non-Commercial No
Derivatives License

This booklet exposes fundamental concepts of object-oriented programming languages in
a constructive and progressive manner. It follows the general approach of the PLAI book
by Shriram Krishnamurthi (or at least I’d like to think it does). The document assumes
familiarity with the following Parts of PLAI: I-V (especially first-class functions, lexical
scoping, recursion, and state), as well as XII (macros).

OOPLAI is also available in PDF version. Note however that OOPLAI is subject to change
at any time, so accessing it through the web is the best guarantee to be viewing the latest
version.

I warmly welcome comments, suggestions and fixes; just send me a mail!

As of June 2018, OOPLAI has been translated to Chinese by ChongKai Zhu.

Acknowledgments: I am thankful to the members of the PLEIAD lab and the students of
the Programming Languages course at University of Chile for detecting bugs and suggesting
enhancements.

1

http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://www.dcc.uchile.cl/~etanter/ooplai/ooplai.pdf
http://pleiad.cl/etanter
https://mrmathematica.gitbooks.io/ooplai/content/
http://www.cs.utah.edu/~czhu/
https://pleiad.cl/

1 From Functions to Simple Objects

This exploration of object-oriented programming languages starts from what we know al-
ready from PLAI, as well as our intuition about what objects are.

1.1 Stateful Functions and the Object Pattern

An object is meant to encapsulate in a coherent whole a piece of state (possibly, but not
necessarily, mutable) together with some behavior that relies on that state. The state is
usually called fields (or instance variables), and the behavior is provided as a set of methods.
Calling a method is often considered as message passing: we send a message to an object,
and if it understands it, it executes the associated method.

In higher-order procedural languages like Scheme, we have seen similar creatures:

(define add
(λ (n)

(λ (m)
(+ m n))))

> (define add2 (add 2))
> (add2 5)
7

The function add2 encapsulates some hidden state (n = 2) and its behavior effectively de-
pends on that state. So, in a sense, a closure is an object whose fields are its free variables.
What about behavior? well, it has a unique behavior, triggered when the function is applied
(from a message passing viewpoint, apply is the only message understood by a function).

If our language supports mutation (set!), we can effectively have a stateful function with
changing state:

(define counter
(let ([count 0])

(λ ()
(begin

(set! count (add1 count))
count))))

We can now effectively observe that the state of counter changes:

> (counter)
1

2

> (counter)
2

Now, what if we want a bi-directional counter? The function must be able to do either +1 or
-1 on its state depending on... well, an argument!

(define counter
(let ([count 0])

(λ (msg)
(match msg

['dec (begin
(set! count (sub1 count))
count)]

['inc (begin
(set! count (add1 count))
count)]))))

Note how counter uses cmd to discriminate what action to perform.

> (counter 'inc)
1
> (counter 'dec)
0

This looks quite like an object with two methods and one instance variable, doesn’t it?

Let us generalize a bit, in order to support multiple arguments and organize methods as a list
of functions indexed by their name. We will also introduce another instance variable step
for controlling the amount by which the counter is increased or decreased. We add a few
more methods as well:

(define counter
(let ([count 0]

[step 1])
(let ([methods

(list
(cons 'inc (λ () (set! count (+ count step))

count))
(cons 'dec (λ () (set! count (- count step))

count))
(cons 'reset (λ () (set! count 0)))
(cons 'step! (λ (v) (set! step v))))])

(λ (msg . args)
(let ([found (assoc msg methods)])

(if found

3

(apply (cdr found) args)
(error "message not understood:" msg)))))))

We use the dot notation for the arguments of the dispatch function: this enables the function
to receive one mandatory argument (the msg) as well as zero or more optional arguments
(available in the body as a list bound to args).

To define the dispatch function in a generic fashion, we first put all methods in an association
list (ie. a list of pairs) called methods, which associates a symbol (aka. message) to the
corresponding method (ie. a lambda). We use assoc to lookup an existing method for
handling the msg. We get the result as found, which will be a pair symbol-lambda if found.
We then use apply to apply the function to the (possibly empty) list of arguments. If no
method was found, found will be #f; in that case, we generate an informative error message.

Let’s try that:

> (counter 'inc)
1
> (counter 'step! 2)
> (counter 'inc)
3
> (counter 'dec)
1
> (counter 'reset)
> (counter 'dec)
-2
> (counter 'hello)
message not understood: 'hello

1.2 A (First) Simple Object System in Scheme

We can now use macros to embed a simple object system that follows the pattern identified
above. Note that in this

booklet, we use
defmac to define
macros. defmac is
like
define-syntax-rule,
but it also supports
the specification of
keywords and
captures of
identifiers (using
the #:keywords
and #:captures
optional
parameters). It is
provided by the
play package.

(defmac (OBJECT ([field fname fval] ...)
([method mname mparams mbody ...] ...))

#:keywords field method
(let ([fname fval] ...)

(let ([methods (list (cons 'mname (λ mparams mbody ...)) ...)])
(λ (msg . args)

(let ([found (assoc msg methods)])
(if found

(apply (cdr found) args)
(error "message not understood:" msg)))))))

4

We additionally define a specific notation for sending a message to an object, using an arrow
Ñ, such as (Ñ counter step! 3). This little macro hides from the user the fact that an
object is a function and that the message is treated as a symbol.

(defmac (Ñ o m arg ...)
(o 'm arg ...))

We can now use our embedded object system to define our counter in a nice way:

(define counter
(OBJECT
([field count 0]
[field step 1])

([method inc () (set! count (+ count step)) count]
[method dec () (set! count (- count step)) count]
[method reset () (set! count 0)]
[method step! (v) (set! step v)])))

and use it:

> (Ñ counter inc)
1
> (Ñ counter step! 2)
> (Ñ counter inc)
3
> (Ñ counter dec)
1
> (Ñ counter reset)
> (Ñ counter dec)
-2
> (Ñ counter hello)
message not understood: 'hello

Note that object fields (like count and step) are strongly encapsulated here. There is no
way to access them directly without going through a method.

1.3 Constructing Objects

Up to now, our objects have been created as unique specimen. What if we want more than
one point object, possibly with different initial coordinates?

In the context of functional programming, we have already seen how to craft various similar
functions in a proper way: we can use a higher-order function, parameterized accordingly,
whose role is to produce the specific instances we want. For instance, from the add function
defined previously, we can obtain various single-argument adder functions:

5

> (define add4 (add 4))
> (define add5 (add 5))
> (add4 1)
5
> (add5 1)
6

Because our simple object system is embedded in Scheme, we can simply reuse the power
of higher-order functions to define object factories: This approach can

also be used in
object-based
languages such as
JavaScript (JS has
various ways to
create similar
objects).

(define (make-counter [init-count 0] [init-step 1])
(OBJECT
([field count init-count]
[field step init-step])

([method inc () (set! count (+ count step)) count]
[method dec () (set! count (- count step)) count]
[method reset () (set! count 0)]
[method step! (v) (set! step v)])))

The make-counter function takes the initial count and step as optional parameters, and
returns a freshly created object, properly initialized.

> (let ([c1 (make-counter)]
[c2 (make-counter 10 5)])

(+ (Ñ c1 inc) (Ñ c2 inc)))
16

1.4 Dynamic Dispatch and Polymorphism

Our simple object system is sufficient to show the fundamental aspect of object-oriented
programming: dynamic dispatch, which gives rise to the kind of polymorphism that makes
object-oriented programs extensible.

See how the inc-all function below sends the inc message to each object in the list lst,
without knowing how it will handle it (assuming it can!):

(define (inc-all lst)
(map (λ (x) (Ñ x inc)) lst))

> (inc-all (list (make-counter)
(make-counter 10 5)
(OBJECT () ((method inc () "hola")))))

'(1 15 "hola")

6

In particular, the last object is not at all a counter, it just happens to be a weird object that
handles inc in its own distinctive way. inc-all is completely oblivious to the kinds of
objects it talks to.

Likewise, notice how, in the following object-oriented implementation of a tree, a node
object sends the sum message to each of its children without knowing whether it is a leaf or
a node:

(define (make-node l r)
(OBJECT
([field left l]
[field right r])

([method sum () (+ (Ñ left sum) (Ñ right sum))])))

(define (make-leaf v)
(OBJECT
([field value v])
([method sum () value])))

> (let ([tree (make-node
(make-node (make-leaf 3)

(make-node (make-leaf 10)
(make-leaf 4)))

(make-leaf 1))])
(Ñ tree sum))

18

We have successfully embedded a simple object system in Scheme that shows the connec-
tion between lexically-scoped first-class functions and objects. However, we are far from
done, because the object system we have is still incomplete and primitive. In particular,
objects lack their "self" so far, and we have no advanced reuse mechanism yet. However,
as simple as it may seem, this object system is entirely enough to illustrate the fundamental
data abstraction mechanism that objects really are. See the chapter on

the benefits and
limits of objects for
more on this matter.

7

2 Looking for the Self

In the previous section, we have built a simple object system, whose main limitation is that
objects are not "aware" of themselves. Object-oriented programming languages all give
this self-awareness to objects, which allows methods to reuse others, and to be (mutually)
recursive.

Consider a simple extension of our counters from the previous chapter with an inc-by!
method, which does two things: it changes the step by its argument (like step!) and then
actually increments the counter (like inc). Of course we’d want to implement this "com-
pound" method by invoking the existing methods on the currently-executing object:

(method inc-by! (v)
(-> self step! v)
(-> self inc))

Here we used self to denote the currently-executing object; in other languages, like Java
and JavaScript, it is called this. Clearly, our account of OOP so far does not inform us as
to what self is.

2.1 What is Self?

Let us go back to our first definition of an object (without macros). We see that an object is
a function; and so we want, from within that function, to be able to refer to itself. How do
we do that? We already know the answer from our study on recursion! We just have to use a
recursive binding (with letrec) to give a name to the function-object and then we can use
it in method definitions:

(define counter
(letrec

([self
(let ([count 0]

[step 1])
(let ([methods

(list
(cons 'inc (λ () (set! count (+ count step))

count))
(cons 'dec (λ () (set! count (- count step))

count))
(cons 'reset (λ () (set! count 0)))
(cons 'step! (λ (v) (set! step v)))
(cons 'inc-by! (λ (n) (self 'step! n)

(self 'inc))))])

8

(λ (msg . args)
(let ([found (assoc msg methods)])

(if found
(apply (cdr found) args)
(error "message not understood:" msg))))))])

self))

Note that the body of the letrec simply returns self, which is bound to the recursive
procedure we have defined.

> (counter 'inc)
1
> (counter 'inc-by! 20)
21
> (counter 'inc)
41

2.2 Self with Macros

Let us take the pattern above and use it in our OBJECT macro:

(defmac (OBJECT ([field fname fval] ...)
([method mname mparams mbody ...] ...))

#:keywords field method
(letrec

([self
(let ([fname fval] ...)

(let ([methods (list (cons 'mname (λ mparams mbody ...)) ...)])
(λ (msg . args)

(let ([found (assoc msg methods)])
(if found

(apply (cdr found) args)
(error "message not understood:" msg))))))])

self))

(defmac (Ñ o m arg ...)
(o 'm arg ...))

Now let us try it out with some points:

(define (make-counter [init-count 0] [init-step 1])
(OBJECT
([field count init-count]
[field step init-step])

9

([method inc () (set! count (+ count step)) count]
[method dec () (set! count (- count step)) count]
[method reset () (set! count 0)]
[method step! (v) (set! step v)]
[method inc-by! (v) (Ñ self step! v) (Ñ self inc)])))

> (let ([c (make-counter)])
(Ñ c inc-by! 20))

self: undefined;
cannot reference an identifier before its definition

in module: 'program

What?? But we did introduce self with letrec, so why isn’t it defined? The reason
is... because of hygiene! Remember that Scheme’s syntax-rules is hygienic, and for that
reason, it transparently renames all identifiers introduced by macros such that they don’t
accidentally capture/get captured where the macro is expanded. It is possible to visualize
this very precisely using the macro stepper of DrRacket. You will see that the identifier
self in the inc-by! method is not the same color as the same identifier in the letrec
expression.

Luckily for us, defmac supports a way to specify identifiers that can be used by the macro
user code even though they are introduced by the macro itself. The only thing we need to do
is therefore to specify that self is such an identifier:

(defmac (OBJECT ([field fname fval] ...)
([method mname mparams mbody ...] ...))

#:keywords field method
#:captures self
(letrec

([self
(let ([fname fval] ...)

(let ([methods (list (cons 'mname (λ mparams mbody ...)) ...)])
(λ (msg . args)

(let ([found (assoc msg methods)])
(if found

(apply (cdr found) args)
(error "message not understood:" msg))))))])

self))

> (let ([c (make-counter)])
(Ñ c inc-by! 20))

20

10

2.3 Mutually-Recursive Methods

The previous section already shows that methods can use other methods by sending messages
to self. This other example shows mutually-recursive methods. Try the same

definition in Java,
and compare the
results for "large"
numbers. Yes, our
small object system
does enjoy the
benefits of tail-call
optimization! Can
you explain why?

(define odd-even
(OBJECT ()
([method even (n) (match n

[0 #t]
[1 #f]
[else (Ñ self odd (- n 1))])]

[method odd (n) (match n
[0 #f]
[1 #t]
[else (Ñ self even (- n 1))])])))

> (Ñ odd-even odd 15)
#t
> (Ñ odd-even odd 14)
#f
> (Ñ odd-even even 1423842)
#t

We now have an object system that supports self, including returning self, and sending
messages to self. Notice how self is bound in methods at object creation time: when the
methods are defined, they capture the binding of self and this binding is fixed from then
on. We will see in the following chapters that this eventually does not work if we want to
support delegation or if we want to support classes.

2.4 Nested Objects

Because objects and methods are compiled into lambdas in Scheme, our objects inherit in-
teresting properties. First, as we have seen, they are first-class values (otherwise what would
be the point?). Also, as we have just seen above, method invocations in tail position are
treated as tail calls, and therefore space efficient. We now look at another benefit: we can
use higher-order programming patterns, such as objects producing objects (usually called
factories). That is, we can define nested objects, with proper lexical scoping.

Consider the following example:

(define counter-factory
(OBJECT
([field default-count 0]
[field default-step 1])

11

([method df-count! (v) (set! default-count v)]
[method df-step! (v) (set! default-step v)]
[method make ()
(OBJECT
([field count default-count]
[field step default-step])

([method inc () (set! count (+ count step)) count]
[method dec () (set! count (- count step)) count]
[method reset () (set! count 0)]
[method step! (v) (set! step v)]
[method inc-by! (v) (Ñ self step! v) (Ñ self inc)]))])))

> (define c1 (Ñ counter-factory make))
> (Ñ c1 inc)
1
> (Ñ counter-factory df-count! 10)
> (Ñ counter-factory df-step! 5)
> (Ñ c1 inc)
2
> (define c2 (Ñ counter-factory make))
> (Ñ c2 inc)
15
> (Ñ c1 inc)
3
> (Ñ c2 inc)
20

Convince yourself that these results make sense.

12

3 Benefits and Limits of Objects

In the language course, we have been programming by defining a data type and its variants
and then defining all the "services" over these structures using procedures that work by
case analysis. This style of programming is sometimes called "procedural paradigm" or
"functional design" (note that "functional" here does not refer to "side-effect free"!).

In PLAI, we have done this with define-type to introduce the data type and its variants,
and using type-case in case-analyzing procedures. This procedural approach is common
in other languages like C (unions), Pascal (variants), ML and Haskell’s algebraic data types,
or plain Scheme’s tagged data.

So, what does object-oriented programming really bring us? What are its weaknesses? As
it turns out, using an object-oriented language does not mean that programs are "object
oriented". Many Java programs are not, or at least sacrifice some of the fundamental benefits
of objects. This chapter is

based on the article
On Understanding
Data Abstraction,
Revisited by
William R. Cook
(2009).

The aim of this intermediary chapter is to step back from our step-by-step construction of
OOP to contrast objects with the procedural approach, with the aim of clarifying the pros and
cons of each approach. Interestingly, the simple object system we have built so far is entirely
sufficient study the essential benefits and limits of objects—delegation, classes, inheritance,
etc. are all interesting features, but are not essential to objects.

3.1 Abstract Data Types

Let us first look at abstract data types (ADTs). An ADT is a data type that hides its repre-
sentation and only supplies operations to manipulate its values.

For instance, an integer set ADT can be defined as follows:

adt Set is
empty : Set
insert : Set x Int -> Set
isEmpty? : Set -> Bool
contains? : Set x Int -> Bool

There are many possible representations for such an integer set ADT. For instance, one could
implement it with Scheme’s lists:

(define empty '())

(define (insert set val)
(if (not (contains? set val))

(cons val set)

13

set))

(define (isEmpty? set) (null? set))

(define (contains? set val)
(if (null? set) #f

(if (eq? (car set) val)
#t
(contains? (cdr set) val))))

The following client program can then use ADT values, without being aware of the underly-
ing representation:

> (define x empty)
> (define y (insert x 3))
> (define z (insert y 5))
> (contains? z 2)
#f
> (contains? z 5)
#t

We could as well implement the set ADT with another representation, such as using PLAI’s
define-type mechanism to create a variant type to encode a set as a linked list.

(define-type Set
[mtSet]
[aSet (val number?) (next Set?)])

(define empty (mtSet))

(define (insert set val)
(if (not (contains? set val))

(aSet val set)
set))

(define (isEmpty? set) (equal? set empty))

(define (contains? set val)
(type-case Set set

[mtSet () #f]
[aSet (v next)

(if (eq? v val)
#t
(contains? next val))]))

14

The sample client program above runs exactly the same, even though the underlying repre-
sentation is now changed:

> (define x empty)
> (define y (insert x 3))
> (define z (insert y 5))
> (contains? z 2)
#f
> (contains? z 5)
#t

3.2 Procedural Representations

We can as well consider sets as being defined by their characteristic function: a function
that, given a number, tells us whether or not this number is part of the set. In that case, a set
is simply a function Int -> Bool. (In PLAI, we saw that in Chapter 11, when studying the
procedural representation of environments.)

What is the characteristic function of the empty set? a function that always returns false.
And the set obtained by inserting a new element?

(define empty (λ (n) #f))

(define (insert set val)
(λ (n)

(or (eq? n val)
(contains? set n))))

(define (contains? set val)
(set val))

Because a set is represented by its characteristic function, contains? simply applies the
function to the element. Note that the client program is again undisturbed:

> (define x empty)
> (define y (insert x 3))
> (define z (insert y 5))
> (contains? z 2)
#f
> (contains? z 5)
#t

What do we gain with the procedural representation of sets? flexibility! For instance, we
can define the set of all even numbers:

15

(define even
(λ (n) (even? n)))

It is not possible to fully represent this set in any of the ADT representations we considered
above. (Why?) We can even define non-deterministic sets:

(define random
(λ (n) (> (random) 0.5)))

With the procedural representation, we have much more freedom to define sets, and in addi-
tion, they can interoperate with existing set operations!

> (define a (insert even 3))
> (define b (insert a 5))
> (contains? b 12)
#t
> (contains? b 5)
#t

In contrast, with the ADT representations we have seen above, different representations
cannot interoperate. A set-as-list value cannot be used by a set-as-struct operation, and vice
versa. ADTs abstract the representation, but they only allow a single representation at a
time.

3.3 Objects

In essence, sets as functions are objects! Note that objects do not abstract type: the type of a
set-as-function is very concrete: it is a function Int -> Bool. Of course, as we have seen
in the first chapters, an object is a generalization of a function in that it can have multiple
methods.

3.3.1 Object Interfaces

We can define a notion of object interface that gathers the signature of the methods of an
object:

interface Set is
contains? : Int -> Bool
isEmpty? : Bool

Let us use our simple object system to implement sets as objects:

16

(define empty
(OBJECT ()

([method contains? (n) #f]
[method isEmpty? () #t])))

(define (insert s val)
(OBJECT ()

([method contains? (n)
(or (eq? val n)

(-> s contains? n))]
[method isEmpty? () #f])))

Note that empty is an object, and insert is a factory function that returns objects. A set
object implements the Set interface. The empty object does not contain any value, and
isEmpty? returns #t. insert returns a new object whose contains? method is similar to
the set characteristic function we have seen before, and isEmpty? returns #f.

A client program is unchanged for the set construction part, and then has to use message
sending to interact with set objects:

> (define x empty)
> (define y (insert x 3))
> (define z (insert y 5))
> (-> z contains? 2)
#f
> (-> z contains? 5)
#t

Note that object interfaces are essentially higher-order types: methods are functions, so
passing objects around means passing groups of functions around. This is a generalization
of higher-order functional programming. Object-oriented programs are inherently higher-
order.

3.3.2 Principles of Object-Oriented Programming

Principle: An object can only access other objects through their public interfaces

Once we create an object, like the one bound to z above, the only thing we can do with it is
to interact by sending messages. We cannot "open it". No attribute of the object is visible,
only its interface. In other words:

Principle: An object can only have detailed knowledge about itself

This is fundamentally different from the way we program with ADT values: in a type-
case analysis (recall the implementation of contains? in the ADT implementation with

17

define-type), one is opening the value and gaining direct access to its attributes. ADTs
provide encapsulation, but for the clients of the ADT; not for its implementation. Objects go
further in this regard. Even the implementation of the methods of an object cannot access
attributes of objects other than itself.

From this we can derive another fundamental principle:

Principle: An object is the set of observations that can be made upon it, as defined by its
object interface.

This is a strong principle, that says that if two objects behave the same for a certain ex-
periment (ie., a number of observations), then they should be undistinguishable otherwise.
This means that the use of identity-related operations (like pointer equality) are violating
this principle of OOP. With == in Java, we can distinguish two objects that are different even
though they behave in the same way.

3.3.3 Extensibility

The above principles can be considered the characteristic feature of OOP. As Cook puts
it: "Any programming model that allows inspection of the representation of more than one
abstraction at a time is NOT object oriented"

The Component Object Model (COM) is one of the purest OO programming model in prac-
tice. COM enforces all these principles: there is no built-in equality, there is no way to
determine if an object is an instance of a given class. COM programs are therefore highly
extensible.

Note that the extensibility of objects is in fact completely independent from inheritance! (We
don’t even have classes in our language) It instead comes from the use of interfaces.

3.3.4 What about Java?

Java is not a pure object-oriented language, not importantly because it has primitive types,
but because it supports many operations that violate the principles we have described above.
Java has primitive equality ==, instanceof, casts to class types, that make it possible to
distinguish two objects even though they behave the same. Java makes it possible to declare
a method that accepts objects based on their classes, not their interfaces (in Java, a class
name is also a type). And of course, Java allows objects to access the internals of other
objects (public fields, of course, but even private fields are accessible by objects of the same
class!).

This means that Java also supports ADT-style programming. There is no nothing wrong with
that! But it is important to understand the design tradeoffs involved, to make an informed
choice. For instance, in the JDK, certain classes respect OO principles on the surface (al-

18

lowing extensibility), but in their implementation using ADT techniques (not extensible,
but more efficient). If you’re interested, look at the List interface, and the LinkedList
implementation.

Programming in "pure OO" in Java basically means not using class names as types (ie. use
class names only after new), and never use primitive equality (==).

3.4 The Extensibility Problem

Object-oriented programming is often presented as the panacea in terms of extensible soft-
ware. But what exactly is meant with "extensible"?

The extensibility problem is concerned with defining a data type (structure + operations)
in a way that two kinds of extension are properly supported: adding new representational
variants, or adding new operations. Here, we use the

term ADT in line
with Cook’s usage.
It is important to
clarify however that
the discussion of
the extensibility
problem here
actually contrasts
objects with variant
types (aka.
algebraic data
types). We are
concerned with how
to have an
extensible
implementation.
The interface
abstraction is not
relevant here.

As it turns out, ADTs and objects each nicely support one dimension of extensibility, but
fail in the other. Let us study this with a well-known example: an interpreter of simple
expressions.

3.4.1 ADT

We first consider the ADT approach. We define a data type for expressions with three vari-
ants:

(define-type Expr
[num (n number?)]
[bool (b boolean?)]
[add (l Expr?) (r Expr?)])

Now we can define the interpreter as a function that type-cases on the abstract syntax tree:

(define (interp expr)
(type-case Expr expr

[num (n) n]
[bool (b) b]
[add (l r) (+ (interp l) (interp r))]))

This is good-old PLAI practice. With a little example:

> (define prog (add (num 1)
(add (num 2) (num 3))))

> (interp prog)
6

19

Extension: New Operation

Let us now consider that we want to add a new operation on expressions. In addition to
interpret an expression, we want to typecheck an expression, that is, to determine the type of
value it will produce (here, either number or boolean). This is fairly trivial in our case, but
still makes it possible to detect without interpretation that a program is bound to fail because
it adds things that are not both numbers:

(define (typeof expr)
(type-case Expr expr

[num (n) 'number]
[bool (b) 'boolean]
[add (l r) (if (and (equal? 'number (typeof l))

(equal? 'number (typeof r)))
'number
(error "Type error: not a number"))]))

We can determine the type of the program we defined previously:

> (typeof prog)
'number

And see that our typechecker reject non-sensical programs:

> (typeof (add (num 1) (bool #f)))
Type error: not a number

If we reflect on this extension case, we see that it all went smoothly. We wanted a new
operation, and just had to define a new function. This extension is modular, because it is
defined in a single place.

Extension: New Data

We now turn to the other dimension of extensibility: adding new data variants. Suppose we
want to extend our simple language with a new expression: ifc. We extend the datatype
definition:

(define-type Expr
[num (n number?)]
[bool (b boolean?)]
[add (l Expr?) (r Expr?)]
[ifc (c Expr?) (t Expr?) (f Expr?)])

Changing the definition of Expr to add this new variant breaks all existing function defini-
tions! interp and typeof are now invalid, because they type case on expressions, but do
not include any case for ifc. We need to modify them all to include the behavior associated
to the ifc case:

20

(define (interp expr)
(type-case Expr expr

[num (n) n]
[bool (b) b]
[add (l r) (+ (interp l) (interp r))]
[ifc (c t f)

(if (interp c)
(interp t)
(interp f))]))

(define (typeof expr)
(type-case Expr expr

[num (n) 'number]
[bool (b) 'boolean]
[add (l r) (if (and (equal? 'number (typeof l))

(equal? 'number (typeof r)))
'number
(error "Type error: not a number"))]

[ifc (c t f)
(if (equal? 'boolean (typeof c))

(let ((type-t (typeof t))
(type-f (typeof f)))

(if (equal? type-t type-f)
type-t
(error "Type error: both branches should have

same type")))
(error "Type error: not a boolean"))]))

This works:

> (define prog (ifc (bool false)
(add (num 1)

(add (num 2) (num 3)))
(num 5)))

> (interp prog)
5

This extensibility scenario was much less favorable. We had to modify the datatype defini-
tion and all the functions.

To summarize, with ADTs, adding new operations (eg. typeof) is easy and modular, but
adding new data variants (eg. ifc) is cumbersome and non-modular.

21

3.4.2 OOP

How do objects perform in these extensibility scenarios?

First, we start with the object-oriented version of our interpreter:

(define (bool b)
(OBJECT () ([method interp () b])))

(define (num n)
(OBJECT () ([method interp () n])))

(define (add l r)
(OBJECT () ([method interp () (+ (-> l interp)

(-> r interp))])))

Note that, in line with OO design principles, each expression objects knows how to interpret
itself. There is no more a centralized interpreter that deals with all expressions. Interpreting
a program is done by sending the interp message to the program:

> (define prog (add (num 1)
(add (num 2) (num 3))))

> (-> prog interp)
6

Extension: New Data

Adding a new kind of data like a conditional ifc object can be done by simply defining a
new object factory, with the definition of how these new objects handle the interp message:

(define (ifc c t f)
(OBJECT () ([method interp ()

(if (-> c interp)
(-> t interp)
(-> f interp))])))

We can now interpret programs with conditionals:

> (-> (ifc (bool #f)
(num 1)
(add (num 1) (num 3))) interp)

4

This case shows that, conversely to ADTs, adding new data variants with OOP is direct and
modular: just create a new (kind of) object(s). This is a clear advantage of objects over
ADTs.

22

Extension: New Operation

But before concluding that OOP is the panacea for extensible software, we have to consider
the other extension scenario: adding an operation. Suppose we now want to typecheck our
programs, just as we did before. This means that expression objects should now also under-
stand the "typeof" message. To do that, we actually have to modify all object definitions:

(define (bool b)
(OBJECT () ([method interp () b]

[method typeof () 'boolean])))

(define (num n)
(OBJECT () ([method interp () n]

[method typeof () 'number])))

(define (add l r)
(OBJECT () ([method interp () (+ (-> l interp)

(-> r interp))]
[method typeof ()

(if (and (equal? 'number (-> l typeof))
(equal? 'number (-> r typeof)))

'number
(error "Type error: not a number"))])))

(define (ifc c t f)
(OBJECT () ([method interp ()

(if (-> c interp)
(-> t interp)
(-> f interp))]

[method typeof ()
(if (equal? 'boolean (-> c typeof))

(let ((type-t (-> t typeof))
(type-f (-> f typeof)))

(if (equal? type-t type-f)
type-t
(error "Type error: both branches

should have same type")))
(error "Type error: not a boolean"))])))

We can if this works:

> (-> (ifc (bool #f) (num 1) (num 3)) typeof)
'number
> (-> (ifc (num 1) (bool #f) (num 3)) typeof)
Type error: not a boolean

23

This extensibility scenario forced us to modify all our code to add the new methods.

To summarize, with objects, adding new data variants (eg. ifc) is easy and modular, but
adding new operations (eg. typeof) is cumbersome and non-modular.

Note that this is just the dual situation of ADTs!

3.5 Different Forms of Data Abstraction
Cook’s paper goes
more in depth in the
comparison of these
forms of data
abstraction. It is
definitely a
must-read!

ADTs and objects are different forms of data abstraction, each with its own advantages and
drawbacks.

ADTs have a private representation type that prohibits tampering and extension. This is good
for reasoning (analysis) and optimization. But it only permits one representation at a time.

Objects have behavioral interfaces, which allow definition of new implementations at any
time. This is good for flexibility and extensibility. But it makes it hard to analyze code, and
makes certain optimizations impossible.

Both forms of abstraction also support different forms of modular extensions. It is possible to
modularly add new operations on an ADT, but supporting new data variants is cumbersome.
It is possible to modularly add new representations to an object-oriented system, but adding
new operations implies crosscutting modifications.

There are ways to navigate this tradeoff. For instance, one can expose certain implemen-
tation details in the interface of an object. That sacrifices some extensibility, but recovers
the possibility to do some optimizations. The fundamental question is therefore a design
question: what do I really need?

Now you understand why many languages support both kinds of data abstraction.

24

4 Forwarding and Delegation

Using message sending, an object can always forward a message to another object in case it
does not know how to handle it. With our small object system, we can do that explicitly as
follows:

(define seller
(OBJECT ()
([method price (prod)

(* (case prod
((1) (Ñ self price1))
((2) (Ñ self price2)))

(Ñ self unit))]
[method price1 () 100]
[method price2 () 200]
[method unit () 1])))

(define broker
(OBJECT
([field provider seller])
([method price (prod) (Ñ provider price prod)])))

> (Ñ broker price 2)
200

Object broker does not know how to compute the price of a product, but it can claim to
do so by implementing a method to handle the price message, and simply forwarding it to
seller, who does implement the desired behavior. Note how broker holds a reference to
seller in its provider field. This is a typical example of object composition, with message
forwarding.

Now, you can see that the problem with this approach is that this forwarding of messages
has to be explicit: for each message that we anticipate might be sent to broker, we have to
define a method that forwards the message to seller. For instance:

> (Ñ broker unit)
message not understood: 'unit

4.1 Message Forwarding

We can do better by allowing each object to have a special "partner" object to which it
automatically forwards any message it does not understand. We can define a new syntactic
abstraction, OBJECT-FWD, for constructing such objects:

25

(defmac (OBJECT-FWD target
([field fname fval] ...)
([method mname mparams mbody ...] ...))

#:keywords field method
#:captures self
(letrec ([self

(let ([fname fval] ...)
(let ([methods (list (cons 'mname (λ mparams mbody ...)) ...)])

(λ (msg . args)
(let ([found (assoc msg methods)])

(if found
(apply (cdr found) args)
(apply target msg args))))))])

self))

Note how the syntax is extended to specify a target object; this object is used in the dis-
patch process whenever a message is not found in the methods of the object. Of course, if
all objects forward unknown message to some other object, there has to be a last object in
the chain, that simply fails when sent a message:

(define root
(λ (msg . args)

(error "message not understood" msg)))

Now, broker can be defined simply as follows:

(define broker
(OBJECT-FWD seller () ()))

That is, broker is an empty object (no fields, no methods) that forwards all messages sent
to it to seller:

> (Ñ broker price 2)
200
> (Ñ broker unit)
1

This kind of objects is often called a proxy.

4.2 Delegation

Suppose we want to use broker to refine the behavior of seller; say, we want to double
the price of every product, by changing the unit used in the calculation of the prices. This is
easy: we just have to define a method unit in broker:

26

(define broker
(OBJECT-FWD seller ()
([method unit () 2])))

With this definition, we should make sure that asking the price of a product to broker is
twice the price of the same product asked to seller:

> (Ñ broker price 1)
100

Hmmm... it does not work! It seems that once we forward the price message to seller,
broker never gets the control back; in particular, the unit message that seller sends to
self is not received by broker.

Let us consider why this is so. To which object is self bound in seller? To seller!
Remember, we said previously (see §2 “Looking for the Self”) that in our approach, self
is statically bound: when an object is created, self is made to refer to the object/closure
that is being defined, and will always remain bound to it. This is because letrec, like let,
respects lexical scoping.

What we are looking for is another semantics, called delegation. Delegation requires self
in an object to be dynamically bound: it should always refer to the object that originally
received the message. In our example, this would ensure that when seller sends unit to
self, then self is bound to broker, and thus the re-definition of unit in broker takes
effect. In that case, we say that seller is the parent of broker, and that broker delegates
to its parent.

How do we bind an identifier such that it refers to the value at the point of usage, rather than
at the point of definition? In the absence of dynamically-scoped binding forms, the only
way we can achieve this is by passing that value as parameter. So, we have to parameterize
methods by the actual receiver. Therefore, instead of capturing the self identifier in their
surrounding lexical scope, they are parameterized by self.

Concretely, this means that the method:

(λ (prod) (Ñ self unit))

in seller must be kept in the methods list as:

(λ (self prod)....(Ñ self unit)....)
Ever wondered why
methods in Python
must explicitly
receive self as a
first parameter? (In
Java, and all other
languages, they do
as well, although
you don’t see it
explicitly.)

This parameterization effectively allows us to pass the current receiver after we lookup the
method.

Let us now define a new syntactic form, OBJECT-DEL, to support the delegation semantics
between objects:

27

(defmac (OBJECT-DEL parent
([field fname fval] ...)
([method mname (mparam ...) mbody ...] ...))

#:keywords field method
#:captures self
(let ([fname fval] ...)

(let ([methods
(list (cons 'mname (λ (self mparam ...) mbody ...)) ...)])

(λ (current)
(λ (msg . args)

(let ([found (assoc msg methods)])
(if found

(apply (cdr found) (cons current args))

(apply (parent current) msg args))))))))

Several things have changed: first, we renamed target to parent, to make it clear that we
are defining a delegation semantics. Second, all methods are now parameterized by self,
as explained above. Note that we got rid of letrec altogether! This is because letrec was
used precisely to allow objects to refer to self, but following lexical scoping. We have seen
that for delegation, lexical scoping of self is not what we want.

This means that when we find a method in the method dictionary, we must first give it
the actual receiver as argument. How are we going to obtain that receiver? well, the only
possiblity is to parameterize objects by the current receiver they have to use when applying
methods. That is to say, the value returned by the object construction form is not a "λ
(msg . vals)" anymore, but a "λ (rcvr)". This effectively parameterizes
our objects by "the current receiver". Similarly, if a message is not understood by a given
object, then it must send the current receiver along to its parent.

This leaves us with one final question to address: how do we send a message to an object in
the first place? Remember that our definition ofÑ is:

(defmac (Ñ o m arg ...)
(o 'm arg ...))

But now we cannot apply o as a function that takes a symbol (the message) and a variable
number of arguments. Indeed, an object now is a function of the form (λ (rcvr) (λ
(msg . args))). So before we can pass the message and the arguments, we have
to specify which object is the current receiver. Well, it’s easy, because at the time we are
sending a message, the current receiver should be... the object we are sending the message
to! Why is the let

binding necessary?
(defmac (Ñ o m arg ...)

(let ([obj o])
((obj obj) 'm arg ...)))

28

Let us see delegation—that is, late binding of self—at work:

(define seller
(OBJECT-DEL root ()
([method price (prod)

(* (case prod
[(1) (Ñ self price1)]
[(2) (Ñ self price2)])

(Ñ self unit))]
[method price1 () 100]
[method price2 () 200]
[method unit () 1])))

(define broker
(OBJECT-DEL seller ()
([method unit () 2])))

> (Ñ seller price 1)
100
> (Ñ broker price 1)
200

4.3 Programming with Prototypes

Object-based languages with a delegation mechanism like the one we have introduced in
this chapter are called prototype-based languages. Examples are Self, JavaScript, and Am-
bientTalk, among many others. What are these languages good at? How to program with
prototypes?

4.3.1 Singleton and Exceptional Objects

Since objects can be created ex-nihilo (ie. out of an object literal expression like OBJECT-
DEL), it is natural to create one-of-a-kind objects. As opposed to class-based languages that
require a specific design pattern for this (called Singleton), object-based languages are a
natural fit for this case, as well as for creating "exceptional" objects (more on this below).

Let us first consider the object-oriented representation of booleans and a simple if-then-else
control structure. How many booleans are there? well, two: true, and false. So we can
create two standalone objects, true and false to represent them. In pure object-oriented
languages like Self and Smalltalk, control structures like if-then-else, while, etc. are not
primitives in the language. Rather, they are defined as methods on appropriate objects. Let
us consider the if-then-else case. We can pass two thunks to a boolean, a truth thunk and
a falsity thunk; if the boolean is true, it applies the truth thunk; if it is false, it applies the
falsity thunk.

29

(define true
(OBJECT-DEL root ()

([method ifTrueFalse (t f) (t)])))

(define false
(OBJECT-DEL root ()

([method ifTrueFalse (t f) (f)])))

How can we use such objects? Look at the following example:

(define light
(OBJECT-DEL root

([field on false])
([method turn-on () (set! on true)]
[method turn-off () (set! on false)]
[method on? () on])))

> (Ñ (Ñ light on?) ifTrueFalse (λ () "light is on")
(λ () "light is off"))

"light is off"
> (Ñ light turn-on)
> (Ñ (Ñ light on?) ifTrueFalse (λ () "light is on")

(λ () "light is off"))
"light is on"

The objects true and false are the two unique representants of boolean values. Any condi-
tional mechanism that relies on some expression being true or false can be similarly defined
as methods of these objects. This is indeed a nice example of dynamic dispatch!

Boolean values and control structures in Smalltalk are defined similarly, but because
Smalltalk is a class-based language, their definitions are more complex. Try it in your fa-
vorite class-based language.

Let us look at another example where object-based languages are practical: exceptional
objects. First, recall the definition of typical point objects, which can be created using a
factory function make-point:

(define (make-point x-init y-init)
(OBJECT-DEL root

([field x x-init]
[field y y-init])

([method x? () x]
[method y? () y])))

Suppose we want to introduce an exceptional point object that has the particularity of having
random coordinates, that change each time they are accessed. We can simply define this

30

random-point as a standalone object whose x? and y?methods perform some computation,
rather than accessing stored state:

(define random-point
(OBJECT-DEL root ()

([method x? () (* 10 (random))]
[method y? () (Ñ self x?)])))

Note that random-point does not have any fields declared. Of course, because in OOP we
rely on object interfaces, both representations of points can coexist.

4.3.2 Sharing through Delegation

The examples discussed above highlight the advantages of object-based languages. Let us
now look at delegation in practice. First, delegation can be used to factor out shared behavior
between objects. Consider the following:

(define (make-point x-init y-init)
(OBJECT-DEL root

([field x x-init]
[field y y-init])

([method x? () x]
[method y? () y]
[method above (p2)

(if (> (Ñ p2 y?) (Ñ self y?))
p2
self)]

[method add (p2)
(make-point (+ (Ñ self x?)

(Ñ p2 x?))
(+ (Ñ self y?)

(Ñ p2 y?)))])))

All created point objects have the same methods, so this behavior could be shared by moving
it to a common parent of all point objects (often called a prototype). Should all behavior be
moved in the prototype? well, not if we want to allow different representations of points,
like the random point above (which does not have any field at all!).

Therefore, we can define a point prototype, which factors out the above and add methods,
whose implementation is common to all points:

(define point
(OBJECT-DEL root ()

([method above (p2)

31

(if (> (Ñ p2 y?) (Ñ self y?))
p2
self)]

[method add (p2)
(make-point (+ (Ñ self x?)

(Ñ p2 x?))
(+ (Ñ self y?)

(Ñ p2 y?)))])))
The required
accessor methods
could be declared as
abstract methods
in point, if our
language supported
such a concept. In
Smalltalk, one
would define the
methods in point
such that they throw
an exception if
invoked.

Note that as a standalone object, point does not make sense, because it sends messages to
itself that it does not understand. But it can serve as a prototype from which different points
can extend. Some are typical points, created with make-point, which hold two fields x and
y:

(define (make-point x-init y-init)
(OBJECT-DEL point

([field x x-init]
[field y y-init])

([method x? () x]
[method y? () y])))

While some can be exceptional points:

(define random-point
(OBJECT-DEL point ()

([method x? () (* 10 (random))]
[method y? () (Ñ self x?)])))

As we said, these different kinds of point can cooperate, and they all understand the messages
defined in the point prototype:

> (define p1 (make-point 1 2))
> (define p2 (Ñ random-point add p1))
> (Ñ (Ñ p2 above p1) x?)
9.852532706532351

We can similarly use delegation to share state between objects. For instance, consider a
family of points that share the same x-coordinate:

(define 1D-point
(OBJECT-DEL point

([field x 5])
([method x? () x]
[method x! (nx) (set! x nx)])))

32

(define (make-point-shared y-init)
(OBJECT-DEL 1D-point

([field y y-init])
([method y? () y]
[method y! (ny) (set! y ny)])))

All objects created by make-point-shared share the same parent, 1D-point, which de-
termines their x-coordinate. If a change to 1D-point is made, it is naturally reflected in all
its children:

> (define p1 (make-point-shared 2))
> (define p2 (make-point-shared 4))
> (Ñ p1 x?)
5
> (Ñ p2 x?)
5
> (Ñ 1D-point x! 10)
> (Ñ p1 x?)
10
> (Ñ p2 x?)
10

4.4 Late Binding of Self and Modularity

In the definition of the OBJECT-DEL syntactic abstraction, notice that we use, in the defini-
tion of message sending, the self-application pattern (obj obj). This is similar to the self
application pattern we have seen to achieve recursive binding without mutation. See the Why of Y.

This feature of OOP is also known as "open recursion": any sub-object can redefine the
meaning of a method in one of its parents. Of course, this is a mechanism that favors ex-
tensibility, because it is possible to extend any aspect of an object without having to foresee
that extension. On the other hand, open recursion also makes software more fragile, be-
cause it becomes extremely easy to extend an object in unforeseen, incorrect ways. Imagine
scenarios where this can be problematic and think about possible alternative designs. To
shed some more light on fragility, think about black-box composition of objects: taking two
objects, developed independently, and then putting them in a delegation relation with each
other. What issues can arise? Think about what

you know from
mainstream
languages like C++
and Java: what
means do these two
languages provide
to address this
tradeoff between
extensibility and
fragility?

4.5 Lexical Scope and Delegation

As we have seen previously, we can define nested objects in our system. It is interesting to
examine the relation between lexical nesting and delegation. Consider the following exam-

33

https://www.dreamsongs.com/Files/WhyOfY.pdf

ple:

(define parent
(OBJECT-DEL root ()

([method foo () 1])))

(define outer
(OBJECT-DEL root

([field foo (λ () 2)])
([method foo () 3]
[method get ()

(OBJECT-DEL parent ()
([method get-foo1 () (foo)]
[method get-foo2 () (Ñ self foo)]))])))

(define inner (Ñ outer get))

> (Ñ inner get-foo1)
2
> (Ñ inner get-foo2)
1

As you can see, a free identifier is looked up in the lexical environment (see get-foo1),
while an unknown message is looked up in the chain of delegation (see get-foo2). This
is important to clarify, because Java programmers are used to the fact that this.foo() is
the same as foo(). In various languages that combine lexical nesting and some form of
delegation (like inheritance), this is not the case. Other languages

have different take
on the question.
Check out
Newspeak for
instance.

So what happens in Java? Try it! You will see that the inheritance chain shadows the lexical
chain: when using foo() if a method can be found in a superclass, it is invoked; only if
there is no method found, the lexical environment (i.e., the outer object) is used. Referring
to the outer object is therefore very fragile. This is why Java also supports an additional
form Outer.this to refer to the enclosing object. Of course, then, if the method is not
found directly in the enclosing object’s class, it is then looked up in its superclass, rather
than upper in the lexical chain.

4.6 Delegation Models

The delegation model we have implemented here is but one point in the design space of
prototype-based languages. Study the documentation of Self, JavaScript, and AmbientTalk
to understand their designs. You can even modify our object system to support a different
model, such as the JavaScript model.

34

4.7 Cloning

In our language, as in JavaScript, the way to create objects is literally: either we create an
object from scratch, or we have a function whose role is to perform these object creations
for us. Historically, prototype-based languages (like Self) have provided another way to
create objects: by cloning existing objects. This approach emulates the copy-paste-modify
metaphor we use so often with text (including code!): start from an object that is almost as
you need, clone it, and modify the clone (eg. add a method, change a field).

When cloning objects in presence of delegation, the question of course arises of whether
the cloning operation should be deep or shallow. Shallow cloning returns a new object that
delegates to the same parent as the original object. Deep cloning returns a new object that
delegates to a clone of the original parent, and so on: the whole delegation chain is cloned.

We won’t study cloning in more details in this course. You should however wonder how
easy it would be to support cloning in our language. Since objects are in fact compiled into
procedures (through macro expansion), the question boils down to cloning closures. Unfor-
tunately, Scheme does not support such an operation. This is a case where the mismatch
between the source and target languages shows up (recall Chapter 11 of PLAI). Nothing is
perfect!

35

5 Classes

Let’s go back to the factory function (see §1.3 “Constructing Objects”):

(define (make-counter [init-count 0] [init-step 1])
(OBJECT
([field count init-count]
[field step init-step])

([method inc () (set! count (+ count step)) count]
[method dec () (set! count (- count step)) count]
[method reset () (set! count 0)]
[method step! (v) (set! step v)]
[method inc-by! (v) (Ñ self step! v) (Ñ self inc)])))

(define c1 (make-counter))
(define c2 (make-counter 10))

Each counter object get its own version of the methods, even though they are the same. Well,
at least their signature and body are the same. Are they the

completely the
same, though?Well, methods are functions, so as values, they are closures: function definitions together

with their lexical environment. In particular, each method closes over the self of each object:
i.e., self in a method in c1 refers to c1, while it refers to c2 in the method of c2. Likewise
for fields, which are also let-bound variables in scope for the method closures. In other
words, methods differ by the lexical environment they capture.

5.1 Sharing Method Definitions

Instead of duplicating all method definitions just to be able to support different selves and
field values, it makes much more sense to factor out the common part (the method bodies),
and parameterize them by the variable part (the object bound to self).

Let us try first without macros. Recall that our definition of a plain counter object without
macros is as follows (slightly simplified):

(define make-counter
(λ ([init-count 0] [init-step 1])

(letrec
([self

(let ([count init-count]
[step init-step])

(let ([methods
(list
(cons 'inc (λ () (set! count (+ count step))

36

count))
(cons 'step! (λ (v) (set! step v)))
(cons 'inc-by! (λ (n) (self 'step! n)

(self 'inc))))])
(λ (msg . args)

(let ([found (assoc msg methods)])
(if found

(apply (cdr found) args)
(error "message not understood:" msg))))))])

self)))

If we hoist the (let ([methods...])) out of the top-level λ (the factory), and parametrize
them by self (as an additional first argument), we effectively achieve the sharing of method
definitions at the factory level we are looking for:

(define make-counter
(let ([methods

(list
(cons 'inc (λ (self) (set! count (+ count step)) count))
(cons 'step! (λ (self v) (set! step v)))
(cons 'inc-by! (λ (self n) (self 'step! n)

(self 'inc))))])
(λ ([init-count 0] [init-step 1])

(letrec
([self

(let ([count init-count]
[step init-step])

(λ (msg . args)
(let ([found (assoc msg methods)])

(if found
(apply (cdr found) (cons self args))
(error "message not understood:" msg)))))])

self))))

Note how each method takes an extra first parameter. In inc-by!, this allows us to invoke
methods on self. Of course, when we apply the method in the dispatcher, we need to pass
it the current self as extra argument.

The problem is that field variables are now out of scope of method bodies. More concretely,
here, it means that count and step are free in the method bodies. So we need to parameter-
ize methods by state (field values) as well, in addition to self. But, fair enough, self can
"hold" the state (it can capture field bindings in its lexical environment). We just need a way
to extract (and potentially assign) field values through self.

37

5.2 Accessing Fields

If we only pass self as extra argument to methods, we need a way to access an object’s
fields by sending it messages (since self is an object, and an object is just a dispatcher
function). To this end, we introduce a field access protocol consisting of two messages
-read and -write. The leading dash indicates that these messages are "meta" messages,
not standard messages that need to be interpreted by a corresponding method.

These meta-messages take as first argument the field name to be accessed. The issue is then
how to go from a field name (as a symbol) to actually reading/assigning the variable with the
same name in the lexical environment of the object. A simple solution is to use a structure
to hold field values. This is similar to the way we handle method definitions already: an
association between method names and method definitions. However, unlike in a method
table, field bindings are (at least potentially) mutable. Racket does not allow mutation in
association lists, so we will use a dictionary (more precisely, a hashtable), which is accessed
with dict-ref and dict-set!.

(define make-counter
(let ([methods

(list
(cons 'inc (λ (self)

(self '-write 'count
(+ (self '-read 'count) (self '-read 'step)))

(self '-read 'count)))
(cons 'step! (λ (self v) (self '-write 'step v)))
(cons 'inc-by! (λ (self n) (self 'step! n)

(self 'inc))))])
(λ ([init-count 0] [init-step 1])

(letrec
([self

(let ([fields (make-hash (list (cons 'count init-
count)

(cons 'step init-
step)))])

(λ (msg . args)
(match msg

['-read (dict-ref fields (first args))]

['-write (dict-set! fields (first args) (second args))]
[_ (let ([found (assoc msg methods)])

(if found
(apply (cdr found) (cons self args))
(error "message not

understood:" msg)))])))])
self))))

38

> (let ([c (make-counter)])
(c 'inc-by! 10))

10

Note how make-counter now holds the list of parametrized methods, and the created ob-
ject captures a dictionary of fields, which is initialized prior to returning the object. In the
method bodies, field accesses are now implemented by sending -read and -write meta-
messages, interpreted accordingly in the dispatcher. This interpretation

of -write means
that setting a
non-existent field
will add it to the
object (because
that’s how
dict-set! works).
This is the
semantics adopted
by Python, for
instance. In
contrast, in Java and
Scala, for instance,
setting a
non-existent field is
an error (detected
statically thanks to
typing). How would
you modify the
code above to raise
an error when
setting a
non-existent field?

5.3 Classes

While we did achieve the sharing of method definitions we were after, our solution is still
not very satisfactory. Why? Well, observe the definition of an object (the body of the (λ
(msg . args)) above). The logic that is implemented there is, again, repeated in all
objects we create with make-counter: each object has its own copy of what to do when it is
sent a -read message (lookup in the fields dictionary), a -write message (assign in the
fields dictionary), or any other message (looking in the methods table and then applying
the method).

So, all this logic could very well be shared amongst objects. The only free variables in the
object body are fields and self. In other words, we could define an object as being just
its self as well as its fields, and leave all the other logic to the make-counter function. In
that case make-counter starts to have more than one responsability: it is no longer only in
charge of creating new objects, it is also in charge of handling accesses to fields and message
handling. That is, make-counter is now evolving into what is called a class.

How are we going to represent a class? well, for now it is just a function that we can apply
(and it creates an object—an instance); if we need that function to have different behaviors,
we can apply the same Object Pattern we saw at the beginning of this course. That is:

(define Point
....
(λ (msg . args)

(match msg
['-create create instance]
['-read read field]
['-write write field]
['-invoke invoke method])))

This pattern makes clear what the role of a class is: it produces objects, and invokes methods,
reads and writes fields on its instances.

So, what is the role of an object now? Well, it is just to exist as a first-class value, know its
class, and hold the values of its fields. It does not hold any behavior on its own, anymore. In
other words, we can define an object as a plain data structure:

39

(struct obj (class values))

As simple as this! From now on, an object will just be such a structure. It is the first time
we use struct in
these notes: it is a
convenient Racket
macro to define
datatypes, which
automatically
generates a
constructor (here,
obj) and accessors
for each of the field
of the structure
(here, obj-class,
obj-values).

Let us see exactly how we can define the class Counter now:

(define Counter
(let ([methods])

(letrec
([class

(λ (msg . args)
(match msg

['-create (let ([values (make-hash '((count .
0) (step . 1)))])

(obj class values))]
['-read (dict-ref (obj-values (first args))

(second args))]
['-write (dict-set! (obj-values (first args))

(second args)
(third args))]

['-invoke
(let ([found (assoc (first args) methods)])

(if found
(apply (cdr found) (rest args))
(error "message not

understood:" (first args))))]))])
class)))

As we did for self
before, the class
identifier is also
defined using
letrec: can you
see why?

We can instantiate the class Counter by sending it the create message.

> (Counter '-create)
#<obj>

Now that an object is a structure, we need a different approach to sending messages to it, as
well as to access its fields. To send a message to an object p, we must first retrieve its class,
and then send the invoke message to the class:

((obj-class c) '-invoke 'inc c)

And similarly for reading and accessing fields. Note that
representing classes
as dispatcher
functions following
the Object Pattern is
clearly not the only
design alternative
here. We could as
well push the notion
of
classes-as-objects
further, in a uniform
manner (ie. what is
the class of a
class?), as done in
Smalltalk. We
could also
trim-down classes
as inert structures,
using plain
procedures to
implement the
mechanisms of
object creation,
field accesses, and
method invocation.
In fact, even within
our choice of
classes-as-
dispatchers, there
are different landing
points, as we will
see next.

5.4 Embedding Classes in Scheme

Let us now embed classes in Scheme using macros.

40

https://docs.racket-lang.org/guide/define-struct.html
https://docs.racket-lang.org/guide/define-struct.html
https://docs.racket-lang.org/guide/define-struct.html

5.4.1 Macro for Classes, Take 1

We can define a CLASS syntactic abstraction for creating classes:

(defmac (CLASS ([field fname fval] ...)
([method mname (mparam ...) mbody ...] ...))

#:keywords field method
#:captures self
(let ([methods

(list (cons 'mname (λ (self mparam ...) mbody ...)) ...)])
(letrec

([class
(λ (msg . args)

(match msg
['-create
(obj class

(make-hash (list (cons 'fname fval) ...)))]
['-read
(dict-ref (obj-values (first args)) (second args))]

['-write
(dict-set! (obj-values (first args)) (second args) (third args))]

['-invoke
(let ([found (assoc (second args) methods)])

(if found
(apply (cdr found) (rest args))
(error "message not

understood:" (second args))))]))])
class)))

This definition follows the schema presented above, where a class is responsible for the in-
terpretation of all the OO mechanisms (instance creation, field accesses, method invocation).

The syntactic macro for method invocation would then be:

(defmac (Ñ o m arg ...)
(let ([obj o])

((obj-class obj) '-invoke 'm obj arg ...)))
Why is the
let-binding
necessary?

5.4.2 Macro for Classes, Take 2

In the definition of CLASS above, the interpretation of both -read and -write have nothing
to do with the class itself. Their interpretation just consists in accessing the vector of values
of an object. Therefore, we could move that behavior out of classes themselves, and do it in
the syntactic macros for field accesses.

41

Likewise, a method invocation consists of two steps: looking up the method in the methods
dictionary of the class, and applying it. Of these steps, only the first one is specific to a
given class; application per se is common to any class, and could therefore be handled by
the syntactic macro for method invocation as well.

We can therefore use a more lightweight CLASS macro, which only handles the behavior
specific to a class, and leaves the rest to the auxiliary macros.

(defmac (CLASS ([field fname fval] ...)
([method mname (mparam ...) mbody ...] ...))

#:keywords field method
#:captures self
(let ([methods

(list (cons 'mname (λ (self mparam ...) mbody ...)) ...)])
(letrec

([class
(λ (msg . args)

(match msg
['-create
(obj class (make-hash (list (cons 'fname fval) ...)))]

['-lookup
(let ([found (assoc (first args) methods)])

(if found
(cdr found)
(error "message not

understood:" (first args))))]))])
class)))

We now define the convenient syntax to invoke methods (Ñ), and introduce similar syntax
for accessing the fields of the current object (? and !).

(defmac (Ñ o m arg ...)
(let ([obj o])

(((obj-class obj) '-lookup 'm) obj arg ...)))

(defmac (? f) #:captures self
(dict-ref (obj-values self) 'f))

(defmac (! f v) #:captures self
(dict-set! (obj-values self) 'f v))

We also define an auxiliary function to create new instances:

(define (new c)
(c '-create))

42

This simple function is conceptually very important: it helps to hide the fact that classes
are internally implemented as functions, as well as the actual symbol used to ask a class to
create an instance. Why don’t we need

to define new as a
macro?

5.4.3 Example

Let us see classes at work:

(define Counter
(CLASS
([field count 0]
[field step 1])

([method inc () (! count (+ (? count) (? step))) (? count)]
[method dec () (! count (- (? count) (? step))) (? count)]
[method reset () (! count 0)]
[method step! (v) (! step v)]
[method inc-by! (v) (Ñ self step! v) (Ñ self inc)])))

> (define c1 (new Counter))
> (define c2 (new Counter))
> (Ñ c1 inc-by! 10)
10
> (Ñ c2 inc-by! 20)
20

What happens in
this language if we
read an undeclared
field? If we assign
to an undeclared
field? Why?
Explore variations
out there (ie. Java
vs. JavaScript) and
in your
implementation.

5.4.4 Strong Encapsulation

We have made an important design decision with respect to field accesses: field accessors ?
and ! only apply to self! i.e., it is not possible in our language to access fields of another
object. This is called a language with strongly-encapsulated objects. Smalltalk follows this
discipline (accessing a field of another object is actually a message send, which can therefore
be controlled by the receiver object). Java does not: it is possible to access the field of any
object (provided visibility allows it); JavaScript even less! Here, our syntax simply does not
allow foreign field accesses.

Another consequence of our design choice is that field accesses should only occur within
method bodies: because the receiver object is always self, self must be defined. For
instance, look at what happen if we use the field read form ? outside of an object:

> (? count)
self: undefined;

cannot reference an identifier before its definition
in module: 'program

43

It would be much better if the above could yield an error saying that ? is undefined. In order
to do this, we can simply introduce ? and ! as local syntactic forms, only defined within the
confines of method bodies, instead of global ones. We do that by moving the definition of
these field access forms from the top-level to a local scope, surrounding method definitions:

(defmac (CLASS ([field fname fval] ...)
([method mname (mparam ...) mbody ...] ...))

#:keywords field method
#:captures self ? !
(let ([methods

(local [(defmac (? f) #:captures self
(dict-ref (obj-values self) 'f))

(defmac (! f v) #:captures self
(dict-set! (obj-values self) 'f v))]

(list (cons 'mname (λ (self mparam ...) mbody ...)) ...))])
(letrec

([class (λ (msg . vals))]))))

Defining the syntactic forms ? and ! locally, for the scope of the definition of the list of
methods only, ensures that they are available to use within method bodies, but nowhere else.

Now, field accessors are no longer defined outside of methods:

> (? count)
?: undefined;

cannot reference an identifier before its definition
in module: 'program

From now on, we will use this local approach.

5.5 Initialization

As we have seen, the way to obtain an object from a class, i.e., to instantiate it, is to send the
class the create message. It is generally useful to be able to pass arguments to create in
order to specify the initial values of the fields of the object. For now, our class system only
supports the specification of default field values at class-declaration time. It is not possible
to pass initial field values at instantiation time.

There are many ways to do this. Here we implement a simple mechanism. First, the new
function takes optional arguments:

(define (new class . init-vals)
(apply class (cons '-create init-vals)))

44

First, the new object is created using the default values declared for each field. Then, if extra
arguments are passed to new, the initialize method is invoked on the new object. This
method can then set other values to fields, or do whatever initialization work is desired.

....
(λ (msg . args)

(match msg
['-create
(let ([o (obj class (make-hash (list (cons 'fname fval) ...)))])

(when (not (empty? args))
(let ([found (assoc 'initialize methods)])

(if found
(apply (cdr found) (cons o args))
(error "initialize not implemented in:" class))))

o)]
....))

Let us see if it works as expected:

(define Counter
(CLASS
([field count 0]
[field step 1])

([method initialize ([cnt 0] [stp 1]) (! count cnt) (! step stp)]
[method inc () (! count (+ (? count) (? step))) (? count)]
[method dec () (! count (- (? count) (? step))) (? count)]
[method reset () (! count 0)]
[method step! (v) (! step v)]
[method inc-by! (v) (Ñ self step! v) (Ñ self inc)])))

> (define c1 (new Counter))
> (define c2 (new Counter 5))
> (define c3 (new Counter 5 2))
> (Ñ c1 inc)
1
> (Ñ c2 inc)
6
> (Ñ c3 inc)
7

(Note that we are able to use Racket’s optional argument mechanism without any problem,
for initialize, cute!) This object

initialization
mechanism is
somewhat limited.
You can study the
variety of
mechanisms in
languages out there,
and implement your
own take on the
matter. In
particular, with
inheritance,
initialization can
become quite subtle
to get right.

45

5.6 Anonymous, Local and Nested Classes

We have introduced classes in our extension of Scheme, in such a way that classes are, like
objects in our earlier systems, represented as first-class functions. This means therefore
that classes in our language are first-class entities, which can, for instance, be passed as
parameter (see the definition of the create function above) and constructed dynamically.
Other consequences are that our system also supports both anonymous and nested classes.
Of course, all this is achieved while respecting the rules of lexical scoping.

For instance, we can introduce classes in a local scope. That is, as opposed to languages
like Java where classes are first-order entities that are globally visible, we are able to define
classes locally.

(define doubleton
(let ([cls (CLASS ([field x 0])

([method initialize (v) (! x v)]
[method x? () (? x)]))])

(cons (new cls 4) (new cls 8))))

> (+ (Ñ (car doubleton) x?) (Ñ (cdr doubleton) x?))
12

In the above we introduce cls only for the sake of creating two instances and returning them
in a pair. After that point, the class is not accessible anymore. In other words, it is impossible
to create more instances of that class. However, of course, the two instances we created still
refer to their class, so the objects can be used. Interestingly, once these objects are garbage
collected, their class as well can be reclaimed. Now try to come up

with interesting
examples of both
anonymous classes
and nested classes,
and compare all
these facilities with
other languages out
there.

46

6 Inheritance

In the presence of classes, we may want a mechanism similar to §4.2 “Delegation” in order
to be able to reuse and selectively refine existing classes. We therefore extend our object
system with support for class inheritance. As we will see, many issues have to be dealt with.
As usual, we will proceed step-by-step.

6.1 Class Hierarchy

We introduce the capability for a class to extend another class (called its superclass). We
focus on single inheritance, where a class only extends a single class, as in Java or C#. As
you surely know, some languages support multiple inheritance, such as C++ and Python. What are the

respective benefits
and drawbacks of
these different
approaches to
inheritance? What
about other reuse
and composition
mechanisms such as
Scala’s traits?

As a result, classes are organized in a hierarchy. The superclasses of a class (transitively) are
called its ancestors; dually, the set of transitive subclasses of a class are called its descen-
dants.

6.2 Method Lookup

When we send a message to an object, we look in its class for a method that implements the
message, and then we apply it. The lookup part is defined in our CLASS macro definition as:

['-lookup
(let ([found (assoc (first args) methods)])

(if found
(cdr found)
(error "message not understood:" (first args))))]

With inheritance, if an object is sent a message for which a method is not found in its class,
we can look for a method in the superclass, instead of failing. Recursively, if the method
is not found in the superclass, maybe it can be found in the super-superclass, etc. Until we
reach "the end": we introduce a "Root" class at the top of the tree, in order to put an end to
the method lookup process:

(define Root
(λ (msg . args)

(match msg
['-lookup (error "message not understood:" (first args))])))

Root is implemented directly as a dispatcher function, without using the CLASS form, so that
we don’t need to specify its superclass (it has none). In case it is sent a -lookup message,

47

it raises a message-not-understood error. Note that in this system, it is an error to send any
message that is not -lookup to the root class.

The CLASS macro is extended to support the declaration of a superclass via an extends
clause, and to delegate to the superclass the lookup of an unfound method. Why is let-binding

the superclass
necessary?(defmac (CLASS extends scls-expr

([field fname fval] ...)
([method mname (mparam ...) mbody ...] ...))

#:keywords field method extends
#:captures self ? !
(let ([scls scls-expr]

[methods
(local [(defmac (? fd) #:captures self

(dict-ref (obj-values self) 'fd))
(defmac (! fd v) #:captures self

(dict-set! (obj-values self) 'fd v))]
(list (cons 'mname (λ (self mparam ...) mbody ...)) ...))])

(letrec ([class
(λ (msg . args)

(match msg
['-create
(obj class (make-hash (list (cons 'fname fval) ...)))]

['-lookup
(let ([found (assoc (first args) methods)])

(if found
(cdr found)
(scls '-lookup (first args))))]))])

class)))

Let us see an example of class inheritance at work, first with a very simple example:

(define A
(CLASS extends Root ()

([method foo () "foo"]
[method bar () "bar"])))

(define B
(CLASS extends A ()

([method bar () "B bar"])))

> (define b (new B))
> (Ñ b foo)
"foo"
> (Ñ b bar)
"B bar"

48

This looks just fine: sending a message that is unknown in B works as expected, and sending
bar also results in B’s refinement to be executed instead of A’s method. We say that method
bar in B overrides the method of the same name defined in A.

Let us look at a slightly more complex example, building on our Counter class. In this
chapter, we will progressively develop a ReactiveCounter, which extends Counter with
the ability to trigger actions whenever the counter reaches certain values. But, let’s first try
with an empty subclass:

(define Counter
(CLASS extends Root
([field count 0]
[field step 1])

([method inc () (! count (+ (? count) (? step))) (? count)]
[method dec () (! count (- (? count) (? step))) (? count)]
[method reset () (! count 0)]
[method step! (v) (! step v)]
[method inc-by! (v) (Ñ self step! v) (Ñ self inc)])))

(define ReactiveCounter
(CLASS extends Counter () ()))

> (define rc (new ReactiveCounter))
> (Ñ rc inc)
hash-ref: no value found for key

key: 'count

What happened? It seems that we are not able to use field count of a reactive counter.
Fair enough, we haven’t dealt at all about how fields have to be handled in the presence of
inheritance.

6.3 Fields and Inheritance

Let us look again at how we handle object creation at the moment:

['-create
(obj class (make-hash (list (cons 'fname fval) ...)))]

That is it: we are only initializing the values dictionary for the fields that are declared in
the current class! We ought to be initializing the dictionary with values for the fields of the
ancestor classes as well.

49

6.3.1 Inheriting Fields

An object should have values for all the fields declared in any of its ancestors. Therefore,
when we create a new class, we should determine all the fields that its instances will have.
To do that, we have to extend classes such that they keep a list of all their fields, and are able
to pass that information to any subclass.

(defmac (CLASS extends scls-expr
([field fname fval] ...)
([method mname (mparam ...) mbody ...] ...))

#:keywords field method extends
#:captures self ? !
(let* ([scls scls-expr]

[methods]
[fields (append (scls '-all-fields)

(list (cons 'fname fval) ...))])
(letrec

([class (λ (msg . args)
(match msg

['-all-fields fields]
['-create (obj class (make-hash fields))]
....))]))))

Why are we
suddenly using
let*?We introduce a new fields identifier in the lexical environment of the class. This identifier

is bound to the complete list of fields that the class’ instances should have. All fields of
the superclass are obtained by sending it the -all-fields message (whose implementation
simply returns the list bound to fields). When creating an object, we just make a fresh
dictionary with all the fields.

Because we have added a new message to the vocabulary of classes, we need to wonder what
happens if this message is sent to the Root class: what are all the fields of that class? Well,
it has to be the empty list, since we are using append blindly:

(define Root
(λ (msg . args)

(match msg
['-lookup (error "message not understood:" (first args))]
['-all-fields '()])))

Let us see if this works:

> (define rc (new ReactiveCounter))
> (Ñ rc inc)
1
> (Ñ rc inc-by! 10)
11

50

Good! We can now define some more of the reactive counter:

(define ReactiveCounter
(CLASS extends Counter

([field predicate (λ (n) #f)]
[field action (λ (n) #f)])

([method register (p a) (! predicate p) (! action a)]
[method react () (when ((? predicate) (? count))

((? action) (? count)))])))

> (define rc (new ReactiveCounter))
> (Ñ rc register even? (λ (v) (printf "reacting to „a„n" v)))
> (Ñ rc react)
reacting to 0
> (Ñ rc inc)
1
> (Ñ rc react)
> (Ñ rc inc)
2
> (Ñ rc react)
reacting to 2

A reactive counter holds a predicate and an action. Both are functions of the current
value of the counter, count. The react method implements the reactive logic: when the
predicate matches the counter value, the action is triggered. The interactions below the class
definition show the expected behavior: when react is called, if the counter value is even,
then a message is printed, showing the value. We will see later how to automatically invoke
react when the counter value is modified.

6.3.2 Binding of Fields

Actually, there is still one more issue that we haven’t considered: what happens if a subclass
defines a field with a name that already exists in one of its ancestors?

(define A
(CLASS extends Root

([field x "A"])
([method ax () (? x)])))

(define B
(CLASS extends A

([field x "B"])
([method bx () (? x)])))

> (define b (new B))

51

> (Ñ b ax)
"B"
> (Ñ b bx)
"B"

In both cases, we get the value bound to the x field of B. In other words, we have late binding
of fields, exactly as we do for methods. Is that what you

expect? is it
reasonable? What
happens in Java? In
JavaScript? In
Python?

Let us see: an object is meant to encapsulate some (possibly mutable) state behind a proper
procedural interface (methods). It is clear that late binding of methods is a desirable property,
because methods are what makes an object’s external interface. What about fields? Fields are
supposed to be hidden, internal state of the object—in other words, implementation details,
not public interface. Actually, notice that in our language so far, it is not even possible to
access a field of another object other than self! So at the very least, late binding of fields is
doubtful.

Let us look at what happened with §4.2 “Delegation”. How are fields handled there? Well,
fields are just free variables of a function, so they are lexically scoped. This is a much more
reasonable semantics for fields. When methods are defined in a class, they are defined in
terms of the fields that are directly defined in that class, or one of its superclass. This makes
sense, because all that is information known at the time one writes a class definition. Having
late binding of fields means reintroducing dynamic scoping for all free variables of a method:
an interesting source of errors and headaches! (Think of examples of subclasses mixing up
their superclasses by accidentally introducing fields with existing names.) Likewise, in

languages that have
visibility modifiers,
are private methods
late bound? Why
(not)?

6.3.3 Field Shadowing

We now see how to define the semantics known as field shadowing, in which a field in a
class shadows a field of the same name in a superclass, but a method always accesses a field
as declared in the class or one of its ancestors.

Concretely, this means that an object can hold different values for fields of the same name;
which one to use depends on the class in which the executing method is defined (this is
know as the host class of the method). Because of this multiplicity, it is not possible to use
a hash table anymore. Instead, we will keep in a class the list of the field names, and in the
object, a vector of values, accessed by position. A field access will be done in two steps:
first determining the position of the field according to the list of names, and then accessing
the value in the vector held by the object.

For instance, for class A above, the list of names is '(x y) and the vector of values in a new
instance of A is #(1 0). For class B, the list of names is '(x y x) and the vector of values
in a new instance is #(1 0 1). The advantage of keeping the fields ordered this way is that,
if not shadowed, a field is always at the same position within an object.

To respect the semantics of shadowing, we have (at least) two options. We can rename

52

shadowed fields to a mangled name, for instance '(x0 y x) in B so that methods hosted in
B and its descendants only see the latest definition of x, that is, the field introduced in B. An
other alternative is to keep the field names unchanged, but to perform lookup starting from
the end: in other words, we will want to find the last position of a field name in the list of
names. We will go for the latter. Defining

find-last is left
as an exercise to the
reader

We update our definition of CLASS so as to introduce fields as a vector instead of a hashtable:

['-create
(let ([values (list->vector (map cdr fields))])

(obj class values))]

We obtain a vector (with the initial field values) and construct the object with it. Then, for
field accesses, we must access the vector at the appropriate position, as returned by find-
last:

(let* ([scls scls-expr]
[fields (append (scls '-all-fields)

(list (cons 'fname fval) ...))]
[methods
(local [(defmac (? fd) #:captures self

(vector-ref (obj-values self)
(find-last 'fd fields)))

(defmac (! fd v) #:captures self
(vector-set! (obj-values self)

(find-last 'fd fields)
v))]

....)]))

For this to work, the list of fields fields must be in scope of the method bodies, hence we
moved its definition above that of methods. Recall that hygiene ensures that the fields
identifier does not accidentally interfere with the (user-provided) method bodies. This

implementation is
not so satisfactory
because we call
find-last
(expensive/linear)
for each and every
field access. Can
this be avoided?
How?

Let us see if all this works as expected:

(define A
(CLASS extends Root

([field x "A"])
([method ax () (? x)])))

(define B
(CLASS extends A

([field x "B"])
([method bx () (? x)])))

> (define b (new B))

53

> (Ñ b ax)
"A"
> (Ñ b bx)
"B"

Great!

6.4 Super Sends

When a method overrides a method in a superclass, it is sometimes useful to be able to invoke
that definition. This allows many typical refinement patterns, such as adding something to do
before or after a method is executed, like additional processing on its arguments and return
values, among many others. This is achieved by doing what is called a super send.

Let us go back to our reactive counter example. We would like to actually make our counter
reactive, in that it automatically reacts to each change in the counter value. We can do that by
overriding inc in the ReactiveCounter subclass, and use a super send to reuse the original
implementation.

Let us look at a first example (we use Ò as the syntax for a super send). The syntax of a
super send is rather
different from what
you might be used
to. For instance, in
Java one writes
super.m(), and
here, (Ò m). The
reason for this
syntax will soon
become clear.

(define ReactiveCounter
(CLASS extends Counter

([field predicate (λ (n) #f)]
[field action (λ (n) #f)])

([method register (p a) (! predicate p) (! action a)]
[method react () (when ((? predicate) (? count))

((? action) (? count)))]
[method inc ()

(let ([val (Ò inc)])
(Ñ self react)
val)])))

> (define rc (new ReactiveCounter))
> (Ñ rc register even? (λ (v) (printf "reacting to „a„n" v)))
> (Ñ rc inc)
1
> (Ñ rc inc)
reacting to 2
2

Note how a super send allows us to reuse and extend the definition of inc in Counter in
order to define the method in ReactiveCounter. What is the semantics of a super send?

54

A first thing to clarify is: what is the receiver of a super send? In the example above, to
which object is inc sent using Ò? self! That’s right. In Java, the syntax super.m()
suggests that super is an object, but it is not! In Java, try

returning super or
passing super as
an argument. What
happens? Why?

The key lesson here is that a super send only really affects method lookup. So, in Java syntax,
what is super in super.m() is rather the ., not the receiver. So this "super dot" is what we
write Ò here. The receiver is left implicit, because, as for field access in our language, the
only valid receiver is self.

Beyond this syntactic rant, a common misunderstanding is that when doing a super send,
method lookup starts from the superclass of the receiver, instead of its class. Let us see why
this is incorrect in a small, artificial example:

(define A (CLASS extends Root ()
([method m () "A"])))

(define B (CLASS extends A ()
([method m () (string-append "B" (Ò m) "B")])))

(define C (CLASS extends B () ()))

(define c (new C))
(Ñ c m)

What does this program return? Let’s see. Ñ expands into a send of -lookup to c’s class,
which is C. There is no methods defined for m in C, so it sends -lookup to its superclass, B.
B finds a method for m, and returns it. It is then applied to the current self (c), with no further
arguments. The evaluation of the method implies the evaluation of the three arguments of
string-append, the second of which is a super send. With the above definition of a super
send, this means that m is looked up not in C (the actual class of the receiver) but in B (its
superclass). Is there a method for m in B? Yes, and we are actually executing it.... In other
words, with this understanding of super sends, the above program does NOT terminate.

What is the mistake? To consider that a super send implies looking up the method in the
superclass of the receiver. In the example above, we should actually lookup m in A, not in
B. To this end, we need to know the superclass of the host class of the method in which
the super send occurs. Is this a value that should be bound statically in method bodies, or
dynamically? Well, we’ve just said it: it is the superclass of the host class of the method,
and that is not likely to change dynamically, at least in our language. Some dynamic

languages, like
Ruby, allow the
class inheritance
relation to be
changed at runtime.
This is also
common in
prototype-based
languages, like Self
and JavaScript.

Luckily, we already have a binding in the lexical context of methods that refers to the super-
class, scls. So we just need to introduce a new local macro for Ò, whose expansion asks the
superclass scls to lookup the message. Ò can be used by user code, so it is added to the list
of #:captures identifiers:

(defmac (CLASS extends superclass
([field f init] ...)
([method m params body] ...))

#:keywords field method extends

55

#:captures self ? ! Ò

(let* ([scls superclass]
[fields (append (scls '-all-fields)

(list (cons 'f init) ...))]
[methods
(local [(defmac (? fd))

(defmac (! fd v))
(defmac (Ò md . args) #:captures self

((scls '-lookup 'md) self . args))]
....)])))

Note how -lookup is now sent to the superclass of the host class of the currently-executing
method, scls, instead of to the actual class of the current object.

(define A (CLASS extends Root ()
([method m () "A"])))

(define B (CLASS extends A ()
([method m () (string-append "B" (Ò m) "B")])))

(define C (CLASS extends B () ()))

> (define c (new C))
> (Ñ c m)
"BAB"

6.5 Inheritance and Initialization

We have previously seen how to address object initialization (§5.5 “Initialization”), by intro-
ducing special methods called initializers. Once an object is created, and before it is returned
to the creator, its initializer is called.

In the presence of inheritance, the process is a bit more subtle, because if initializers override
each other, some necessary initialization work can be missed. The work of an initializer can
be quite specific, and we want to avoid subclasses to have to deal with all the details. One
can simply assume the normal semantics of method dispatch, whereby initialize in a
subclass can call the super initializer if needed. This is the approach adopted by Python: if
one does not call super () .__init__ (...) the initializer of the superclass(es) will not
execute. The problem with this freedom is that the initializer in the subclass may start doing
things with the object when inherited fields are not yet consistently initialized, or simply
skip the initialization defined in the superclasses.

To avoid this issue, in Java, the first thing a constructor must do is to call a super constructor
(it may have to compute arguments for that call, but that’s all it is allowed to do). Even if the
call is not in the source code, the compiler adds it. Actually, this restriction is also enforced
at the VM level by the bytecode verifier: low-level bytecode surgery can therefore not be
used to avoid the super constructor call. However, this

protocol does not
ensure by itself that
uninitialized fields
are never accessed.
Can you think of
how such a problem
can occur? Think
about the possibility
to call any method
from a constructor.

56

7 A World of Possibilities

In this brief step-by-step construction of object systems in Scheme, we have only illustrated
some fundamental concepts of object-oriented programming languages. As always in lan-
guage design, there is a world of possibilities to explore, variations on the same ideas, or
extensions of these ideas.

Here is just a (limited/arbitrary) list of features and mechanisms that you will find in some
existing object-oriented programming languages, which were not covered in our tour, and
that you may want to try to integrate in the object system. It is—of course—very interesting
to think of other features by yourself, as well as to study existing languages and figure out
how to integrate their distinctive features.

• Visibility for methods: public/private

• Declare methods that override a method in a superclass: override

• Declare methods that cannot be overriden: final

• Declare methods that are expected to be inherited: inherit

• Augmentable methods: inner

• Interfaces: sets of messages to understand

• Protocol to check if an object is instance of a class, if a class implements an interface,
...

• Proper initialization protocol with superclasses, named initialization attributes

• Multiple inheritance

• Mixins

• Traits

• Classes as objects, metaclasses, ...

There are also many optimizations, such as:

• compute fields offset for direct field access

• vtables & indices for direct method invocation

We now only briefly outline two mechanisms, interfaces and mixins, as well as their combi-
nation (ie. using interfaces in the specification of mixins).

57

7.1 Interfaces

Introduce a form to define interfaces (which can extend super interfaces):

(interface (superinterface-expr ...) id ...)

Introduce a new class form that expects a list of interfaces:

(CLASS* super-expr (interface-expr ...) decls ...)

Example:

(define positionable-interface
(interface () get-pos set-pos move-by))

(define Figure
(CLASS* Root (positionable-interface)

....))

Extend the protocol of a class so as to be able to check if it implements a given interface:

> (implements? Figure positionable-interface)
#t

7.2 Mixins

A mixin is a class declaration parameterized over its superclass. Mixins can be combined
to create new classes whose implementation sharing does not fit into a single-inheritance
hierarchy.

Mixins "come for free" by the mere fact of having classes be first-class values integrated
with functions.

(define (foo-mixin cl)
(CLASS cl (....) (....)))

(define (bar-mixin cl)
(CLASS cl (....) (....)))

(define Point (CLASS ()))

(define foobarPoint
(foo-mixin (bar-mixin Point)))

(define fbp (foobarPoint 'create))
....

58

Combine with interfaces to check that the given base class implements a certain set of inter-
faces. Define a MIXIN form for that:

(MIXIN (interface-expr ...) decl ...)

Defines a function that takes a base class, checks that it implements all the specified inter-
faces, and return a new class that extends the base class with the given declarations.

59

	1 From Functions to Simple Objects
	1.1 Stateful Functions and the Object Pattern
	1.2 A (First) Simple Object System in Scheme
	1.3 Constructing Objects
	1.4 Dynamic Dispatch and Polymorphism

	2 Looking for the Self
	2.1 What is Self?
	2.2 Self with Macros
	2.3 Mutually-Recursive Methods
	2.4 Nested Objects

	3 Benefits and Limits of Objects
	3.1 Abstract Data Types
	3.2 Procedural Representations
	3.3 Objects
	3.3.1 Object Interfaces
	3.3.2 Principles of Object-Oriented Programming
	3.3.3 Extensibility
	3.3.4 What about Java?

	3.4 The Extensibility Problem
	3.4.1 ADT
	3.4.2 OOP

	3.5 Different Forms of Data Abstraction

	4 Forwarding and Delegation
	4.1 Message Forwarding
	4.2 Delegation
	4.3 Programming with Prototypes
	4.3.1 Singleton and Exceptional Objects
	4.3.2 Sharing through Delegation

	4.4 Late Binding of Self and Modularity
	4.5 Lexical Scope and Delegation
	4.6 Delegation Models
	4.7 Cloning

	5 Classes
	5.1 Sharing Method Definitions
	5.2 Accessing Fields
	5.3 Classes
	5.4 Embedding Classes in Scheme
	5.4.1 Macro for Classes, Take 1
	5.4.2 Macro for Classes, Take 2
	5.4.3 Example
	5.4.4 Strong Encapsulation

	5.5 Initialization
	5.6 Anonymous, Local and Nested Classes

	6 Inheritance
	6.1 Class Hierarchy
	6.2 Method Lookup
	6.3 Fields and Inheritance
	6.3.1 Inheriting Fields
	6.3.2 Binding of Fields
	6.3.3 Field Shadowing

	6.4 Super Sends
	6.5 Inheritance and Initialization

	7 A World of Possibilities
	7.1 Interfaces
	7.2 Mixins

