
Persistence as an Aspect
Awais Rashid, Ruzanna Ghitchyan

Computing Department, Lancaster University
Lancaster LA1 4YR

United Kingdom
+44-1524-592647

awais@comp.lancs.ac.uk
r.chitchyan @ lancaster.ac.uk

ABSTRACT
Persistence - the storage and retrieval of application data from
secondary storage media - is often used as a classical example of a
crosscutting concern. It is widely assumed that an application can
be developed without taking persistence requirements into
consideration and a persistence aspect plugged in at a later stage.
However, there are no real world examples showing whether
persistence can in fact be aspectised and, if so, can this be done in
a manner that promotes reuse and is oblivious t to the application.
In this paper, we provide an insight into these issues drawing
upon our experience with a classical database application: a
bibliography system. We argue that it is possible to aspectise
persistence in a highly reusable fashion, which can be developed
into a general aspect-based persistence framework. Nevertheless,
application developers can only be partially oblivious to the
persistent nature of the data. This is because persistence has to be
accounted for as an architectural decision during the design of
data-consumer components. Furthermore, designers of such
components also need to consider the declarative nature of
retrieval mechanisms supported by most database systems.
Similarly, deletion requires explicit attention during application
design as mostly applications trigger such an operation.

Keywords
Persistence, aspect reuse, aspect-oriented programming, AspectJ,
relational database application

1. INTRODUCTION
Aspect-Oriented Programming (AOP) [14] aims at providing
systematic means for effective modularisation of crosscutting
concerns. Some concerns such as synchronisation [10, 16] and
tracing [11, 17] are often described as classical candidates for
aspectisation. Persistence is also one such classical example [21,
31]. It is advocated that these concerns can not only be
modularised using AOP techniques, this can be achieved with a
high degree of reusability for the aspect code. Furthermore, the
rest of the application can be developed oblivious to the fact that a
synchronisation, tracing or persistence aspect may be composed at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1-58113-660 -9/03/002...$5.00

a later stage.

Despite the above claims and widespread use of database
management systems in today's businesses, there are no real world
examples (involving a significant number of data classes)
available that might demonstrate whether:

• persistence can be effectively modularised using AOP
techniques;

• persistence aspects can be reused;

• applications can be developed unaware of the persistent
nature of the data.

Some existing work on AOP has considered persistence and
related concerns. [25, 26], for example, describe an approach, and
a prototype PersAJ, to store aspects in an object-oriented
database. In order to keep the persistence model independent of a
particular AOP approach, an aspect is used to describe the
persistent representation of aspects. The focus is on providing a
model for aspect persistence and persistence of application data
has not been separated. Similarly, [27] presents an approach to
store aspects in a relational database. Separation of persistence in
relational database applications is not considered. [19], on the
other hand, provides an assessment of AOP based on separating
concurrency control and failure handling code in a distributed
system. However, the aim of the case study is to investigate
aspectisation of transactions which are only one facet of
persistence. Modularisation of code dealing with storage and
retrieval of application data from persistent storage is not dealt
with in detail. Furthermore, the transactions considered operate in
a pure object-oriented environment. This is seldom the case for
database applications as relational databases claim almost 80% of
the market share. [30] describes experiences with implementing
persistence and distribution aspects with AspectJ. The focus of the
work is on refactoring an existing application. It does not explore
application development independent of persistence requirements
or development of a reusable persistence aspect.

In this paper we present our experiences in separating persistence
of application data using AOP techniques. Our general aim is to
explore whether persistence can be effectively aspectised in a real
world application. More specifically, we wish to determine
whether such aspectisation can be reusable with the application
and the persistence aspect developed independently of each other.

i Obliviousness here means that persistence requirements may be ignored
during application development. Filman and Friedman [15] use the term
obliviousness to indicate that no special hooks are needed in classes
operated upon by an aspect. This is orthogonal to our use of this term.

120

We have chosen a classical database application: a bibliography
system and SQL-92 compliant relational databases (as the
underlying persistence mechanism) as the basis for our
experiment. The application is written in Java with database
interaction, based on JDBC (Java Database Connectivity),
aspectised using AspectJ1.06 [1]. Based on this experience we
argue that it is possible to aspectise persistence in a highly
reusable fashion, which can be developed into a general aspect-
based persistence framework. Nevertheless, application
developers can only be partially oblivious to the persistent nature
of the data. This is because persistence has to be accounted for as
an architectural decision during the design of data-consumer
components. Furthermore, designers of such components also
need to consider the declarative nature of retrieval mechanisms
supported by most database systems. Similarly, deletion requires
explicit attention during application design as mostly applications
trigger such an operation.

Although our experiences are based on AspectJ and relational
databases, we also provide some general insight into the
suitability of other AOP techniques in this context and discuss
how the emerging persistence model may be adapted to suit other
database technologies, e.g. object-oriented databases.

In the following, section 2 provides an overview of the
bibliography application used as the basis for this discussion.
Section 3 describes our approach to modulafising persistence
using aspects. Section 4 provides a discussion of the lessons learnt
from our experience, their possible limitations and generalisation
to other persistence scenarios. Section 5 discusses some related
work while section 6 concludes the paper and identifies possible
future directions.

2. B I B L I O G R A P H Y A P P L I C A T I O N
The data model for our bibliography application has been derived
from information stored on the DBLP server [2]. However, it has
been simplified as we do not need to maintain links from the table
of contents to the articles or aggregate individual conferences in a
series (e.g. the AOSD conferences) into a collection. The latter
should not be a data model consideration anyway as it is more
appropriate to define it as a view. The data model is shown in fig.
1 in UML.

P u b lis h e r Lo c a tin n Bibl iography I t em i AuthorEditor
town

country title firstName
1. publicationDate surname

IsLocated_at url email

[I P u b l i s h e r I address
n a m e [Has_Pub'shed ~ HasAuthored/Edted - -
email [1..1 l..n I / I 1..n I L.n

t ''1 I~b~ish~_B, | Ao*ho~ited_B,
Is_for_publisher ,_._.__..__._t___~. r--------l--------------~ I

vc

Conference

conferenceName
contents

bject
ltents
lume

Fig. 1: Data model of the bibliography application

The various association and aggregation relationships in the data
model have been implemented as aspects. Similarly, aspects have
been employed in the bibliography user interface classes
(developed using the Java Swing API) to attach listeners to the
various GUI widgets. However, these aspects do not have a
bearing on the modularisation of persistence. As discussed in
section 3.2, the persistence mechanism employs Java reflection to
discover the structure of a persistent object. Hence, it is of no
consequence, at least at a conceptual level, whether the
relationship edges are specified within a class or encapsulated in
an aspect. It should be noted that, unlike the listener aspects, the
design of some GUI components does need to take persistent
nature of the data into account. We discuss these considerations in
the next section.

3. M O D U L A R I S I N G P E R S I S T E N C E
In this section we first describe our approach to modularising
database access and the rationale behind the various design
decisions. We argue that it is possible to remain oblivious of the
need to store or update the data in the database during application
development. However, components consuming the data need to
account for both the data source and the nature of its retrieval
mechanisms. Retrieval can, therefore, only be partially
modularised. Similarly, deletion has to be explicitly triggered by
the application. We then discuss the design of the SQL translation
aspect before moving on to describing the general aspect-based
persistence framework emerging from the bibliography
application.

3.1 Database Access
There are three important considerations when aspectising
database access for an application that has been, at least partly,
developed without accounting for persistence:

1. A means to distinguish persistent data from transient data is
required.

2. The aspectised database access functionality should have a
high degree of reusability.

3. If the database access is reusable, some customisation points
should be available to plug-in application requirements such
as a specific database management system, location of the
database and so on.

In order to distinguish persistent data we have borrowed the
concept of a persistent root class from object-oriented database
systems [9]. These systems often require that all classes whose
instances are to be stored in the database extend a common base
class. The base class contains some persistence-related
functionality and additional functionality is augmented to the
persistent classes by a pre or post compilation processor. The
PersistentRoot class in our approach is shown in fig. 2. It only
encapsulates a very basic yet essential feature: marking an object
as deleted. This is essential as, due to the automatic garbage
collection support in Java, transient objects do not have an
explicit notion of deletion. Like retrieval, deletion can, therefore,
not be completely ignored during application development.
However, it can be simplified by providing this basic functionality
within the PersistentRoot class with the database access
functionality carrying out the actual data removal from the
database (this is discussed in more detail later).

121

An application specific aspect can use AspectJ to declare the
PersistentRoot class as the superclass of all classes whose
instances are to be made persistent 2 (cf. fig. 3).

public class PersistentRoot {

protected boolean isDeleted = false;

p u b l i c vo i d d e l e t e () {
this.isDeleted = true;

}

public boolean isDeletedO {
return this.isDeleted;

}
}

Fig. 2: The persistent root class

public aspect ApplicationDatabaseAccess {

d e c l a r e paren ts : (a i b l i o g r a p h y l t e m I I
AuthorEditor I I
Pub l i she r I I
Publ i she rLoca t i on)

extends P e r s i s t e n t R o o t ;

/ / o t h e r code
}

Fig. 3: An aspect declaring PersistentRoot as the superclass of
classes with persistent instances

The PersistentRoot class also plays a fundamental role in
aspectising database access in a highly reusable fashion. While the
DatabaseAccess aspect in fig. 4 employs the notion of abstract
aspects and pointcuts from AspectJ, the high degree of reusability
is derived from the ability to define join points with reference to a
common, application independent point: the PersistentRoot class.
This makes it possible to reuse the DatabaseAccess aspect in
another application whose data classes have been declared as sub-
classes of the PersistentRoot class (either by means of an aspect or
by using the standard Java inheritance mechanisms).

We now describe the various key features of the DatabaseAccess
aspect labelled in fig. 4 in more detail.

(~) Connection. The ability to connect and disconnect from the
database is a basic feature for a persistent application. However,
as mentioned earlier, reusability requirements dictate that such
functionality is generic with the availability of specific
customisation points to incorporate application specific
requirements such as:

• the location of the database;

• the database management system and/or driver to be used;

• points in the application control flow where a database
connection should be established or closed.

In the DatabaseAccess aspect the above needs are addressed
through the use of two abstract pointcuts and two abstract
methods. The two abstract methods are invoked by a before
advice, operating on the abstract pointcut establishConnection, to
obtain information to connect to the database (the two static
variables are used to hold the connection information). The
database URL and driver details are supplied by an application
aspect extending the DatabaseAccess aspect and concretising the

2 Note that the potential subclasses must inherit from Object as
PersistentRoot does.

two methods. Such an aspect also concretises the two abstract
pointcuts to specify the join points in the application control flow
where database connections are to be established or closed. For
our implementation we have chosen to use the
ApplicationDatabaseAccess aspect in fig. 3 for the purpose. Note
that at present we do not implement any connection pooling. This
can, however, easily be incorporated into the DatabaseAccess
aspect with localised impact.

public abstract aspect DatabaseAccess {

private static Connection dbconnection;
I private static string dbURL;

~abstract pointcut establishconnectionO;

• abstract pointcut closeconnectionO;

[public abstract string getOatabaseuRLO;
I public abstract string getOriverNameO;

• pointcut traplnstantiationsO: call(PersistentRoot+.new(..));

pointcut trapupdates(PersistentRoot obj):
!cflow(call(public static vector

SQLTranslation,getobjects(aesultset, string)))
(this(obj)
execution(public void PersistentROOt+.set*(..))
);

•p ointcut trapRetrievals():
call(vector Persistentoata.get*(..));

public static PersistentOata getPersistentOataO { ... }

• pointcut trapOeletes(PersistentRoot obj): this(obj)
execution(public void PersistentRoot+.deleteO);

pointcut detectoeletedobjects(PersistentRoot obj): this(obj)
(execution(public * PersistentRoot+.get*(.,)) [I
execution(public * PersistentRoot+.set*(,.))ll
execution(public string PersistentRoot÷.toStringO)
);

•p rotected static Integer update(string sqIstatement)
throws SqLException { ,-. }

• protected static Vector retrieve(string sqIStatement, string className)
throws SQLExCeption { ... }

• protected s ta t ic object transactionWrapper(string methodName,
object [] params) { ... }

• public s ta t i c aspect MetaDataAccess { ... }

/ / a d v i c e code
}

Fig. 4: The key features of the DatabaseAccess aspect

Note that there are a number of JDBC drivers available. These
range from pure Java drivers to those that act as a bridge to an
underlying ODBC (Open Database Connectivity) driver. The
various features in the JDBC API, particularly those pertaining to
database meta-data access, are not fully supported by all drivers.
Consequently, to have a high degree of portability across drivers,
we have chosen to base the implementation of the
DatabaseAccess aspect on the basic Sun Microsystems JDBC-
ODBC Bridge Driver which, to the best of our knowledge, offers
the lowest common denominator in terms of supported
functionality. While this has provided us with the flexibility of
choosing a different driver and/or a database management system
for our bibliography system in the future, most advanced features
of a new driver would not be exploited without modifying the
aspect code (though the change will be localised to the aspect).
This reflects that, like most other programming approaches, such a
trade-off needs to be considered when designing reusable aspects.

(~)Storage and update. The two pointcuts, respectively, identify
the join points where an object should be stored in the database or
its persistent representation updated. An object should be stored
in the database as soon as it is instantiated (cf. the

122

traplnstantiations pointcut). However, two factors need to be
considered when aspectising this functionality:

1. Once an object is stored in the database all objects reachable
from it should also be made persistent. This is in line with
well-known persistence by reachability requirement for
object persistence [13] and ensures that the object and all its
references can be appropriately re-established upon retrieval.
Due to the underlying relational model, the objects are
written to the database through translation to SQL insert
statements. The enforcement of reachability semantics is,
therefore, left to the SQLTranslation aspect (cf. section 3.2).

2. The object can only be stored in the database after its
constructor has been executed. Naturally, an after returning
advice is employed. However, in case of transaction rollback,
the transient instantiation of the object is not automatically
aborted. So, once the underlying transactionWrapper
(discussed later) signals a rollback, the after advice must
ensure that either an exception is raised or the transient copy
is marked deleted (by invoking the delete() method on the
object~o that it may be detected as unusable (cf. pointcut in
b l o c k ~) . However, any exception has to be wrapped as an
AspectJ SoftException because a Java throws clause is not
currently supported for advices (with the exception of the
around advice). In our opinion, it is essential to treat advices
as first class entities in order to clarify the signature of the
behaviour specified within an aspect. Since one can already
supply arguments to advices in AspectJ in the same fashion
as Java methods, it is only natural that features such as
declaration of exceptions thrown from the advice code
should be incorporated and more reflective access supported.
As discussed later, such reflective access is fundamental in
the development of reusable aspects.

The update mechanism relies on trapping all invocations of setter
methods for persistent objects. However, if such invocations
happen within the control flow of the getObjects method in the
SQLTranslation aspect they are ignored. This method is used to
rebuild the objects from their relational representation (which
might span multiple tables due to the normalisation constraints in
the relational model). Setter method calls in its control flow,
therefore, are used to populate an empty copy of the object and,
hence, do not have update semantics from a persistence
perspective. A before advice is employed to ensure that the
database state is updated prior to the transient object being
modified. This makes it possible to abort the transient update (in a
fashion similar to that described for instantiation) if a transaction
is rolled back. Also, note that we have made the intentional
decision to rely on strict encapsulation for access to member
variables of persistent objects i.e. only setter and getter methods
can be used and no direct public access otherwise is allowed. We
are of the view that such good practice should be enforced for all
persistent applications as it ensures that the interface of the class
is not often modified due to changes to internal representation of
member variables. However, if required, only the trapUpdates
pointcut definition needs to be modified to trap direct updates to
member variables.

The traplnstantiations and trapUpdates pointcuts do not require
any special preparation on part of the application code
instantiating the classes in fig. 1 or calling the setter methods on
their instances. The developer can, therefore, remain oblivious to

the fact the advices referring to these pointcuts will store the
objects in the database or update their persistent representations.

(~)Retrieval. Unlike storage and update, it is virtually impossible
to remain oblivious of the persistent nature of the data during
retrieval. The term "retrieval" means "to get and bring back;
especially: to recover (as information) from storage" [5]. The
application, therefore, cannot ignore the fact that the persistent
objects (in this case instances of the classes in fig. 1) or the
references to these are obtained from an external source. This is
further compounded by the declarative nature of retrieval
mechanisms in database systems which retrieve data based on
predicates or selection conditions. Query languages remain the
dominant retrieval mechanism. Although in object-oriented
databases retrieval is possible through traversal, the Object Query
Language (OQL) forms part of the ODMG standard [9] and either
its implementation or a proprietary query language is supported
by most commercial systems e.g. [4, 6, 7, 8]. Similarly, the Java
Data Objects (JDO) specification [29] also supports a query
language.

Despite the above observation, aspects can play an important role
in modularising parts of the retrieval related code. In case of our
application this is achieved through a special interface called
PersistentData which offers a number of methods to be
implemented by a class. The methods expose functionality such as
retrieving the extent i.e. the set of all objects of a class or specific
objects of a class based on a selection condition. All these
methods return a Vector containing the objects retrieved. The
getPersistentData() method in the DatabaseAccess aspect
provides a reference to an instance of a class implementing this
interface. An application can obtain this reference and use it as the
basis of any retrieval-related code.

The class implementing the PersistentData interface is used to
provide hooks that are used by the trapRetrievals pointcut to
identify the points at which the application attempts to retrieve the
data. Note that this class is not application-specific and is a
reusable, support mechanism for the DatabaseAccess aspect. An
around advice for the trapRetrievals pointcut employs the
AspectJ reflection API to obtain the various selection conditions
PaSsed as arguments to the hook methods. With the help of the
SQLTranslation aspect it retrieves the objects and returns the
resulting Vector to the application.

The modularisation approach described above provides a high
degree of reusability for the retrieval code as it remains
application independent. Although the application cannot remain
unconcerned with retrieval, we consider this to be a positive
conclusion. This is because retrieval is often an important
architectural consideration in the design of data consumer
components. The amount of data that will be available as a result
of retrieval can, for instance, be a significant factor in the design
of user interface components. Several of these user interface
design considerations were encountered in our bibliography
application. For instance, we support the user to relate an author
already existing in the database to a new item being added. This is
done by providing a list of existing authors when entering the new
item details. Since the bibliography database contains thousands
of authors, it is a very expensive operation to retrieve all the
authors particularly when the user might not choose an existing
author. Even if the user were to choose an existing author the
operation remains expensive as only a few authors will be

123

selected. It, therefore, makes sense to provide the user with some
mechanism to navigate through a set of lists containing subsets of
authors (possibly based on alphabetical ordering) and retrieving
(on demand) only the subsets of authors the user might be
interested in. Retrieval considerations in this case make it possible
to not only optimise the database operations but also provide a
user interface presenting a large amount of data to the user in a
manageable fashion.

(~ Deletion. As mentioned earlier, like retrieval, deletion of
persistent data has to be explicitly considered during application
development and cannot be fully aspectised. This is because data
has to be deleted from the data source upon specific request from
the application. In addition, there are implementation specific
factors. Due to the automatic garbage collection, there is no
notion of explicitly deleting an object in Java. Consequently, there
is no reference point available for the DatabaseAccess aspect to
remove the persistent representation of an object from the
database. In a language such as C++, the invocation of the delete
operator can be trapped (using an aspect language) and the object
removed from the database. Still one cannot be sure if the
application actually intended to remove the object from disk or
merely from the memory. It is, therefore, good practice to
explicitly delete persistent objects hence providing a non-fuzzy
point of reference on which the aspect can operate.

In case of our application this reference point is provided by the
delete() method in the PersistentRoot class (cf. fig. 2). The
application invokes this method for the persistent instances (their
classes are declared as sub-classes of the PersistentRoot class as
shown in fig. 3). The trapDeletes() pointcut captures these
invocations and a before advice, for reasons similar to update,
translates the request to SQL using the SQLTranslation aspect and
removes the persistent representation of the object. It also marks
the object for early collection by using the garbage collector
interaction features in the java.tang.ref package. The
detectDeletedObjects pointcut and its associated before advice
complements the above functionality by throwing an exception
(wrapped as an AspectJ SoflException)whenever a piece of code
attempts to access the transient representation of a deleted
persistent object that has not yet been collected by the garbage
collector.

The use of the delete() method in the PersistentRoot class as a
reference point makes it possible to keep the deletion functionality
reusable and application independent. However, the application
programmer should be aware of the existence of the
PersistentRoot class, its public interface and that it will eventually
be declared as a super-class of all classes whose instances are to
be stored in the database. This is essential as otherwise the
application programmer will be calling a method that to him/her is
unspecified and such a practice can lead to inconsistencies in the
code. The application programmer does not need to be aware of
the existence of the deletion functionality in the DatabaseAccess
aspect or the SQLTranslation aspect.

(~) Transactions. The three methods: update, retrieve and
transactionWrapper together encapsulate the transaction
functionality. This is because, although JDBC has an explicit
(optional) notion of transaction commit and rollback, transactions
are always implicitly started. The update and retrieve methods
encapsulate the code that results in the start of read-write and
read-only transactions respectively. Naturally the update method

caters for operations that change the state Of the database i.e. SQL
insert, update and delete statements while the retrieve method
supports querying operations on the database. The sqlStatement
argument in both methods is obtained by the appropriate advice
code through the SQLTranslation aspect. The className
argument in the retrieve method is obtained reflectively by the
advice operating on the trapRetrievals pointcut. Class name is an
argument for all the methods in the PersistentData interface as it
is required to establish the mapping between the object structure
and the underlying relational schema (cf. section 3.2).

protected static object transactionwrapper(String methodName,
object[] params) {

try {

boolean commitable = true;
object obj = null;

try {
class thisClass = class.forName("DatabaseAccess");
Method[] methods = thisclass.getDeclaredMethodsO;
Method theMethod : null;
for (in t i=O; i<methods.length; i++) {

i f (methods[i].getNameO.equals(methodName))
theMethod = methods[i];

}
obj = theMethod.invoke(null, params);

}

catch (Exception e) {
System.out.print ln(e.toStringO);
dbConnection.rollbackO;
commitable = false;

}

f i na l l y {
i f (commitable)

dbconnection.commitO;
return obj;

}
}

catch(SQLException e) {
system.out.println("Error in committing or

rol l ing back: " + e . tost r ingO);
return nul l ;

}

Fig. 5: The transaction wrapper method

The various advices within the DatabaseAccess aspect do not
directly invoke the update or the retrieve method. Instead they
pass the name of the method to be invoked together with an array
of arguments to the transactionWrapper method (cf. fig. 5). This
helps us modularise the nested try-catch blocks as otherwise these
have to be repeated in individual advice code. The outer try-catch
block is responsible for catching any SQL exceptions (thrown by
JDBC) during the invocation of the commit and rollback methods.
The inner try-catch-finally block in the transactionWrapper
method reflectively invokes the required method. It uses a
mechanism similar to that presented in [19] i.e. a boolean variable
to decide whether to commit the transaction or rollback. Note that
we choose to abort a transaction when any exception is thrown
regardless of whether it arises from reflective access or the
database operation. We have taken this safer option intentionally
as reflective operations play a fundamental role during translation
to/from SQL. Consequently, it is highly likely that any exception
directly or indirectly relates to database access. Furthermore, all
database access functionality, though at times not oblivious, is
aspectised. Therefore, the application does not need to signal
exceptions to abort transactions as these are signalled by the
aspecitsation infrastructure: JDBC, the Java Reflection API or the

124

SQLTranslation aspect. A null value returned to the invoking
advice implies an unsuccessful transaction prompting it to execute
transient rollback and signal an exception (wrapped as an AspectJ
SoflException). Unlike [19] where an around advice is employed
for transaction wrapping, we have chosen to explicidy invoke the
transactionWrapper from the advice code dealing with storage,
update, removal and retrieval of persistent objects. As a result, the
transactionWrapper is triggered strictly for database operations
and no unnecessary wrapping overheads exist for transient
operations. In this case the fact that the transactions do not
operate in a pure OO environment benefits our aspect design. For
database operations reflection, of course, adds some overhead to
the transaction. However, some locking optimisation is provided
by the update and retrieve methods which establish the
appropriate read-write and read-only locks respectively.

(~)Meta-data Access. This static inner aspect encapsulates helper
functionality to access the database meta-data such as the column
names in a relational table or its foreign key links. This
functionality is required by the SQLTranslation aspect. The
MetaDataAccess aspect, therefore, serves two purposes.

1. It avoids unnecessary duplication of JDBC meta-data calls
during SQL translation. For example, in our case, one of the
features encapsulated by the aspect is obtaining a JDBC
ResultSet object containing the column names for a table and
returning them as an Enumeration for ease of traversal
during SQL translation.

2. If a desired meta-data access feature is not supported by the
underlying database driver, it can be built on top of more
primitive features available. An update can then be carried
out without affecting the SQL translation functionality once
a newer version of the driver or a better driver becomes
available.

Note that meta-data access functionality should be viewed as a
subset of the overall database access functionality. Its
modularisation as an inner aspect of the DatabaseAccess aspect,
therefore, provides a more natural separation of concerns than it
being encapsulated in a sub-aspect. This argument is further
strengthened by the observation that, in our MetaDataAccess
aspect, we have not needed to concretise or override any features
of the DatabaseAccess aspect.

3.2 SQL Translation
SQL translation must be considered as a separate concem when
aspecitising persistence of OO data using relational databases.
This is because database access (and in general persistent storage
access) is a concern for any application involving persistent data.
However, it is not necessary that any translation to the underlying
data model will be required e.g. if an object-oriented database is
being used. When an OO application employs a relational
database as a persistent store, there is a need to flatten the object
structure to a relational model due to the lack of support for
complex data types in the latter. Fig. 6 shows part of the relational
database structure for our bibliography application. The Article
objects are mapped to two tables, one capturing the attributes
defined in the superclass Bibliographyltem while the other
containing those defined within the Article class itself. The
inheritance relationship is captured by a simple one-to-one
relationship (for each Article object there can be only one row in
each table). The many-to-many relationship between bibliography

items and authors/editors is captured in a separate relational table
(this is a defacto mechanism for capturing many-to-many
relationships).

Fig. 6: Part of the OO data model mapped to the relational model

There is a need for an intermediate mechanism to provide the
object-to-relational mapping and SQL translation provides a
standard-based approach for the purpose. One might argue that,
for update and deletion purposes, JDBC ResultSet objects may be
employed to modify the database instead. However, not all JDBC
drivers support use of bi-directional cursors on result sets. This is
an essential feature to search for records pertaining to an object
within a ResultSet. Also, this requires retrieving the object into a
ResultSet and applying the update which results in unnecessary
disk access. The SQLData interface in JDBC, on the other hand,
only supports mapping to/from user-defined SQL types in an
object-relational model and, hence, cannot be employed for pure
relational databases.

If an SQL translation mechanism is to be reusable, it must be
highly independent of any application-specific mapping. Such
mapping can then be specified when the aspectised persistence
mechanism is composed with the application. In our approach a
singleton lookup table is used to establish the mapping. We
minimise the use of the lookup table by only maintaining mapping
at a coarse-granularity i.e. the tables to which objects of a class
and many-to-many relationships map. Mapping of individual
object attributes onto relational table columns is not maintained in
the lookup table and is instead achieved through the use of
identical names. However, if different naming schemes are being
used, the mapping can be contained within the lookup table. The
mapping in the lookup table is specified through the
EstablishMapping aspect (cf. fig. 7) which sets up the mapping
before the connection with the database is established(B~. An
AuthorEditor object maps onto the AuthorEditor table ~.C), an
Article object maps onto the Bibliographyltem and Article tables

(~) while the many-to-many authorsOrEditors relationship maps
onto the ltemAuthoredOrEdited table (~) . Note that the
EstablishMapping aspect must dominate (have higher execution
priority than) the DatabaseAccess aspect(I) to ensure that the
mapping is established before connecting to the database.

The main features of the SQLTranslation aspect are shown in fig.
8. The sqlExecution pointcut captures the fact that an object might
map to multiple tables and hence result in translation to multiple
SQL statements. An around advice tests if a single SQL statement
is being executed through the JDBC Statement object in which
case the normal execution in the DatabaseAccess aspect proceeds.
On the other hand, if multiple SQL statements are found,
execution is carried out in batch mode (JDBC has specific support
for the purpose). Note that mapping to multiple SQL statements is
an SQL translation concern and, hence, the pointcut dealing with
this must form part of the corresponding aspect. Although the
sqlExecution pointcut captures Statement.executeUpdate(String)
calls from a single method (the update method) in the
DatabaseAccess aspect, it makes it possible to separate an
essential piece of SQL translation functionality and incorporate it

125

within the SQLTranslation aspect. Its use is, therefore, not out of
step with good aspect-oriented programming practices.

The various getXXXSQL methods and the getObjects method
employ Java Reflection and the mapping information in the
lookup table to map the objects, their updates and deletion to the
database and recreate the objects upon retrieval. Since strict
encapsulation is imposed, we recursively identify the object
attributes corresponding to the relational table columns by
obtaining the declared members and not just the public ones. If
propagation of updates for linked tables is supported in the
underlying database design, this feature is exploited otherwise the
linked tables are individually updated, but within a single
transaction boundary to ensure consistency. Note that the use of
reflection for object-to-relational mapping results in some
additional overhead during database interaction. As pointed out in
[22] such trade-offs have to be made when designing highly
flexible components such as the SQLTranslation aspect.

•p ublic aspect EstablishMapping dominates OatabaseAccess {

pointcut setupMappingO:
ApplicationDatabaseAccess.establishconnectionO;

before(): secupMappingO {

LookupTable mappingTable = LookupTable.getLookupTableO;

mappingTable.createClassToTableMapplng("AuthorEditor",
"AuthorEditor");

mappingTable.createClassToTableMapping("Article",
"BibliographyItem");

mappingTable.createclassToTableMapping("Article",
"Article");

mappingTable.createRelationshipToTableMapping(
"authorsOrEditors",
"ItemAuthoredEdited");

}

}

Fig. 7: Aspect used to specify the object-to-relational mapping

public aspect SQLTranslation {

pointcut sqIExecution(Statement statement,
String sqlstatement):
target(statement)
call(public int

Statement.executeupdate(String)) 8~
args(sqlstatement);

// around advice for sqIExecution pointcut

public static string getlnsertionSQL(PersistentRoot obj);

public static String getupdateSQL(PersistentRoot obj,
String methodName,
object arg);

public static String getDeletesQL(PersistentRoot obj);

public static string getQuerySQL(String className,
String selectioncondition);

public stat ic vector getobjects(Resultset rs,
String className);

/ / helper methods

Fig. 8: The main features of the SQLTranslation aspect

3.3 The Emerging Persistence Framework
Based on the discussion in section 3.1 and 3.2 we can observe a
general aspect-based persistence framework emerging. This
framework is shown in UML in fig. 9. Members have been
omitted from the classes, aspects and the interface for simplicity.

 <aspect>,] < TP:d=]
/SOLT °la °n/ ' Aoee

Lookup Table Access

T ~ Persistent Data
<<aspect>> [Implementation <<aspect>> Application

Establish - - T Database
Mapping Access

Application ~ Here all attribute & meth~
specific sections are suppressed; 1
customisation denotes Usage |

Fig. 9: The persistence framework emerging from the application

The above framework challenges one of the widely misunderstood
promises of AOP. It is often assumed that an aspect implies a
large piece of code modularised by a single AspectJ-like aspect
construct. This is not true but for the simplest of cases. As shown
in fig. 9, aspectisation requires that a coherent set of modules
including classes and aspects collaborate to modularise a
crosscutting concern. Such a view of AOP also ensures that
aspectisation is not forced and in fact leads to a natural separation
of concern e.g. the separation of the DatabaseAccess and
SQLTranslation aspects in our persistence framework.
Furthermore, it makes it possible to draw upon established best
practices and guidelines from the frameworks community, as has
been the case for flexibility trade-offs in our aspectisation.

4. DISCUSSION
4.1 Using other persistence mechanisms
The persistence framework shown in fig. 9 has emerged from a
classical relational database application. It can, therefore, be
reused in any other t O application employing an SQL-92
compliant relational database. For object-relational databases
employing SQL-3, the framework implementation should still be
reusable. However, the SQL translation mechanism will need to
be enhanced to cater for the user-defined types in SQL-3. One
option is to exploit the SQLData interface in JDBC which
provides support for such mapping. As far as object-oriented
databases are concerned the framework will need to be re-
implemented. However, the persistence model used by the
framework can still be exploited. The various pointcuts in the
DatabaseAccess aspect will be required as these are the points in
the application control flow where persistence features are
composed regardless of the nature of the persistence mechanism.
Similarly, a transaction wrapper will be needed and a
PersistentData interface to support declarative access from the
application. Of course, the SQL translation infrastructure (the
SQLTranslation aspect, lookup table and EstablishMapping
aspect) will not be required as there will be no data model
mismatch between the t O application and the database. The
MetaDataAccess aspect will not be needed either as it is only

126

needed to support SQL translation. The PersistentRoot class will
be required to act as a surrogate inheriting from the object
database system's root class which cannot be modified due to
proprietary restrictions. This approach has worked successfully
when designing aspect persistence mechanisms in the past [25,
26].

4.2 Reflection and other AOP techniques
In our persistence framework, reflection has played a fundamental
role in the design of a reusable transaction wrapper and, more
importantly, SQL translation mechanism. We have exploited not
only the Java reflection API but also the AspectJ reflection API
for the purpose. AspectJ pointcuts are mainly used to register
points of interest in the application or persistence framework
control flow. Genericity is provided by the use of reflection
whenever application specific code would be required otherwise.
This strengthens the argument for a hybrid approach to separation
of crosscutting concerns [24]. It also implies that if the resulting
persistence framework were to be implemented in another
language environment, both the base language and the aspect
language would need to support reflection.

While the use of reflection during aspectisation has led to the
emergence of a generic, reusable framework it has certain
drawbacks as well. Most of these relate to the SQL translation.
For instance, the SQL translation mechanism makes the well-
defined assumption that strict encapsulation is enforced and only
getter and setter methods will be used to provide public access to
an object's state. However, programmers might choose to ignore
this assumption or simply might forget to include appropriate
getter/setter methods. This will result in the translation
mechanism becoming inoperative as methods are discovered
dynamically and static checks cannot be applied. This risk can be
reduced by providing support for generating getter and setter
methods. Alternatively, the AspectJ declare error feature can be
used to force programmers to define these methods.

Reflective invocation, of course, has its performance penalties.
These can be counter-balanced by the use of a cache. In fact, a
cache becomes an essential concern as the size of the database
grows. The various pointcuts and, the update and retrieve
methods within the DatabaseAccess aspect provide excellent
reference points for plugging a cache into the persistence
framework. However, the introduction of a cache should only be
considered for applications with a large database as it is likely to
result in unnecessary overheads otherwise. The nature of the
application must also be taken into account e.g. whether it is
necessary to optimise retrieval (due to frequent querying and
infrequent updates as is the case for the bibliography application)
or updates or both.

The AOP model in AspectJ is well suited for aspectising
persistence. This is because persistence is a general concern
regardless of the individual state of an object. Therefore, the
extent-oriented nature of AspectJ pointcuts and advices is very
useful in this context. Relationships, on the other hand, are an
entirely different matter. In our application these have been
implemented as aspects mainly relying on AspectJ introductions.
As mentioned earlier conceptually this should be of no
consequence. This is, unfortunately, not the case and the use of
introductions has introduced additional overhead during SQL
translation as the reflectively obtained attributes of an object have

to be tested to check whether they are collections. If so the
information in the lookup table is used to establish if a collection
represents an edge of the relationship. This is further complicated
by the fact that the AspectJ weaver renames the introduced edges
to avoid conflicts. When reflectively accessed the name of the
relationship is different from what has been specified in the
mapping. The translation mechanism, therefore, requires
knowledge of the renaming scheme making it susceptible to
breakdown as the language and its weaver evolve. Based on
experience with relationships in the bibliography application, we
are of the view that introductions must be used with great caution
especially if their use results in loss of semantic information. In
case of relationships in the bibliography application a well-
defined relationship model such as the one proposed in [28] with
relationship aspects attached on a per-instance basis using
composition filters as in [24] would have been more suitable.
This, in turn, indicates the need for environments that allow
multiple AOP techniques and platforms t o co-exist hence
allowing the use of the most appropriate technique for
modularising a particular crosscutting concern.

4.3 Aspect Interaction
The dominates construct in AspectJ has been sufficient to resolve
the simple interaction between the EstablishMapping and
DatabaseAccess aspects. However, if a cache is plugged in we
expect the interactions to become more complex as the advices in
the caching aspect will operate with reference to the same
pointcuts as in the DatabaseAccess aspect. Furthermore, several
aspects are often composed only for development purposes and
can introduce more interactions. For example, during the
development of our bibliography application we employed a
Tracing aspect for debugging purposes. Another aspect used was
the Extent aspect which maintained transient extents for persistent
classes to allow testing of the storage and update features without
having to design the retrieval mechanism. The two testing aspects
interacted with the advices in the DatabaseAccess aspect.
However, the domination relationship among the three aspects
was highly dynamic. For example, at times it was desirable to start
displaying tracing information before the advice performing a
database operation while at other times it was required to begin
tracing output afterwards. Similarly, sometimes the Extent aspect
was required to be compiled-in and vice versa. This required a lot
of changes to the dominates relationship among these aspects. It
became quite clear that, even for a system with few aspects and
classes, such an interaction resolution model could be error-prone
and cumbersome. Since interactions cut across aspects in a
system, it is essential that AOP techniques in general (and not just
Aspect J) offer significant support for the detection,
modularisation and resolution of interactions. This support will
play a fundamental role in the testing and verification of aspect-
oriented applications and hence act as a critical factor in large-
scale adoption of aspect-orientation.

5. RELATED WORK
Kienzle and Guerraoui [19] present an analysis of using AspectJ
for separating transactions based on the OPTIMA framework

p

[18]. They argue that using an AspectJ around advice to wrap
transactions around transactional methods is inefficient due to
lack of locking optimisations. They also discuss the dangers of
using exceptions to signal transaction abortion in a multi-

127

threaded, distributed environment. They conclude that
transactions should be part of the phenomenon simulated by
objects. During our aspectisation of persistence we have also
considered transactions. However, the JDBC transaction model is
much simpler than OPTIMA and fewer factors need to be
considered for providing an optimal transaction mechanism.
Firstly, due to the implicit start of transactions in JDBC, the
transactionWrapper is explicitly invoked from advices
manipulating persistent data. Consequently, although transactions
are not part of the application phenomenon, the code dealing with
persistent objects (in the DatabaseAccess aspect) is not unaware
of the existence of transaction boundaries. This also means that
transactions are only wrapped around operations that result in
database access hence avoiding unnecessary overheads.
Moreover, the existence of the update and retrieve methods
reflectively invoked by the transaction wrapper provides some
degree of locking optimisation. The advices in our
DatabaseAccess aspect also use exceptions (wrapped as an
AspectJ SofiException) to indicate aborted transactions. We are of
the view that handling of such exceptions is a concern for the
integration stage within the application development process and
can be dealt with by exception handling aspects as in [30].

Soares et al. [30] describe their experiences with AspectJ as a
means for refactoring distribution and persistence concerns in a
layered web-based information system. The data model for this
application is much simpler than our bibliography application.
Furthermore, most of their persistence aspects are application
specific and highly reliant on the layered architecture. The
persistence framework emerging from our application is not
bound to a particular architecture and can be reused directly in
any relational database application. Soares et al. widely employ
interfaces to limit the dependence of aspects on the signatures of
the methods (implemented in specific classes) that the aspects
advise. While this may be a convenient way of aspect - class
decoupling, it has also led to code duplication within interfaces as
is the case for the hierarchy of transactional interfaces provided
for locking optimisation. Moreover, these transactional interfaces
are application specific and also result in duplication of code
within the transaction aspect. In our persistence framework only a
single interface with application-independent methods is
employed in order to expose retrieval functionality to the
application. Our locking optimisations are generic and, due to the
reflective transaction wrapper, new optimisations can be
introduced without duplication of transactional code.

A generic persistence aspect has also been implemented within
JAC [23]: a framework for dynamic aspect-oriented programming
in Java. Like [30] the architecture used for this aspectisation is
also based on the existence of an additional layer between the
persistent storage and JAC. No large applications (comparable to
the bibliography application in this paper) using the JAC
persistence aspect are yet available.

Neither JAC nor Soares et al. have considered issues of data
normalisation while mapping objects to relational databases. As
discussed earlier in this paper, normalisation brings a new level of
complexity to persistence modelling with additional
considerations such as mapping and retrieving an object from
multiple tables. Furthermore, both of the above approaches have
not identified SQL generation as a crosscutting concern. This has
resulted in SQL statements being spread throughout components

supporting the persistence aspect implementation. In [30]
application-specific SQL statements have been hard-coded into
the persistence code. Any changes to the database structure will,
therefore, result in a ripple effect on a large portion of the
persistence code.

[20] describes a simple database application where aspects are
employed for authentication, exception handling, caching, pooling
and so on. Storage and retrieval of application data has not been
aspectised and SQL statements are hard-coded.

The work presented in this paper also bears a relationship with the
notion of aspect-oriented frameworks e.g. [12]. However, unlike
[12] which describes a general AOP framework, the framework
emerging from our application is specific to the persistence
domain.

6. CONCLUSION
This paper has presented our experience in aspectising persistence
in a classical database application: a bibliography system. Our
general aim was to explore whether AOP techniques offer an
effective means to modularise persistence in a real world
application scenario. The discussion in the paper demonstrates
that the answer is indeed "yes". However, like all other pieces of
software, the designers of aspects also need to consider a number
of software engineering factors. Firstly, trade-offs between
genericity and performance need to be made. In our aspectisation,
we could have hard-coded the application-specific SQL
statements in the SQLTranslation aspect instead of using
reflection. However, this would have seriously compromised the
genericity and reusability of the SQL translation mechanism and,
hence, the aspectised persistence mechanism. Secondly, a well-
engineered aspect requires one to evaluate the suitability of the
available techniques for implementing the various concerns within
the aspect. For instance, we have employed AspectJ constructs to
identify points where persistence-related behaviour has to be
composed while reflection has been used to keep the SQL
translation generic and avoid duplication of transaction code
during database access. However, our experience also shows that
the choice of suitable techniques is also constrained by the
available set of tools and their interoperability. Ideally, we would
have liked to implement our relationships using the composition
filters approach. However, given the available tools and their
interoperability constraint'g, we had to employ AspectJ
introductions for the purpose.

We also aimed to answer two specific questions with the help of
our experiment. Firstly, we wished to explore whether a
persistence aspect can be developed that exhibits a high degree of
reusability. The persistence framework emerging from our
application demonstrates that this is indeed the case. Furthermore,
this framework does not rely on the existence of an additional
layer masking the relational database features. The framework is
very simple to adapt and reuse i.e. concretise the DatabaseAccess
aspect, specify the EstablishMapping aspect and use the
PersistentData interface for retrieval purposes. However, for
effective reuse such a framework (and aspects in general) should
be complemented by a reuse specification. Such a reuse
specification should dclearly define the interface of an aspect's
behaviour e.g. the exceptions the various advices might throw.
This is essential as the integration phase in the development
process needs to specify behaviour to respond to any exceptions

128

raised by the advices hence improving the soundness of the
composition.

Our second specific aim was to investigate whether an application
and a persistence aspect could be developed independently of
each other. As far as the application is concerned this can only be
partially achieved. Storage and update of persistent data does not
need to be accounted for but retrieval and deletion must be
explicitly considered. However, this does not compromise the
independent development or reusability of the aspect. While we
took into account the need to expose retrieval and deletion
functionality to the application during the course of developing
our persistence aspect, we did not consider any specific
implementation details of the application. Consequently, we had
to design the persistence mechanism to be generic resulting in a
highly reusable persistence framework. It is also interesting to
point out that we did not set out to design a persistence
framework. We followed the natural separation of concerns while
developing the persistence infrastructure keeping the reusability
and application independence requirements in mind and the
framework naturally emerged.

Our future work will focus on putting the reusability of our
aspectisation to test in other application contexts. Performance
comparison with non-AO techniques and AO implementations
such as the persistence aspect in JAC are also planned. We also
aim to explore the effectiveness of Hyper/J [3] to aspectise
persistence. This will be an interesting direction as the AOP
model of Hyper/J differs considerably from that of AspectJ. The
implementation of persistence in a real world application with the
two techniques will, therefore, provide exciting opportunities for a
thorough comparison.

7. REFERENCES
[1] Xerox PARC, USA, "AspectJ Home Page", http://aspectj.org/,

2002.

[2] Ley, M., "DBLP: Digital Bibliography and Library Project",
http://dblp.uni-trier.de/, 2002.

[3] IBM Research, "Hyperspaces",
http://www.research.ibm.com/hyperspace/, 2002.

[4] The Jasmine Documentation, 1996-1998 ed: Computer
Associates International, Inc. & Fujitsu Limited, 1996.

[5] Merriam-Webster, "Merriam-Webster Online Dictionary",
http://www.m-w.com/, 2002.

[6] The 02 System - Release 5.0 Documentation: Ardent Software,
1998.

[7] Object Store C++ Release 4.02 Documentation: Object Design
Inc., 1996.

[8] POET5.0 Documentation Set: POET Software, 1997.

[9] R.G.G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C.
Russel, O. Schadow, T. Stenienda, and F. Velez, The Object
Data Standard: ODMG 3.0: Morgan Kaufmann, 2000.

[10] S. Clarke, "Designing Reusable Patterns of Cross-Cutting
Behaviour with Composition Patterns", OOPSLA Workshop on
Advanced Separation of Concerns, 2000.

[l l] S. Clarke and R. J. Walker, "Composition Patterns: An
Approach to Designing Reusable Aspects", ICSE, 2001.

[12] C. Constantinides, A. Bader, T. Elrad, M. Fayad, and P.
Netinant, "Designing an Aspect-Oriented Framework in an
Object-Oriented Environment", A CM Computing Surveys, 32(1),
2000.

[13] R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems (3rd ed.): Addison-Wesley, 2000.

[14] T. Elrad, R. Filman, and A. Bader (eds.), "Theme Section on
Aspect-Oriented Programming", CACM, 44(10), 2001.

[15] R. Filman and D. Friedman, "Aspect-Oriented Programming is
Quantification and Obliviousness", OOPSLA Workshop on
Advanced Separation of Concerns, 2000.

[16] D. Holmes, J. Noble, and J. Potter, "Towards Reusable
Synchronisation for Object-Oriented Languages", ECOOP
Workshop on Aspect-Oriented Programming, 1998.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. A. Kersten, J. Palm,
and W. G. Griswold, "An Overview of AspectJ", ECOOP, 2001,
Springer-Verlag, LNCS 2072, pp. 327-353.

[18] J. Kienzle, "Open Multi-threaded Transactions: A Transaction
Model for Concurrent Object-Oriented Programming", PhD
Thesis, Swiss Federal Institute of Technology, 2001.

[19] J. Kienzle and R. Guerraoui, "AOP: Does It Make Sense? The
Case of Concurrency and Failures", ECOOP, 2002, Springer-
Verlag, LNCS 2374, pp. 37-61.

[20] I. Kiselev, Aspect-Oriented Programming with Aspect J: SAMS,
2002.

[21] K. Mens, C. Lopes, B. Tekinerdogan, and G. Kiczales, "Aspect-
Oriented Programming Workshop Report", ECOOP Workshop
Reader, 1997, Springer-Verlag, LNCS 1357.

[22] D. Parsons, A. Rashid, A. Speck, and A. Telea, "A 'Framework'
for Object Oriented Frameworks Design", TOOLS Europe,
1999, IEEE CS Press, pp. 141-151.

[23] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin, "JAC: A
Flexible Solution for Aspect-Oriented Programming in Java",
Reflection Conf., 2001, Springer-Verlag, LNCS 2192, pp. 1-24.

[24] A. Rashid, "A Hybrid Approach to Separation of Concerns: The
Story of SADES", Reflection conf., 2001, Springer-Verlag,
LNCS 2192, pp. 231-249.

[25] A. Rashid, "On to Aspect Persistence", GCSE Syrup., 2000,
Springer-Verlag, LNCS 2177, pp. 26-36.

[26] A. Rashid, "Weaving Aspects in a Persistent Environment",
ACM SIGPLAN Notices, Feb. 2002.

[27] A. Rashid and N. Loughran, "Relational Database Support for
Aspect-Oriented Programming", Proceedings of NetObjectDays,
2002 (to appear in Springer-Verlag LNCS).

[28] A. Rashid and P. Sawyer, "Dynamic Relationships in Object
Oriented Databases: A Uniform Approach", DEXA, 1999,
Springer-Verlag, LNCS 1677, pp. 26-35.

[29] R. Roos, Java Data Objects: Addison Wesley, 2002.

[30] S. Soares, E. Laureano, and P. Borba, "Implementing
distribution and persistence aspects with AspectJ", OOPSLA,
2002, ACM Press, pp. 174-190.

[31] J. Suzuki and Y. Yamamoto, "Extending UML for Modelling
Reflective Software Components", International Conference on
the Unified Modelling Language (UML), 1999.

129

