
A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 36 – 74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modularizing Design Patterns with Aspects:
A Quantitative Study

Alessandro Garcia1, Cláudio Sant’Anna2, Eduardo Figueiredo2, Uirá Kulesza2,
 Carlos Lucena2, and Arndt von Staa2

1 Lancaster University, Computing Department, InfoLab 21,
Lancaster - United Kingdom

garciaa@comp.lancs.ac.uk
2 PUC-Rio, Computer Science Department, LES, SoC+Agents Group,

Rua Marques de São Vicente, 225 - 22453 - 900, Rio de Janeiro, RJ, Brazil
 {claudios, emagno, uira, lucena, arndt}@inf.puc-rio.br

Abstract. Design patterns offer flexible solutions to common problems in
software development. Recent studies have shown that several design patterns
involve crosscutting concerns. Unfortunately, object-oriented (OO) abstractions
are often not able to modularize those crosscutting concerns, which in turn
compromise the system reusability and maintainability. Hence, it is important
verifying whether aspect-oriented approaches support improved modularization
of crosscutting concerns relative to design patterns. Ideally, quantitative studies
should be performed to compare OO and aspect-oriented implementations of
classical patterns with respect to fundamental software engineering attributes,
such as coupling and cohesion. This paper presents a quantitative study that
compares Java and AspectJ solutions for the 23 Gang-of-Four patterns. We
have used stringent software attributes as the assessment criteria. We have
found that most aspect-oriented solutions improve separation of pattern-related
concerns, although only four aspect-oriented implementations have exhibited
significant reuse. This paper also discusses the scalability of the analyzed
solutions with respect to separation of concerns, and the determination of a
predictive model for the modularization of design patterns with aspects.

1 Introduction

Since the introduction of the first software pattern catalog containing the 23 Gang-of-
Four (GoF) patterns [9], design patterns have quickly been recognized to be important
and useful in real software development. A design pattern describes a proven solution
to a design problem with the goal of assuring reusable and maintainable solutions.
Patterns assign roles to their participants, which define the functionality of the
participants in the pattern context. However, a number of design patterns involve
crosscutting concerns in the relationship between the pattern roles and participant
classes in each instance of the pattern [15]. The implementation of the pattern roles
often crosscuts several classes in a software system. Moreover, recent studies [11, 12,
15] have shown that object-oriented (OO) abstractions are not able to isolate these
pattern-specific concerns and tend to lead to programs with poor modularity. In this
context, it is important to systematically verify whether aspect-oriented approaches

 Modularizing Design Patterns with Aspects: A Quantitative Study 37

[22, 33] support improved modularization of the crosscutting concerns relative to
the patterns.

To the best of our knowledge, Hannemann and Kiczales [15] have developed the
only systematic study that explicitly investigated the use of aspect-oriented
programming (AOP) to implement classical design patterns. They performed a
preliminary study in which they developed and compared Java [20] and AspectJ [2]
implementations of the GoF patterns. Their findings have shown that AspectJ
implementations improve the modularity of most patterns. However, these
improvements were based on some attributes that are not well known in software
engineering, such as composability and (un)pluggability. This study has also not
investigated the scalability of both object-oriented and aspect-oriented solutions.
Moreover, this study was based only on a qualitative assessment and empirical data is
missing. To solve this problem, this previous study should be replicated and
supplemented by quantitative case studies in order to improve our knowledge body
about the use of aspects for addressing the crosscutting property of design patterns.

This paper presents quantitative assessments of Java and AspectJ implementations
for the 23 GoF patterns. Our study is based on well-known software engineering
attributes such as separation of concerns, coupling, cohesion and size. We have found
that most aspect-oriented solutions improved the separation of pattern-related
concerns. In addition, we have found that:

(i) The use of AOP helped to improve the coupling and cohesion of some pattern
implementations.

(ii) The “aspectization” of design patterns reduced the number of attributes of 10
patterns, and decreased the number of operations and respective parameters of
12 patterns.

(iii) Only four design patterns implemented in AspectJ have exhibited significant
reuse.

(iv) The relationships between pattern roles and application-specific concerns are
sometimes so intense that it seems not trivial to separate those roles in aspects.

(v) The use of coupling, cohesion and size measures was helpful to assist the
detection of opportunities for aspect-oriented refactoring of design patterns.

We have also analyzed the influence of AspectJ solutions on inheritance coupling.
In addition, we discuss the scalability of both aspect-oriented and object-oriented
solutions, and the determination of a predictive model for the aspectization of design
patterns. As each design pattern usually has different variants and is heterogeneously
instantiated through distinct applications [9], we also present some discussions about
the particularities of the AspectJ implementations of the patterns used in this study.
This information is useful to any software engineer, specially those who wish to
replicate our experiment. Finally, we summarize how the findings of our study confirm
or contradict the claims presented in the Hannemann and Kiczales’ work [15].

The remainder of this paper is organized as follows. Section 2 presents our study
setting, while giving a brief description of Hannemann and Kiczales’ study. Section 3
presents the study results with respect to separation of concerns, and Sect. 4 presents
the study results in terms of coupling, cohesion and size attributes. These results are

38 A. Garcia et al.

interpreted and discussed in Sect. 5, in which a broader analysis is drawn. Section 6
introduces some related work. Section 7 includes some concluding remarks and
directions for future work.

2 Study Setting

This section describes the configuration of our empirical study. As this study is
directly related to Hannemann and Kiczales’ work, the goals and conclusions of that
study are presented in Sect. 2.1. Section 2.2 uses the Mediator pattern to illustrate the
crosscutting property of some design patterns. Section 2.3 introduces the metrics used
in the evaluation process, and Sect. 2.4 describes our assessment procedures.

2.1 Hannemann and Kiczales’ Study

Several design patterns exhibit crosscutting concerns [15]. In this context,
Hannemann and Kiczales (HK) have undertaken a study in which they have
developed and compared Java [20] and AspectJ [2] implementations of the 23 GoF
design patterns [9]. They claim that programming languages affect pattern
implementation. Hence it is natural to explore the effect of aspect-oriented
programming (AOP) techniques on the implementation of the GoF patterns. For each
of the 23 GoF patterns, they developed a representative example that makes use of the
pattern and implemented the example in both Java and AspectJ.

Design patterns assign roles to their participants; for example, the Mediator and
Colleague roles are defined in the Mediator pattern. A number of GoF patterns
involve crosscutting structures in the relationship between roles and classes in each
instance of the pattern [15]. For instance, in the Mediator pattern, some operations
that change a Colleague must trigger updates to the corresponding Mediator; in other
words, the act of updating crosscuts one or more operations in each Colleague in the
pattern.

Two kinds of pattern roles are identified in the HK study, which are called defining
and superimposed roles. A defining role defines a participant class completely. In
other words, classes playing a defining role have no functionality outside the pattern.
The unique role of the Façade pattern is an example of defining role. A superimposed
role can be assigned to participant classes that have functionality outside of the
pattern. An example of superimposed role is the Colleague role of the Mediator
pattern, since a participant class playing this role usually has functionality not related
to the pattern. These kinds of roles are used by the authors to analyze the crosscutting
structure of design patterns.

In the HK study, the goal of the AspectJ implementations is to modularize the
pattern roles. The authors have reported that modularity improvements were reached
in 17 of the 23 cases, and 12 aspect-oriented pattern implementations resulted in
improved reuse. The degree of improvement with AOP has varied according to each
pattern implementation. The next section discusses these improvements and
crosscutting pattern structures in terms of the Mediator pattern.

 Modularizing Design Patterns with Aspects: A Quantitative Study 39

2.2 Example: The Mediator Pattern

The intent of the Mediator pattern is to define an object that encapsulates how a set of
objects interact [9]. The Mediator pattern defines two roles, Mediator and Colleague,
to their participant classes. The Mediator role has the responsibility for controlling
and coordinating the interactions of a group of objects. The Colleague role represents
the objects that need to communicate with each other. Hannemann and Kiczales [15]
present a simple example of the Mediator pattern in the context of a Java Swing
application. In such a system the Mediator pattern is used to manage the
communication between two kinds of graphical user interfaces components. A Label
class plays the Mediator role of the pattern, and a Button class plays the Colleague
role.

Figure 1 depicts the class diagram of the OO implementation of the Mediator
pattern. The interfaces GUIMediator and GUIColleague are defined to realize the
roles of the Mediator pattern. Specific application classes must implement these
interfaces based on the role that they need to play. In the example presented, the
Button class implements the GUIColleague interface. The Label class implements
the interface GUIMediator in order to manage the actions to be executed when
buttons are clicked. Figure 1 also illustrates how the OO implementation of the
Mediator pattern is spread across the code of the application classes. The shadowed
attributes and methods represent code necessary to implement the Colleague role of
the Mediator pattern in the application context.

setMediator (...)

<<interface>>
GUIColleague
setMediator (...)

<<interface>>
GUIColleague

colleagueChange (...)

<<interface>>
GUIMediator

colleagueChange (...)

<<interface>>
GUIMediator

Button

,,,
colleagueChanged(...)

Label

...

JButton
...

JButton
...

JLabel
...

JLabel

...
clicked(...)
setMediator (...)

Legend:
– colleague-specific member
– method with some

colleague-specific code

Fig. 1. The OO design of the mediator pattern

Figure 2 illustrates the source code of the Button class. The necessary elements to
implement the Colleague role are shadowed. The Button class implements the
GUIColleague interface (line 2), defines an attribute to reference a mediator (line 3),
and implements the respective setMediator() method (lines 5–7). Moreover, the
clicked() method of the Button class defines the functionality to communicate
with the mediator (line 20).

In their study, Hannemann and Kiczales identified the generic part of several
design patterns and isolated their implementation by defining “abstract reusable
aspects”. These aspects are reused and extended in order to instantiate the pattern for
a specific application. In the AspectJ solution of the Mediator pattern, for example,

40 A. Garcia et al.

the code for implementing the pattern is textually localized in two categories of
aspects: (i) the MediatorProtocol abstract aspect that encapsulates the common
part to all potential instantiations of the pattern, and (ii) concrete extensions of the
abstract aspect that instantiate the pattern for specific contexts.

01 public class Button extends JButton
02 implements GUIColleague {
03 private GUIMediator mediator;
04
05 public void setMediator(GUIMediator mediator) {
06 this.mediator = mediator;
07 }
08
09 public Button(String name) {
10 super(name);
11 this.setActionCommand(name);
12 this.addActionListener(new ActionListener() {
13 public void actionPerformed(ActionEvent e) {
14 clicked();
15 }
16 });
17 }
18
19 public void clicked() {
20 mediator.colleagueChanged(this);
21 }
22 }

Fig. 2. The Button class of the OO implementation

Figure 3 presents the reusable MediatorProtocol abstract aspect. Code related
to the Colleague role is shadowed. Both roles are realized as protected inner interfaces
named Mediator and Colleague (line 3 and line 7, respectively). Concrete
extensions of the MediatorProtocol aspect assign the roles to particular classes.
Implementation of the mapping from Colleague to Mediator is realized using a weak
hash map that stores for each colleague its respective mediator (line 9). Changes to
the Colleague–Mediator mapping can be realized via the public setMediator()
method (lines 16–18). The MediatorProtocol aspect also defines an abstract
pointcut named change and an abstract method named notifyMediator(). The
former specifies points in the execution (joinpoints) of colleague objects where a
communication with the mediator object needs to be established. The latter defines
the functionality to be executed by a Mediator object when a change to a Colleague
occurs. These abstract elements must be concretized by the MediatorProtocol
subaspects. Finally, the communication protocol between Mediator and Colleague is
implemented by an after advice (lines 22–24) in terms of the change pointcut and the
notifyMediator() method.

As we can see, in the AspectJ implementation of the Mediator pattern, all code
pertaining to the relationship between Mediators and Colleagues is moved into
aspects. In this way, code for implementing the pattern is textually localized in
aspects, instead of being spread across the participant classes. Moreover, the abstract
aspect code can be reused by all pattern instances.

 Modularizing Design Patterns with Aspects: A Quantitative Study 41

01 public abstract aspect MediatorProtocol {
02
03 protected interface Mediator { }
04
05 protected abstract void notifyMediator(Colleague c, Mediator m);
06
07 protected interface Colleague { }
08
09 private WeakHashMap mappingColleagueToMediator = new WeakHashMap();
10
11 private Mediator getMediator(Colleague c) {
12 Mediator mediator = (Mediator) mappingColleagueToMediator.get(c);
13 return mediator;
14 }
15
16 public void setMediator(Colleague c, Mediator m) {
17 mappingColleagueToMediator.put(c, m);
18 }
19
20 protected abstract pointcut change(Colleague c);
21
22 after(Colleague c): change(c) {
23 notifyMediator(c, getMediator(c));
24 }
25 }

Fig. 3. The MediatorProtocol aspect

2.3 The Metrics

In our study, a suite of metrics for separation of concerns, coupling, cohesion and size
[29] was selected to evaluate Hannemann and Kiczales’ pattern implementations.
These metrics have already been used in five different studies [8, 10, 11, 19, 31],
where the measures have been proved to be effective quality indicators. Most of them
have been automated in our own measurement tool [7]. This metrics suite was defined
based on the reuse and refinement of some classical and OO metrics [5, 6]. The
original definitions of the OO metrics [5] were extended to be applied in a paradigm-
independent way, thereby supporting the generation of comparable results. The
metrics suite also encompasses new metrics for measuring separation of concerns [10,
29]. Table 1 presents a brief definition of each metric and associates them with the
attributes measured by each one.

The separation of concerns metrics measure the degree to which a single concern in
the system maps to the design components (classes and aspects), operations (methods
and advices), and lines of code. The more directly a concern maps to the design and
code elements, the fewer elements are affected by the concern, and the better
modularized the system is. The suite is composed of three metrics for separation of
concerns: (i) concern diffusion over components (CDC), (ii) concern diffusion over
operations (CDO), and (iii) concern diffusion over lines of code (CDLOC).

In order to better understand these metrics, consider the OO example of the
Mediator pattern, shown in Fig. 1 (Sect. 2.2). In that example, there is code relative to
the Colleague role in the GUIColleague interface and in the shadowed methods
of the Button class. In other words, the Colleague concern is implemented by
one interface and one class. Therefore, the value of the CDC metric for this

42 A. Garcia et al.

concern is two. Similarly, the value of the CDO metric for the Colleague role is three,
since this concern is implemented by the one method of the GUIColleague interface
and the two shadowed methods of the Button class. Figure 2 shows the shadowing of
the Button class in detail.

The CDLOC metric allows us to measure the number of transition points for each
concern through the lines of code. A transition point is the place in the code where
there is a “concern switch”. CDLOC is measured by shadowing lines of code in the
application classes related to the specific concern that you are interested in
investigating. After that, it is necessary to count the number of transitions points
through the source code of every shadowed class. In the example presented in Fig. 2,
the Button class was shadowed in order to make it possible to measure the value of
CDLOC for the Colleague concern. The value of CDLOC is four in that case, since
that is the number of transition points through the source code of the Button class.

Table 1. The metrics suite

Attributes Metrics Definitions

Concern diffusion
over components

(CDC)

Counts the number of classes and aspects whose main
purpose is to contribute to the implementation of a
concern and the number of other classes and aspects
that access them

Concern diffusion
over operations

(CDO)

Counts the number of methods and advices whose
main purpose is to contribute to the implementation of
a concern and the number of other methods and
advices that access them

Separation of
concerns

Concern diffusion
over LOC
(CDLOC)

Counts the number of transition points for each
concern through the lines of code. Transition points
are points in the code where there is a “concern
switch”

Coupling between
components (CBC)

Counts the number of other classes and aspects to
which a class or an aspect is coupled

Coupling
Depth inheritance tree

(DIT)
Counts how far down in the inheritance hierarchy a
class or aspect is declared

Cohesion
Lack of cohesion in
operations (LCOO)

Measures the lack of cohesion of a class or an aspect
in terms of the amount of method and advice pairs that
do not access the same instance variable

Lines of code (LOC) Counts the lines of code
Number of attributes

(NOA)
Counts the number of attributes of each class or aspect

Size
Weighted operations

per component
(WOC)

Counts the number of methods and advices of each
class or aspect and the number of its parameters

Our suite also includes two metrics for assessing coupling from different
viewpoints: coupling between components (CBC) and depth of inheritance tree (DIT).
Coupling among system components has long been regarded as a major contributor to
the system complexity. Coupling is an indication of the strength of interconnections
between the components in a system. Highly coupled systems have strong

 Modularizing Design Patterns with Aspects: A Quantitative Study 43

interconnections, with program units largely dependent on each other. Excessive
coupling is not desirable, since it is detrimental to modular design. CBC is defined for
a component (class or aspect) as a tally of the number of other components to which it
is coupled. DIT is concerned with inheritance coupling. DIT is defined as the
maximum length from a node to the root of the tree. It counts how far down the
inheritance hierarchy a class or aspect is declared. DIT is an extension of the
traditional OO metric [5] with the same name that also considers the inheritance
between aspects [10, 29].

The suite of metrics encompasses one metric for cohesion, called lack of cohesion
in operations (LCOO). This metric measures the lack of cohesion of a component by
counting the amount of method/advice pairs that do not access the same instance
variable [10, 29]. A low LCOO value indicates high closeness on the relationships
between internal component operations (i.e., high cohesion), which is a desirable
situation. On the other hand, low-cohesive components suggest an inappropriate
design, because each of them involves the encapsulation of unrelated module entities,
which should not be kept together in the same modular unit[3].

The software size measures the length of a software system’s design and code [6].
Size metrics are concerned with different perspectives of the system size. The metrics
suite encompasses three size metrics: (i) lines of code (LOC), (ii) number of attributes
(NOA), and (iii) weighted operations per component (WOC). In general, the higher
the size, the more complex the system is. LOC counts the lines of code in the system
implementation, while NOA captures the number of attributes in each aspect or class.
WOC measures are obtained by counting the number of parameters of the operation.
The metric treats advice and methods of aspects in the same way that the
corresponding OO metric [5] treats methods of classes.

2.4 Assessment Procedures

Replication of software engineering experiments is one of the main mechanisms to
enable us to improve our understanding of existing techniques. In our study, we have
used the same Java and AspectJ implementations of the HK study so that we could
explicitly correlate our empirical results with the ones from this previous study. The
AspectJ implementations basically followed the strategies described in [15], where
abstract reusable aspects (Sect. 2.2) were defined when possible. It was not
particularly feasible to define a reusable aspect for the patterns Abstract Factory,
Factory Method, Template Method, Builder, and Bridge; aspects were used to isolate
the pattern roles while providing support for multiple inheritance, which is not
supported in Java. The Façade implementations are the same in AspectJ and Java.

As Hannemann and Kiczales have mostly chosen the default version of the
patterns, no major decisions needed to be taken in the Java implementations of the
patterns since the pattern implementations are already explicitly documented in the
GoF book. This procedure was important to guarantee that the Java versions were
good enough to enable fair comparisons with the AspectJ counterparts. The only
major change done in both implementations of the patterns was that abstract classes

44 A. Garcia et al.

defined in the patterns were replaced with interfaces, as often happens in realistic
applications. The idea is to allow the business classes to extend application-specific
abstract classes in addition to the interfaces of the pattern. In few cases, they have
chosen specific variants of the patterns in the Java implementations, but the design
differences with respect to the main version of the pattern are also documented in the
GoF catalogue. In addition, the AspectJ solutions implemented those same variants.
The implementation of nondefault versions of the patterns only happened in two
cases: the Singleton pattern (variant exploring specialization of singletons), and the
Adapter pattern (variant called Object Adapter [9]). Refer to [1, 15] for further details
about the design pattern implementations, and respective decisions and constraints.

In order to compare the two implementations of the patterns, we had to ensure that
both versions of each pattern were implementing the same functionalities. Therefore,
some minor modifications were realized in the original code [1] of the patterns.
Examples of such kinds of changes were: (i) to add or remove a functionality – a
method, a class or an aspect – in the aspect-oriented (or object-oriented)
implementation of the pattern in order to ensure the equivalence between the two
versions. We decided to add or remove a functionality to the implementation by
evaluating its relevance for the pattern implementation. Another kind of change was
(ii) to ensure that both versions were using the same coding styles.

Afterwards, we changed both Java and AspectJ implementations of the 23 GoF
patterns to add new participant classes to play pattern roles. For instance, in the
Mediator pattern implementation, four classes playing the role of Colleague were
added, as the Button class in Fig. 1 (Sect. 2.2); furthermore, four classes playing the
role of Mediator were added, as the Label class in Fig. 1. These changes were
introduced because the HK implementations encompass few classes per role (in most
cases only one). Hence we have decided to add more participant classes in order to
investigate the pattern crosscutting structure and the scalability of both OO and AO
solutions. Table 2 presents the superimposed roles of each studied pattern and the
participant classes introduced to each pattern implementation example. Finally, we
have applied the chosen metrics to the changed code. We analyzed the results after the
changes, comparing with the results gathered from the original code (i.e., before the
changes).

In the measurement process, the data was partially gathered by the CASE tool
Together 6.0 [34]. It supports some metrics: LOC, NOA, WOC (WMPC2 in
Together), CBC (CBO in Together), LCOO (LOCOM1 in Together) and DIT (DOIH
in Together). The data collection of the separation of concerns metrics (CDC, CDO
and CDLOC) was preceded by the shadowing of every class, interface and aspect in
both implementations of the patterns. Their code was shadowed according to the role
of the pattern that they implement. Like the HK study, we treated each pattern role as
a concern, because the roles are the primary sources of crosscutting structures.
Figures 2 and 3 exemplify the shadowing of some classes and aspects in both Java
and AspectJ implementations of the Mediator pattern by considering the Colleague
role of this pattern. After the shadowing, the data of the separation of concerns
metrics (CDC, CDO, and CDLOC) was manually collected.

 Modularizing Design Patterns with Aspects: A Quantitative Study 45

Table 2. The design patterns, their superimposed roles and the respective changes

Design patterns Superimposed roles Introduced changes
Abstract Factory – 4 Factories
Adapter Adaptee 4 Adaptee methods
Bridge – 2 Abstractions and 2 implementors
Builder – 4 Builders
Chain of Responsibility (CoR) Handler 4 Handlers
Command Commanding, Receiver 4 Commands and 2 invokers
Composite Composite, Leaf 2 Composites and 2 leafs
Decorator Component 4 Decorators
Façade – No change
Factory Method – 4 Creators
Flyweight Flyweight 4 Flyweights
Interpreter – 4 Expressions
Iterator Aggregate 2 Iterators and 2 aggregates
Mediator Mediator, Colleague 4 Mediators and 4 colleagues
Memento Originator 2 Mementos and 2 originators
Observer Subject, Observer 4 Observers and 4 subjects
Prototype Prototype 4 Prototypes
Proxy Proxy 4 Proxies and 2 real subjects
Singleton Singleton 4 Singletons and 4 subclasses
State Context 4 States
Strategy Context 4 Strategies and 4 contexts
Template Method AbstractClass, ConcreteClass 4 Concrete classes
Visitor Element 4 Elements and 2 visitors

3 Results: Separation of Concerns

This section and Sect. 4 present the results of the measurement process. The data have
been collected based on the set of defined metrics (Sect. 2.3). The goal is to describe
the results through the application of the metrics before and after the selected changes
(Sect. 2.4). The presentation of the measurement outcomes is broken into two parts.
This section focuses on the analysis of to what extent the aspect-oriented (AO) and
object-oriented (OO) solutions1 provide support for the separation of pattern-related
concerns. Section 4 presents the results with respect to coupling, cohesion and size.
The discussion about the interplay among all the results is concentrated in Sect. 5.
Section 5 also presents other relevant discussions, such as the relationships between
our study’s results and the conclusions obtained in the HK study.

Graphics are used to represent the data gathered in the measurement process. The
resulting graphics present the gathered data before and after the changes applied to
the pattern implementation (Sect. 2.4). The graphic Y-axis presents the absolute
values gathered by the metrics. Each pair of bars is attached to a percentage value,
which represents the difference between the AO and OO results. A positive
percentage means that the AO implementation was superior, while a negative
percentage means that the AO implementation was inferior. These graphics support

1 From herein, we will use the terms “aspect-oriented solutions” and “object-oriented

solutions” to refer to, respectively, the Aspect solutions and Java solutions.

46 A. Garcia et al.

an analysis of how the introduction of new classes and aspects affect both solutions
with respect to the selected metrics. The results shown in the graphics were gathered
according to the pattern point of view; that is, they represent the tally of metric values
associated with all the classes and aspects for each pattern implementation.

For separation of concerns, we have verified the separation of each role of the
patterns on the basis of the three metrics defined for this purpose (Sect. 2.3). For
example, the isolation of the Mediator and Colleague roles was analyzed in the
implementations of the Mediator pattern, while the modularization of the Context
and State roles was investigated in the implementations of the State pattern.
According the data gathered, the investigated patterns can be classified into 3 groups.
Group 1 represents the patterns that the aspect-oriented solution provided better
results (Sect. 3.1). Group 2 represents the patterns in which the OO solutions have
shown as superior (Sect. 3.2). Group 3 involves the patterns in which the use of
aspects did not impact the results (Sect. 3.3).

3.1 Group 1: Increased Separation

The first group encompasses all the patterns that aspect-oriented implementations
exhibited better separation of concerns. This group includes the following list of 14
patterns: Decorator, Adapter, Prototype, Visitor, Proxy, Singleton, Mediator,
Composite, Observer, Command, Iterator, CoR (Chain of Responsibility), Strategy
and Memento. This list is decreasingly ordered by the measures for separation of
concerns, starting from the design pattern that presents the best results for the aspect-
oriented solution, the Decorator pattern.

Figures 4 and 5 depict the overall results for the AO and OO solutions based on the
metrics. The figures only present a representative set of the patterns in this group.
Note that the graphics present the measures before and after the execution of the
changes. Figure 4a presents the CDC results, i.e., to what extent the pattern roles are
isolated through the system components in both solutions. Figure 4b presents the
CDO results, the degree of separation of the pattern roles through the system
operations. Figure 5 illustrates the CDLOC measures – the tally of concern switches
(transition points) through the lines of code.

Most of these graphics show significant differences in favor of the aspect-based
solutions. These solutions require fewer components and operations than OO
solutions to express these concerns. In addition, they require fewer switches between
role concerns, and between role concerns and application concerns. An analysis of
Figs. 4 and 5 show that the best improvements come primarily from isolating the
pattern roles into the aspects. For example, the definition of the Component
role required eight classes, while only two modular units were necessary to
encapsulate this concern before the changes (Fig. 4a). It is equivalent to 67% in favor
of the AO design for the Decorator pattern. In fact, most superimposed roles were
better modularized in the AO solution, such as Mediator (8 against 2), Colleague
(7 against 3), and Handler (9 against 3). The results were similar when analyzing
separation of concerns over operations (Fig. 4b) and lines of code (Fig. 5). In
addition, we can also observe that good results are achieved on the modularization of
some defining roles, such as Decorator.

 Modularizing Design Patterns with Aspects: A Quantitative Study 47

0

2

4

6

8

10

12

Component Decorator Mediator Colleague Handler Memento Originator

N
um

be
r

of
 C

om
po

ne
nt

s
N

u
m

be
r

o
f

C
o

m
p

o
ne

n
ts

AO

OO

AO

OO

Decorator
Pattern

Mediator
Pattern

CoR
Pattern

Memento
Pattern

+67%

+80%

+50%

0%

0%

+57%

+40% -20%

+29%

+25%

-33%

Before After Before After Before After Before After Before After Before After Before After

+67%

0%

+67%

(a) Concern diffusion over components

0

5

10

15

20

Component Decorator Mediator Colleague Handler Memento Originator

N
u

m
b

er
 o

f
O

p
er

at
io

n
s

N
u

m
b

er
o

f
O

p
er

at
io

n
s

AO

OO

AO

OO

Decorator
Pattern

Mediator
Pattern

Memento
Pattern

+75%

+88%

+71%

0%

0%

+67%
-46%

-22%

+6%
+60%

-40%

Before After Before After Before After Before After Before After Before After Before After

+67%
-14%

-29%CoR
Pattern

(b) Concern diffusion over operations

Fig. 4. Separation of concerns over components and operations (Group 1)

After a careful analysis of Figs. 4 and 5, we come to the conclusion that after the

changes most AOP implementations isolated the roles 25% or higher than the OO
implementations. There are some cases where the difference is even more striking —
the superiority of AOP exceeds 70%. In some cases, such as the Colleague role, the
AO solution is even better before the incorporation of new components. This problem
happens in the OO solution because several operation implementations are
intermingled with role-specific code. For example, the code associated with the
control and coordination of the interobject interactions (Mediator pattern – Sect. 2.2)
is amalgamated with the basic functionality of the application classes. It increases the
number of transition points and the number of components and operations that deal
with pattern-specific concerns.

48 A. Garcia et al.

The results also show that the overall performance of the AO solutions gradually
improves as new components are introduced into the system. It means that as more
components are included into an OO system, more role-related code is replicated
through the system components. Thus a gradual improvement takes place in the AO
solutions of the patterns. The series of small introduced changes (Sect. 2.4) affects
negatively the performance of the OO solution and positively the AO solution. The
changes lead to the degradation of the OO modularization of the pattern-related
concerns. This observation provides evidence of the effectiveness of AO abstractions
for segregating crosscutting structures for the patterns in this group.

Among the list of 14 patterns mentioned above, the first six are the patterns that
achieved the best results: Decorator, Adapter, Prototype, Visitor, Proxy and Singleton.
These patterns have several similar characteristics. They presented superior results for
the AO solution both before and after the introduced changes. This means that the AO
implementations of these patterns are superior even in simple pattern instances, i.e.,
circumstances where there are few application classes playing the pattern roles. In
fact, the role-specific concerns are easier to separate in these patterns because the
AspectJ constructs directly simplify the implementation of most of these patterns,
namely Decorator, Adapter, Visitor and Proxy. As a result, the implementation of
these patterns completely disappears [15], requiring fewer classes and operations to
address the isolation of the roles. All these six patterns have another common
characteristic: they either involve no reusable aspect (Decorator and Adapter) or
involve very simple reusable aspects (Prototype, Visitor, Proxy, Singleton).

0

5

10

15

20

25

30

35

Component Decorator Mediator Colleague Handler Memento Originator

N
u

m
b

er
 o

f
Tr

an
si

ti
o

n
P

oi
n

ts
N

u
m

b
er

o
f

T
ra

n
si

ti
o

n
P

o
in

ts AO

OO

AO

OO

Mediator
Pattern

Memento
Pattern

+78%

+25%

+85%

+22%

0%

0%

Before After Before After Before After Before After Before After Before After Before After

+67%
0%

+92%CoR
Pattern

+88% Decorator
Pattern

+50%+50% 0%

+75%

50

Fig. 5. Concern diffusion over LOC (Group 1)

The Decorator pattern is the representative of this kind of patterns in Figs. 4 and 5.
Note that the AO solution for this pattern exhibits meaningful advantages on the
modularization of both roles from all the perspectives: numbers of components
(CDC), operations (CDO) and transition points (CDLOC). One additional observation
is that these numbers remain unaltered as the change scenarios are applied to the AO
implementation. For example, the absolute number of operations and components for
specifying the Component role is the same before and after the scenarios in the AO
design. The changes do not affect the measures. It demonstrates how well the AO

 Modularizing Design Patterns with Aspects: A Quantitative Study 49

abstractions localize these pattern roles. In addition, after the scenarios are applied,
the absolute difference on the measures between AO and OO implementations tends
to be higher in favor of the AO solutions than before the change scenarios.

The following five patterns in Group 1 – Mediator, Composite, Observer,
Command and Iterator – expressed similar results. They manifested improved
separation of concerns only after the introduced changes. In general, the use of
aspects led to inferior or equivalent results before the application of the changes, but
led to substantially superior outcomes after the changes. It happens because the AO
implementations of these patterns involve generic aspects that are richer; they
encapsulate more operations and LOC than the simple reusable aspects defined for the
four patterns mentioned before in this group. In this way, the benefit of improved
locality is observed in the AO solutions of these patterns only when complex
instances of the patterns are used. The more pattern code can be captured in a reusable
aspect, the less has to be duplicated in the participant classes.

The Mediator pattern represents these five patterns in Figs. 4 and 5. Note that after
the changes, the isolation of the Mediator and Colleague roles with aspects was 60%
higher than the OO solution for all the metrics. This is an interesting fact given that in
these cases the values were equivalent in both OO and AO solutions before the
implementation of the changes. The definition of the Colleague role required 12
classes, while only four aspects were able to encapsulate this concern. This result was
similar in the other four patterns, i.e., absolute number of components (CDC) did not
vary after the modifications in the AO solutions. This reflects the suitability of aspects
for the complete separation of the roles associated with the five patterns. When new
classes are introduced, they do not need to implement pattern-related code.

Finally, there were three AO solutions in this group (CoR, Strategy, and Memento)
that, although provided overall improvements in the isolation of the roles, presented
some negative results in terms of a specific measure. Figures 4 and 5 illustrate two
examples: CoR and Memento. The AO implementation of CoR has fewer components
(Fig. 4a) and transition points (Fig. 5) both before and after the changes. However, it
has more operations involved in the implementation of the pattern role (Fig. 4b). The
AO solution of Memento isolates well the Memento role for most the metrics (CDC
and CDO). However, although the implementation of the Originator role with aspects
led to fewer transition points (Fig. 5), the same observation does not happen to
number of operations and components (Fig. 4).

3.2 Group 2: Decreased Separation

The second group includes design patterns in which AO implementations exhibited
decreased separation of concerns. This group includes six patterns, namely Template
Method, Abstract Factory, Factory Method, Bridge, Builder and Flyweight. In fact,
the AspectJ implementations of the first five are mainly meant to explore AOP as an
alternative solution to multiple inheritance, replacing abstract classes with interfaces
and thereby increasing implementation flexibility [15]. Figure 6 depicts the CDC,
CDO and CDLOC measures of separation of concerns for the pattern implementations
in this group.

Although some measures presented similar results for the OO and AO solut-
ions of these patterns, several measures presented differences in favor of OO

50 A. Garcia et al.

implementations. As the pattern roles are already nicely realized in OO, these patterns
could not be given more modularized aspect-oriented implementations. Thus the use
of aspects does not bring apparent gains to these pattern implementations regarding to
separation of concerns. On the contrary, the OO implementations, in general,
provided better results, mainly with respect to the CDC measures (Fig. 6a).

The main reason for this result is that all the patterns in this group, except the
Flyweight, are structurally similar: they have an additional aspect to replace the

0

2

4

6

8

10

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
u

m
be

r
o

f C
om

po
ne

nt
s

Before After

Flyweight
Pattern

-20%

0%

-33%

-33%

N
u

m
b

er
o

f
C

o
m

p
o

n
en

ts

-11%

-20%

Before After Before After Before After

AO

OO

AO

OO

Template Method
Pattern

0%

-33%

 (a) Concern diffusion over components

0

3

6

9

12

15

18

21

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
u

m
be

r
o

f
O

p
er

at
io

ns

Before After

Flyweight
Pattern

-50%

N
u

m
b

er
o

f
O

p
er

at
io

n
s

Before After Before After Before After

AO

OO

AO

OO

Template Method
Pattern 0%

0% 0%

0%
0%

0% -50%

 (b) Concern diffusion over operations

0

4

8

12

16

20

AbstractClass ConcreteClass Flyweight FlyweightFactory

N
u

m
b

er
 o

f
T

ra
n

si
ti

o
n

 P
o

in
ts

Before After

Flyweight
Pattern

-33%

N
u

m
b

er
o

f
T

ra
n

si
ti

o
n

P
o

in
ts

Before After Before After Before After

AO

OO

AO

OO

Template Method
Pattern

0%

0%

0%

-20%

-33%

0%

-33%

 (c) Concern diffusion over LoC

Fig. 6. Separation of concerns (Group 2)

 Modularizing Design Patterns with Aspects: A Quantitative Study 51

abstract class mentioned in the GoF solution by interfaces without losing the ability to
associated (default) implementations to their methods [15]. For example, the
Template Method pattern has an additional aspect that attaches the template method
and its implementation to a component that plays the AbstractClass role, thereby
allowing it to be an interface. Although this kind of aspects makes the patterns more
flexible, it does not improve the separation of the pattern-specific concerns.

The Flyweight pattern is an exception in this group. The OO design provided better
results than the AO design for all the measures. The superiority of the OO solution
reaches 33% for most of the measures. It happens because the AO solution does not
help to separate a crosscutting structure relative to the pattern roles. In fact, the
classes playing the Flyweight role are similar in both implementations. The aspects
have no pointcuts and advices, and the generic FlyweightProtocol aspect could be
implemented as a simpler class. As a result, the additional components and operations
introduced by the AO solution decreases the separation of concerns since the roles
implementation are scattered over more design elements.

3.3 Group 3: No Effect

This group includes three patterns: Façade, Interpreter, and State. Overall, no
significant difference was detected in favor of a specific solution; the results were
mostly similar for the AO and OO implementations of these patterns. The AO and OO
implementations of the Façade pattern are identical. There were some minor
differences, as in the State pattern, but they were irrelevant (less than 5%).
The outcomes of this group were highly different from the ones obtained in Group 1
(Sect. 3.1) because the OO implementations of the patterns do not exhibit significant
crosscutting structures. The role-related code in these patterns affects a very small
number of methods.

4 Results: Coupling, Cohesion and Size

This section presents the coupling, cohesion and size measures. We used graphics to
present the data obtained before and after the systematic changes (Sect. 2.4), similarly
to the previous section. The results represent the tally of metric values associated with
all the classes and aspects for each pattern implementation, except the DIT metric.
The DIT results represent the maximum value of this metric through the whole pattern
implementation. In other words, it represents the higher inheritance depth achieved in
a given AspectJ or Java implementation. The patterns were classified into five groups
according to the similarity in their measures.

4.1 Group 1: Better Results for AO

The first group includes the Composite, Observer, Adapter, Mediator and Visitor
patterns, which presented meaningful improvements with respect to the attributes
coupling, cohesion and size in the AO solution. In some cases, the improvement was
higher than 50%. Figure 7 shows the graphics with results for the Mediator and
Visitor patterns, which represent this group.

52 A. Garcia et al.

In the AO implementation of the Mediator pattern, the major improvements were
achieved in the CBC, LCOO, NOA and WOC measures. The use of aspects led to a
17% reduction of CBC in relation to the OO design. This occurs because the
Colleague classes are unaware of the Mediator class in the AO design (Sect. 2.2),
while in the OO implementation each Colleague holds a reference to the Mediator.
Thus, all the Colleague classes are coupled to the Mediator class. In the same way, the
AO implementation of the Visitor pattern led to a 32% reduction after the changes.
The reason is that the Visitor classes are coupled to all the Element classes in the OO
implementation. These couplings are not necessary in the AO solution.

Note that inheritance was not affected by the use of aspects. The OO solution of

the Mediator pattern used the interface implementation to define the Colleague and
Mediator participants. The AO solution is based on specialization to define a concrete
Mediator protocol (Sect. 2.2). As a result, the DIT was two for both solutions.

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC

Mediator
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

+15%

+17%

0% 0% 0%
0%+80%

+19% -25%

+22%

110

AO
OO

0

10

20

30

40

50

60

70

CBC DIT LCOO NOA WOC

Mediator
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

+15%

+17%

0% 0% 0%
0%+80%

+19% -25%

+22%

110

AO
OO
AO
OO

LOC

Mediator
Pattern

Before After

350

300

250

200

150

100

50

0

0%

-21%

-

LOC

Mediator
Pattern

Before After

350

300

250

200

150

100

50

0

0%

-21%

-

CBC DIT LCOO NOA WOC

Visitor
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO

350

300

250

200

150

100

50

0

0% 0%
0%

0%

0%

-6%

+32%

+25%

+93%

+46%
105 ...

CBC DIT LCOO NOA WOC

Visitor
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore After

AO
OO
AO
OO

350

300

250

200

150

100

50

0

0% 0%
0%

0%

0%

-6%

+32%

+25%

+93%

+46%
105 ... Visitor

Pattern

LOC
Before After

-15%

+23%

Visitor
Pattern

LOC
Before After

-15%

+23%

0

10

20

30

40

50

60

70110

0

10

20

30

40

50

60

70110

Fig. 7. The Mediator and Visitor patterns: coupling, cohesion and size (Group 1)

 Modularizing Design Patterns with Aspects: A Quantitative Study 53

The AO solution was superior to the OO solution in terms of cohesion. The
cohesion in the AO implementation was 80% higher than in the OO implementation
because the Colleague and Mediator classes in the OO solution implement role-
specific methods, which, in turn, are not related to the main functionality of the
classes. An example is the setMediator() method, which is part of the Colleague
role and is responsible for setting the Mediator reference (see Fig. 1). The AO design
localizes these methods in the aspects that implement the roles, increasing the
cohesion of both classes and aspects. Likewise, the OO solution of the Visitor pattern
has a method defined in the Element classes to accept the Visitor objects. This method
is not related to the main functionality of the Element classes and, therefore, does not
access any attribute of these classes. In the AO solution, this method is moved to the
aspect. Consequently, the cohesion of the Element classes in the OO implementation
is inferior to the classes in the AO solution.

The number of attributes and weight of operations in the OO implementation of the
Mediator pattern were, respectively, 19% and 22% higher than in the AO code after
the introduction of new components. In the OO solution, each Colleague class needs
both an attribute to hold the reference to its Mediator and a method to set this
reference. These elements are not required in the Colleague classes of the aspect-
oriented solution, because only the aspect controls the relationship between
Colleagues and Mediators. A similar benefit was reached in the AO implementation
of the other patterns in this group.

The coupling, cohesion and size improvements in the aspect-oriented solutions of
the patterns in this group are directly related to the achieved separation of concerns
for them (Sect. 3.1). The enhanced isolation of the pattern implementations directly
contributed to (i) reduce the number of LOC, operations and attributes; (ii) improve
the module cohesion by disentangling pattern-related concerns; and (iii) achieve
reduced coupling (Fig. 7). For instance, as previously explained in this section, the
coupling, cohesion and size of the Mediator pattern are improved because the pattern
roles are better isolated in aspects and not spread over several classes. A similar result
occurs in the other four patterns. For instance, in the Visitor pattern, the AO
implementation solves the problem of code replication related to the implementation
of the method that accepts the Visitor classes in every Element class. Hence after the
changes the OO implementation had 23% more LOCs, and an inferior coupling in
46% (Fig. 7).

4.2 Group 2: Better Results for AO in Most Measures

This group encompasses the patterns in which AO solutions produced better results in
most of the measures except in one metric. This group includes the Decorator, Proxy,
Singleton and State patterns. The measures gathered from implementations of the
Decorator, Proxy, Singleton were mostly similar. The AO implementation of these
patterns showed improvements related to all metrics except the CBC metric. On the
other hand, the AO solution of the State pattern did not show improvements only in
the number of attributes. Figure 8 presents the results of the Decorator and State
patterns as representative of this group.

54 A. Garcia et al.

The AO implementations of the Decorator, Singleton and Proxy patterns manifest
similar benefits to the patterns of Group 1 (Sect. 4.1). That is, the improvement in the
separation of the pattern-specific code (Sect. 3.1) conducted to improvements in other
attributes, such as, cohesion and size. However, as shown in Fig. 8 for the Decorator
pattern, the CBC measures were inferior in the AO implementation: 50% and 79%
before and after the changes, respectively. This problem occurs in the Decorator
pattern because one of the Decorator aspects has to declare the precedence among all
the Decorator aspects. Therefore, it is coupled to all the other aspects. In the Singleton
pattern, there is an additional aspect per Singleton class. The coupling between the
aspects and the Singleton classes increased the results of the CBC metric.

The measures concerning the State pattern provided peculiar results. Despite
showing no improvements related to the separation of concerns metrics (Sect. 3.3),
the AO implementation of the State pattern was superior in coupling, cohesion and
weight of operations (Fig. 8). On the other hand, the OO implementation provided
better results in two measures: NOA and LOC. The coupling in the OO solution is
higher than in the AO solution because the classes representing the states are highly

LOC

Decorator
Pattern

Before AfterBefore After

400

175

150

125

100

75

50

0

+31%

+22%

+

+56%

+53%

25

WOC LOC

Decorator
Pattern

Before AfterBefore After

400

175

150

125

100

75

50

0

+31%

+22%

+

+56%

+53%

25

WOC

0

3

6

9

12

15

18

21

24

CBC DIT NOA

Decorator
Pattern

BBefore AfterBefore AfterBefore After

AO

OO

-50%

-79%

+50%
+67%

0

3

6

9

12

15

18

21

24

CBC DIT NOA

Decorator
Pattern

BBefore AfterBefore AfterBefore After

AO

OO

AO

OO

-50%

-79%

+50%
+67%

CBC DIT NOA

State
Pattern

Before AfterBefore AfterBefore After

400

175

150

125

100

75

50

0

0%

+41%

0% 0%

-33%

-35%

+25

CBC DIT NOA

State
Pattern

Before AfterBefore AfterBefore After

400

175

150

125

100

75

50

0

0%

+41%

0% 0%

-33%

-35%

+25

0

3

6

9

12

15

18

21

24

0

3

6

9

12

15

18

21

24 State
Pattern

LOC
Before After Before After

+22%

-2%

-9%

...

WOC

+33%
367 ... 374

State
Pattern

LOC
Before After Before After

+22%

-2%

-9%

...

WOC

+33%
367 ... 374

AO
OO
AO
OO

Fig. 8. The Decorator and State patterns: coupling and size (Group 2)

 Modularizing Design Patterns with Aspects: A Quantitative Study 55

coupled to each other. This problem is overcome by the AO solution because the
aspects modularize the state transitions (Fig. 9), minimizing the coupling between the
pattern participants. Figure 9 shows that the coupling in the OO solution is 7 because
each State class needs to have references to the other State classes.

It is important to highlight that the definition of the State pattern [9] does not
specify which pattern participant defines the criteria for state transitions. In this way,
it is possible to isolate the state transitions even in the Java solution by moving them
from the “state” classes to the “context” class (when the criteria are fixed). However,
even though it is possible to isolate the transitions in the “context object”, the
transitions can be, in several cases, more naturally implemented in the state classes
due to a number of conditions/constraints specific to the state classes. The AspectJ
solution supports an improved modularization of the state transitions in this second
case.

With respect to WOC measures, the OO solution produced more complex
operations because all the methods on the State classes have an additional parameter
to receive the Context object in order to implement the state transition. It is not
required in the AO design because a central aspect is responsible for managing the
transitions between states.

From the NOA point of view, the OO design was superior because the AO design
has additional attributes in the aspects to hold references to the State elements. This
difference increases as new State elements are added to the system (Fig. 8). In spite of
the fact that the State classes in the AO implementation have fewer lines of code, the
OO implementation as a whole provided fewer LOCs. This occurs because the aspect,
which manages the state transitions, has a high number of LOCs since: (i) it holds
references to all the State classes, and (ii) it has one additional advice associated with
methods of State classes.

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

<<ConcreteState>>
NormalQueue

<<ConcreteState>>
EmptyQueue

<<ConcreteState>>
FullQueue

<<Context>>
Queue

QueueStateAspect

State Transition
Pointcuts

Dependence due to State Transition
LEGEND:

OO Solution
(coupling = 7)

AO Solution
(coupling = 4)

Fig. 9. Coupling in the state pattern: OO vs. AO

4.3 Group 3: Better Results for OO in Most Measures

This group includes the CoR, Command, Prototype and Strategy patterns. The
measures gathered from the implementations of these patterns were similar in the
sense that, in general, the OO implementations provided better or similar results. The
AO solutions improved the results for only one size metric. The AO implementation

56 A. Garcia et al.

of the CoR, Command and Strategy patterns required fewer attributes than the OO
implementation (NOA metric), while the AO solution of the Prototype pattern
involved fewer operations (WOC metric).

The CoR pattern is the representative element of this group. Figure 10 shows the
results for this pattern. Note that the OO implementation had 75% more attributes
than the AO implementation after the inclusion of new Handler classes. Nevertheless,
the AO implementation showed inferior results concerning lines of code and weight
of operations. Moreover, there was insignificant difference between the two solutions
in terms of the coupling metrics (CBC and DIT).

As shown in Sect. 3.1, these patterns benefit from the AO implementation in terms
of separation of concerns. However, those benefits were not sufficient to improve
most of the other quality attributes. For instance, the OO implementation of the CoR
pattern requires the incorporation of an attribute to hold a reference to its successor in
the Handler class. In the AO implementation, the chain of successors is localized in
an aspect, removing the successor attribute from the Handler classes. As a
consequence, the number of attributes was lower in the AO implementation.
However, the amount of additional operations required in the aspect to handle the
chain of successors negatively affected the LOC and WOC measures. Furthermore,
due to the coupling between the aspect and all the Handler classes, the AO solution
did not provided significant improvements (CBC metric). This phenomenon also
happened in the other patterns of this group. For instance, in the AO implementation
of the Prototype pattern, the methods to clone the Prototype classes were localized in
an aspect and not replicated in all the Prototype classes. However, this design choice
was only sufficient to reduce the weight of operations (WOC metric).

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO

OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

0

5

10

15

20

25

30

35

40

45

50

CBC DIT LCOO NOA WOC

Chain of Responsibility
Pattern

Before AfterBefore AfterBefore AfterBefore AfterBefore AfterBefore After

AO

OO

AO

OO

250

175

150

125

100

75

50

0

-7%

+3%

-92%

0%
+50%

0%

-92%

+75%

-45%

-22%

-9%

25

LOC

...64
65 -37%

200

225

Fig. 10. The Chain of Responsibility pattern: coupling, cohesion and size (Group 3)

4.4 Group 4: Better Results for OO

The fourth group comprises the patterns that the AO implementation provided worse
results related to coupling, cohesion, and size. This group includes the following list

 Modularizing Design Patterns with Aspects: A Quantitative Study 57

of eight patterns: Template Method, Abstract Factory, Bridge, Interpreter, Factory
Method, Builder, Memento and Flyweight. The Template Method and Memento
patterns represent this group in Fig. 11.

The measures of the Template Method, Abstract Factory, Bridge, Interpreter,
Factory Method and Builder patterns exhibited minor differences in favor of the OO
implementation. In fact, we have already mentioned in Sect. 3.2 that these patterns are
already nicely realized in OO, and thus could not be given more modularized AO
implementations. The AO implementation of the Template Method, for instance,
showed higher coupling (33%) and more lines of code (5%) than the OO
implementation. The other measures produced equal results for both solutions (see
Fig. 11). This minor difference is due to the additional aspect which associates
(default) implementation to the methods in the interface that plays the AbstractClass
role.

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC

Template Method
Pattern

Before AfterBefore AfterBefore AfterBefore After

-33% -33% 0% 0%
0% 0%

0%

0%

-

0

5

10

15

20

25

30

35

40

45

50

CBC DIT NOA WOC

Template Method
Pattern

Before AfterBefore AfterBefore AfterBefore After

-33% -33% 0% 0%
0% 0%

0%

0%

-

200

140

120

100

80

60

40

0

20

160

180

LOC

Template
Method
Pattern

Before After B

-
-5%

-2%

200

140

120

100

80

60

40

0

20

160

180

LOC

Template
Method
Pattern

Before After B

-
-5%

-2%

AO
OO
AO
OO

CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

Memento
Pattern

BBefore AfterBefore AfterBefore AfterBefore After

AO

OO

0%

0%-37%

-28%

-50% -50%

-29%

+3%

CBC DIT NOA WOC

200

140

120

100

80

60

40

0

20

160

180

Memento
Pattern

BBefore AfterBefore AfterBefore AfterBefore After

AO

OO

AO

OO

0%

0%-37%

-28%

-50% -50%

-29%

+3%

Memento
Pattern

LOC

Before After

-35%

-28%

Memento
Pattern

LOC

Before After

-35%

-28%

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

35

40

45

50

Fig. 11. The Template Method and Memento patterns: coupling and size (Group 4)

58 A. Garcia et al.

The measures of the Flyweight and Memento patterns showed better results for the
OO implementation. The AO implementation of the Flyweight pattern showed worse
results mainly with respect to coupling. It is because an aspect is coupled to all
Flyweight classes in order to introduce the Flyweight interface in them by means of
the intertype declaration mechanism. The AO implementation of the Memento pattern
showed the worst results when compared with the other AspectJ pattern
implementations in this group. Removing the pattern-related code from the Originator
classes and placing it in an aspect makes the design more complex. This is shown by
the results of the CBC, DIT, WOC and LOC metric (see Fig. 11).

4.5 Group 5: No Effect

This group includes the Iterator and Façade patterns. The measures related to these
patterns exhibited no significant difference in favor of a specific solution. The AO
and OO implementations of the Façade pattern are essentially the same. In the AO
implementation of the Iterator pattern, the method which returns a reverse iterator is
removed from the Aggregate classes. These methods are localized in an aspect.
However, the number of methods was not reduced since it was still necessary one
method per Aggregate class. Therefore, in spite of showing better separation of
concerns (Sect. 3.1), the AO implementation provided insignificant improvements in
terms of coupling, cohesion and size.

5 Discussions

Empirical studies are the most effective way to supply evidence that may improve our
understanding about software engineering phenomena [4, 23]. Although quantitative
studies have some disadvantages [23], they are very useful because they boil a
complex situation down to simple numbers that are easier to grasp and discuss. They
supplement qualitative studies with empirical data. Quantitative studies investigating
the implementation of design patterns as aspects are rare [15]. Most of the claims are
supported by experience reports of practitioners, but there is a lack of quantitative
research providing empirical evidence in favor of the claimed benefits. This section
provides a more general analysis (Sect. 5.1) of the previously observed results in
Sects. 3 and 4, some analysis of specific design patterns (Sect. 5.2), and discussions
about the constraints on the validity of our empirical evaluation as well as lessons
learned (Sect. 5.3).

5.1 General Analysis

This section presents an overall analysis of the results observed on the application of
metrics for separation of concerns, coupling, cohesion and size. The general analysis
also covers discussions on: the scalability of the pattern implementations (Sect. 5.1.2),
the effects of the design pattern aspectization on different coupling dimensions
(Sect. 5.1.4), reusability issues (Sect. 5.1.6), the interplay between these measures and
a predictive model (Sect. 5.1.7), a comparative summary between this study’s
findings and the HK study’s claims (Sect. 5.1.8), and the need for multidimensional
assessments (Sect. 5.1.9).

 Modularizing Design Patterns with Aspects: A Quantitative Study 59

5.1.1 Separable and Inseparable Concerns
Table 3 summarizes the findings on separation of concerns for each design pattern.
This table complements the graphics presented in Sect. 3, which only shows the
results for some representative patterns. The first three columns bring the gathered
data for both AO and OO solutions with respect to all the three measures of separation
of concerns: concern diffusion over components (CDC), concern diffusion over
operations (CDO), and concern diffusion over lines of code (CDLOC). Table 3
focuses on the measures obtained after the changes (Sect. 2.4) introduced to the
pattern implementations.

An additional goal of Table 3 is to provide a different perspective on the results
obtained for separation of concerns. While the graphics in Sect. 3 show the measures
in terms of each pattern role, Table 3 presents the values associated with the whole
design pattern, i.e., the value shown in each cell represents the tally of the measures
for all the roles of a design pattern. For example, consider the Mediator pattern: the
graphic in Fig. 4a shows that, after the changes, the CDC measure for the Mediator
role was 6 in the OO version against 2 of the AO version, and for the Colleague role
was 7 in the OO version against 3 of the AO version. As a result, considering the two
roles of the pattern, the final result indicates that the AO solution was superior – 5
against 13 of the OO solution, as illustrated in Table 3. This different perspective
shows how the Java and AspectJ solutions were effective or not to modularize the
pattern as a whole. It is worth recalling here that a higher value means that the
implementation approach was inferior to modularize the pattern roles.

The last two columns of Table 3 are respectively concerned with the scalability
criterion and with the indication of which implementation was superior. The
scalability issue will be discussed in the next section. With respect to the last column,
we have classified an AspectJ or Java solution as superior when it has achieved better
results for most the measures when compared with the results of the other solution.
The AspectJ solutions that achieved the best results, as discussed in Sect. 3.1, are
marked with the symbol “+”. The AspectJ implementations for these patterns were
superior both before and after the introduced changes.

Table 3 shows that AspectJ implementations of 14 patterns have shown better
results in terms of all the metrics for separation of concerns. In addition, the Java
implementation of six patterns presented superior separation of roles (Sect. 3.2), and
three patterns presented similar results in both implementations (Sect. 3.3). This
observation provides evidence of the superior effectiveness of AO abstractions for
segregating crosscutting structures relative to design patterns. Indeed, most of these
results have confirmed the observations in the HK study in terms of the locality
property.

However, the HK study also claimed that three additional patterns offered locality
improvements in the respective AO implementations: Flyweight, State and Template
Method. Our study’s results somewhat contradict these claims (Table 3). The solution
of patterns in Group 2 (Sect. 3.2), like Template Method, sounds to be natural in the
OO fashion, and it does not seem reasonable or even possible to isolate the pattern
roles into aspects. In fact, the AO solution of the Template Method is not aimed at
improving the separation of the pattern roles, but increasing the pattern flexibility [15]
(Sect. 3.2). The AO implementation of the Flyweight pattern is similar to the OO
implementation with additional aspects that do not assist in the isolation of

60 A. Garcia et al.

crosscutting pattern-specific concerns (Sect. 3.2). The separation of concerns in the
AO version of the State pattern helps to separate state transitions, but the differences
in the measures are not significant (Sect. 3.3).

Table 3. Overall results for separation of concerns

 CDC CDO CDLOC Scalability Superior
Design pattern OO AO OO AO OO AO OO AO solution

Abstract Factory 14 16 35 35 34 34 No No OO
Adapter# 8 7 30 22 32 16 No Yes AO+

Bridge 12 13 24 26 16 16 No No OO
Builder 9 10 29 30 8 8 Yes Yes OO
CoR# 9 3 15 21 50 4 No Yes AO
Command# 17 11 23 16 38 21 No Yes AO
Composite# 18 9 149 28 70 48 No No AO
Decorator# 18 8 31 8 38 6 No Yes AO+

Façade Same implementations for Java and AspectJ
Factory Method 14 16 23 23 18 18 No No OO
Flyweight# 10 13 10 12 20 26 No No OO
Interpreter 13 13 26 26 38 38 No No =
Iterator# 10 6 20 20 18 14 No No AO
Mediator# 13 5 18 6 36 10 No Yes AO
Memento# 11 10 23 24 44 40 No No AO
Observer# 14 9 49 9 92 20 No Yes AO
Prototype# 7 3 7 2 30 8 No Yes AO+

Proxy# 11 11 38 19 8 2 No Yes AO+

Singleton# 6 6 6 1 6 2 Yes Yes AO+

State# 10 10 78 78 30 30 No No =
Strategy# 14 12 20 17 18 16 No No AO
Template Method# 15 16 24 24 20 20 No No OO
Visitor# 20 9 50 23 34 14 No Yes AO+

Success total 6 vs. 12 5 vs. 11 1 vs. 14 2 vs. 11 6 vs. 14
The design pattern contains one or two superimposed roles.
+ AO solutions that achieved the best results. The

An additional interesting observation in our study is that sometimes the pattern

roles are expressed separately as aspects, but it remains nontrivial to specify how
these separate aspects should be composed with the application classes into a simple
manner. A lot of effort is required to compose the participant classes and the aspects
that modularize the pattern roles. For example, the AO design of the Memento pattern
provided better separation of the pattern-related concerns (Sect. 3.1). However,
although the AO solution isolates the pattern roles in the aspects, it resulted in higher
complexity in terms of coupling (CBC), inheritance (DIT) and lines of code (LOC), as
described in Sect. 4.4. The same observation can be made for the Strategy and CoR
patterns (Sect. 4.3). Hence, there are some cases where the separation of the pattern-
related concerns leads to more complex design solutions.

 Modularizing Design Patterns with Aspects: A Quantitative Study 61

The last line of Table 3 also counts how many patterns each solution was superior
with respect to each metric (3 first cells), and in general terms (last cell). These values
show that around 50% of the AO solutions have not shown improvements in terms of
the CDO metric. In these cases, either the OO implementation required fewer
operations to handle the pattern-related concerns than the AO implementation or they
were similar. An analogous situation occurred in the CDC measures. The superiority
of the AO solutions seems to be more compelling in the CDLOC measures: 14 against
1. The frequency of concern switches in the AspectJ implementations was drastically
reduced. It means that there is a tendency on several AspectJ implementations to not
reduce the number of operations implementing a concern. In general, it seems that the
most recurring benefits come from disentangling the pattern-related concerns and
other application concerns.

5.1.2 Scalability
As explained in Sect. 2.4, we changed both original Java and AspectJ
implementations of the 23 patterns to investigate the scalability of those solutions to
more complex instances of the patterns. In the context of this study, scalability is used
to determine whether the introduction of the changes (described in Table 2) in a given
implementation did not require modifying more components in that implementation
than the number of elements introduced. In other words, we considered here a
solution as scalable if the evolution of the implementation did not impact a number of
modules that is higher than the number of modules being introduced.

We have used the CDLOC metric as the main mechanism to assess the scalability
of the OO and AO versions. For example, Fig. 5 shows that the total number of
concern switches for the implementation of the Mediator pattern, considering both
roles before the changes, is 12 in the OO version and 10 in the AO version. After the
changes, the number of switches remains 10 in the AO solution. However, it grows to
36 in the OO version, which is higher than the number of introduced changes (8
changes – i.e., 4 mediators and 4 colleagues). As a result, Table 3 indicates that the
OO solution is not scalable, while the AO solution is considered scalable. In fact, the
evolution of the AspectJ version occurred in a modular manner. All the separation of
concerns measures, not only CDLOC, remained unaltered as the change scenarios
were applied to the implementation, as illustrated in Figs. 4a, 4b and 5. The changes
did not affect the measures. We have drawn a similar conclusion for the AO
implementation of the Decorator pattern in Sect. 3.1; it is also ranked as scalable in
opposite to the corresponding OO version.

Table 3 summarizes the scalability results for all the OO and AO solutions. Some
AO solutions that were classified as superior did not achieve a good scalability. For
the 14 AspectJ solutions that were considered as superior, 11 implementations were
also classified as scalable. Only two Java solutions, Builder and Singleton, were
effectively scalable with respect to the CDLOC measures. Although the AO solutions
of the Composite, Iterator and Memento presented a better separation of the pattern
roles than the respective OO solutions, they are not very scalable since they also
require reasonable efforts to support the separation of the pattern roles. For instance,
Fig. 5 illustrates this scalability problem for the Memento pattern. The CDLOC
measures show that a number of extra changes were also required in the AspectJ
version. A similar problem was detected for the Iterator and Composite. We do not

62 A. Garcia et al.

extensively reproduce all the detailed measurements here. The complete description
of the data gathered is available at [28].

5.1.3 Reducing Coupling and Increasing Cohesion
Table 4 summarizes the conclusions related to coupling and cohesion for each design
pattern. Like Table 3, it complements the graphics presented in Sect. 4, which shows
only partial results. The first two columns respectively describe the results with
respect to intercomponent coupling (CBC) and inheritance-related coupling (DIT) for
both AO and OO solutions. The third column presents the gathered data for the
cohesion metric (LCOO). Table 4 also concentrates on the description of the measures
obtained after the changes.

Table 4. Overall results for coupling and cohesion

 CBC DIT LCOO Superior
Design pattern OO AO OO AO OO AO solution

Abstract Factory 37 44 7 7 1 1 OO
Adapter# 5 5 2 1 – – AO
Bridge 17 18 2 2 0 0 OO
Builder 2 3 2 2 12 6 OO
CoR# 29 28 2 2 1 13 OO
Command# 21 34 7 7 3 4 OO
Composite# 47 23 2 2 463 82 AO
Decorator# 3 14 3 1 0 0 AO
Façade Same implementations for Java and AspectJ
Factory Method 22 24 2 2 3 0 OO
Flyweight# 11 17 2 2 0 1 OO
Interpreter 17 23 5 5 0 0 OO
Iterator# 12 13 2 2 0 0 =
Mediator# 41 34 2 2 5 1 AO
Memento# 13 18 1 2 0 0 OO
Observer# 45 40 2 2 80 30 AO
Prototype# 7 13 2 2 0 0 OO
Proxy# 11 39 2 2 0 0 AO
Singleton# 11 22 2 2 5 0 AO
State# 17 10 2 2 106 93 AO
Strategy# 18 32 2 2 – – OO
Template Method# 2 3 2 2 – – OO
Visitor# 41 28 2 2 27 2 AO
Success total 15 vs. 6 1 vs. 2 3 vs. 8 12 vs. 9

 # The design pattern contains one or two superimposed roles.

It is interesting to observe that the intercomponent coupling was weaker in 15 Java
solutions against 6 AspectJ implementations. The DIT values were similar for both
versions in most the measures. With respect to the cohesion metric, the AspectJ
solutions achieved a better score: eight implementations were more cohesive against

 Modularizing Design Patterns with Aspects: A Quantitative Study 63

only three Java implementations. As indicated in Table 4, it was not possible to
measure the cohesion of a few solutions because either there was no attribute defined
in those implementations or there were modules with a single method. As explained
in Sect. 2.3, our selected cohesion metric captures the closeness between internal
methods by checking accesses to the same attributes. Considering all the coupling and
cohesion measures, only five AspectJ solutions clearly presented weaker coupling and
stronger cohesion, namely Mediator, Observer, State, Visitor, and Composite.

Finally, based on Tables 3 and 4 and on the interplay of the results in Sects. 3
and 4, we can conclude that the use of aspects provided better coupling and
cohesion results for the patterns with high interaction between the roles in their
original definition. In fact, the Mediator, Observer, State, Visitor and Composite
patterns are examples of this kind of pattern. The Mediator pattern, for instance,
exhibits high inter-role interaction: each Colleague collaborates with the Mediator,
which in turn collaborates with all the Colleagues. The use of AOP was useful to
reduce the coupling between the participants in the pattern and to increase their
cohesion, since the aspect code modularizes the collaboration protocol between the
pattern roles. Figure 9 illustrates how the aspect was used to reduce the coupling of
the OO solution of the State pattern. On the other hand, the use of aspects did not
succeed for improving coupling and cohesion in the patterns whose roles are not
highly interactive. This is the case for the Prototype and Strategy patterns and the
patterns in Group 4, presented in Sect. 4.4.

5.1.4 Inheritance Coupling: A Different Perspective
Given the results obtained from the DIT measures, which did not show considerable
differences between AspectJ and Java implementations, we have decided afterwards
to use another classical metric: Number of Children (NOC) [5]. This measure counts
the number of modules that extends a module using inheritance. Table 5 presents the
NOC measures for the OO and AO versions of all the pattern implementations. It also
compares the DIT values with the NOC values.

From the NOC point of view, it is clear that the use of AO abstractions
significantly reduces the use of inheritance as extension mechanism. While AspectJ
solutions tend to present a stronger intercomponent coupling (Sect. 5.1.3) since they
heavily rely on pointcuts and advice to support the specification of extensions and
refinements to the affected modules, the Java implementations tend to present a
stronger inheritance coupling. This observation motivates the need for further
empirical case studies that evaluate the trade-offs of using each of these different
extension mechanisms with respect to distinct quality attributes, such as
understandability, reusability, maintainability, and reliability.

5.1.5 Aspects and Size Attributes
The reduction in the program size in general decreases the likelihood of developers
introducing errors into the system [25]. Table 6 presents the overall results for size-
related measures in terms of each pattern. Section 4 presented the size results associated
with coupling and cohesion. Table 6 brings a new view for our assessment because it
classifies the pattern implementations only in terms of size-related programming efforts.
The columns respectively present the results with respect to number of attributes
(NOA), complexity of operations (WOC) and lines of code LOC).

64 A. Garcia et al.

Table 5. Results for two inheritance-related measures

 DIT NOC Superior
Design pattern OO AO OO AO solution

Abstract Factory 7 7 6 6 =
Adapter# 2 1 1 0 AO
Bridge 2 2 8 8 =
Builder 2 2 6 6 =
CoR# 2 2 7 1 AO
Command# 7 7 6 1 AO
Composite# 2 2 6 1 AO
Decorator# 3 1 8 0 AO
Façade Same implementations for Java and AspectJ
Factory Method 2 2 6 6 =
Flyweight# 2 2 6 7 OO
Interpreter 5 5 9 9 =
Iterator# 2 2 6 3 AO
Mediator# 2 2 10 1 AO
Memento# 1 2 0 3 OO
Observer# 2 2 10 3 AO
Prototype# 2 2 6 1 AO
Proxy# 2 2 9 6 AO
Singleton# 2 2 5 10 OO
State# 2 2 7 7 =
Strategy# 2 2 6 1 AO
Template Method# 2 2 6 6 =
Visitor# 2 2 10 10 =
Success total 1 vs. 2 3 vs. 11 3 vs. 11

 # The design pattern contains one or two superimposed roles.

We have found that the use of aspects has a considerable impact on the size

attributes of the pattern implementations In general, the AO solutions were superior
with the exception of lines of code. For 7 of the patterns, the AO solutions had fewer
LOC than the OO solutions, which were superior in 14 cases. However, for these 14
implementations, the difference was not relevant in several cases. In fact, the
discrepancy was evident (i.e., more than 10%) only in 1 case: the Memento pattern
(Table 6). For ten of the patterns, the AspectJ implementations had fewer attributes
than the Java implementations. Only one OO solution was superior in terms of NOA.
For 12 of the patterns, the AO implementation reduced the number of operations and
respective parameters (WOC metric). The OO implementation provided better results
for seven patterns with respect to the WOC metric.

The last column of Table 6 indicates which solution was superior for each pattern
considering all the three size measures. Similarly to Tables 4 and 5, we have
classified an AspectJ or Java solution as superior when it has achieved better results
for most the measures when compared with the results of the other solution. We have
only considered that an implementation was better than the other when the difference

 Modularizing Design Patterns with Aspects: A Quantitative Study 65

between two values for the same metric was equal or higher than 10%. The last cell of
Table 6 shows the final result: the AO solutions succeeded in ten cases against four
for the OO solutions.

Table 6. Overall results for size measures

 NOA WOC LOC Superior
Design pattern OO AO OO AO OO AO solution

Abstract Factory 9 9 37 41 231 265 OO
Adapter# 3 1 34 32 67 61 AO
Bridge 1 1 40 44 156 161 OO
Builder 7 7 50 51 168 177 =
CoR# 8 2 40 64 213 234 =
Command# 6 4 26 29 198 206 =
Composite# 19 12 169 63 501 283 AO
Decorator# 1 0 34 16 88 69 AO
Façade Same implementations for Java and AspectJ
Factory Method 1 1 17 17 135 146 =
Flyweight# 7 7 30 36 119 132 OO
Interpreter 14 14 99 99 216 219 =
Iterator# 9 9 50 53 164 163 =
Mediator# 21 17 51 40 253 253 AO
Memento# 6 6 32 31 128 179 OO
Observer# 26 21 134 117 363 265 AO
Prototype# 6 6 38 33 142 147 AO
Proxy# 9 3 105 38 248 190 AO
Singleton# 30 26 25 21 238 251 AO
State# 13 20 164 110 367 374 =
Strategy# 5 1 62 58 251 264 AO
Template Method# 0 0 46 46 125 128 =
Visitor# 13 13 105 57 289 222 AO
Success total 1 vs. 10 7 vs. 12 14 vs. 7 4 vs. 10

The design pattern contains one or two superimposed roles.

5.1.6 Reusability Issues
The HK study observed reusability improvements in the AspectJ versions of 12
patterns by enabling a core part of the pattern implementation to be abstracted into
reusable code (Sect. 2.2). In our study, expressive reusability was observed only in
four patterns: Mediator, Observer, Composite and Visitor. These patterns were also
qualified as reusable in the HK study and have several characteristics in common: (i)
defined as reusable abstract aspects, (ii) improved separation of concerns (Sect. 3.1),
(iii) low coupling – CBC – and high cohesion – LCOO (Sect. 4.1), and (vi) decreased
values for the LOC and WOC measures as the changes are applied. Expressive reuse
is evident when the extension or customization of existing components to include new
functionalities requires the implementation of few lines of code, operations, attributes,
classes and the like.

66 A. Garcia et al.

However, note that in our investigation the presence of generic abstract aspects has
not necessarily led to improved reusability in several cases. The Flyweight,
Command, CoR, Memento, Prototype, Singleton and Strategy patterns have abstract
aspects and were ranked as “reusable” patterns in the HK study. In contrast, an
analysis of the results presented in Sects. 3 and 4 leads to contrary conclusions for
these patterns. In general, reusable elements lead to less programming effort by
requiring fewer operations and lines of code to be written. However, the LOC and
WOC measures of the AO implementations of these patterns were higher than in the
respective OO implementations both before and after the changes. In fact, the abstract
aspects associated with these patterns are very simple and do not enable a reasonable
degree of reuse.

5.1.7 Superimposed Roles as a Predictive Model?
Determining when an AO technique is useful in a given context is a challenging task.
The HK study has tried to establish a predictive model for helping the designers to
decide when AspectJ should be used in design pattern implementations. According to
this preceding study, the presence of superimposed roles (Sect. 2.1) seems to be a
determining factor in such a decision-making process. Participant classes have their
own functionalities outside the pattern scope in addition to the incorporation of
pattern-related superimposed behavior. The OO version of the pattern implementation
forces each of these classes to implement at least two concerns: the original
responsibility and the pattern-specific behavior. The HK study claims that the AspectJ
solution allows for the improved modularization of the superimposed roles.

Various flavors of our empirical study can be used to support or refute this claim,
including the separation of concerns measures (Sect. 3), and the coupling, cohesion,
and size measures (Sect. 4). In general, the results presented in Table 3 do not accredit
this predictive model as absolute. In the table, the 17 patterns with superimposed roles
are marked with “#”. Some patterns that encompass superimposed roles achieved
improved modularity in AspectJ implementations, namely Adapter, Decorator, Proxy,
Visitor, Composite, Mediator, Singleton and Observer. Indeed, for seven of them
(except the Composite and Iterator patterns), the AO solution has scaled up well
(Table 3). However, seven of them did not reach convincing modularity
improvements: Templated Method, Command, Flyweight, Memento, Strategy, CoR
and Prototype. Moreover, the AspectJ version of the State pattern has not exhibited
improved separation of concerns, when the aspectization of the Iterator pattern has
presented poor coupling (CBC metric) and more complexity in the operation
definitions (WOC metric). As a result, there is no evidence that the presence of
superimposition should be considered as the sole determining factor to use AO
abstractions to implement design patterns.

Analyzing simultaneously Tables 3 and 4 and according to the discussions in the
previous subsections, it clearly seems that other important factors should be
considered as part of a predictive model. Coupling and cohesion should be also
considered when deciding for the aspectization of the design patterns since the more
successful AspectJ implementations were the ones where there was a higher inter-role
interaction (Sect. 5.1.3). The coordinated analysis of these factors would certainly
result in a more consistent prediction mechanism according to our findings.

 Modularizing Design Patterns with Aspects: A Quantitative Study 67

5.1.8 Comparison with the HK Study
Through the replication of case studies with similar goals, the AOSD community can
build an experience factory of empirical findings. In this context, when performing
systematic case studies it is important to compare the new results with those of
previous studies so that we can effectively build a body of knowledge about the theme
under assessment. This information is also important to researchers and practitioners
who intend to replicate this experiment. This section summarizes the outcomes of our
study that confirms, contradicts or refines the claims in the HK study [15]. We have
focused only on three issues where there was a direct intersection in the findings:

(i) While the HK study has found improved separation of concerns in 17
AspectJ pattern implementations, our study detected only 14 improvements
(Sect. 5.1.1).

(ii) The first study ranked 12 AspectJ solutions as reusable against 4 of this study
(Sect. 5.1.6).

(iii) The findings in this study suggest that the original prediction model, presented
by the HK study, should be refined to also consider coupling and cohesion
(Sect. 5.1.7).

The differences in the two studies are mainly because the HK study has used only
simple pattern instances, which did not allow a clear understanding of the benefits and
drawbacks of the aspect-oriented implementations. In addition, the authors took a
narrow view of reusability, and the definition of the proposed predictive model was
naturally biased by the role-oriented strategy that they have used to “aspectize” the
design patterns.

5.1.9 Need for Multidimensional Analysis
As discussed in Sect. 5.1.7, it seems imperative to analyze other software attributes
when assessing AO solutions. The HK study has centered the comparative analysis
only on separation of concerns, and how the achieved separation helps to improve
directly associated high-level qualities, such as (un)pluggability and composability.
Lopes [24] has also carried out a case study that rests only on separation of concerns
as assessment criteria. However, based on the results of this study (Sects. 3 and 4) and
the discussion above, it seems clear that the analysis of other software dimensions or
attributes, such as coupling and internal complexity of operations, are extremely
important to compare AO and OO designs. In fact, the interaction between the aspects
and the classes is sometimes so intense that the separation of aspects in the source
code seems to be a more complex solution with respect to other software attributes.

5.2 Analysis of Specific Patterns

The measurements in this study were also important to assess the AO implementation
of each design pattern in particular. We have found that some problems in the AO
solutions are not related to the AO paradigm itself, but to some design or
implementation decisions taken in the HK implementations. In this sense, quantitative
assessments are also useful to capture opportunities for refactoring in AO software,
for discarding a specific solution or for just clarifying important limitations of the

68 A. Garcia et al.

solution. This section presents some examples of how the metrics used in this
quantitative study were useful to support either the refactoring (Sects. 5.2.1 and 5.2.2)
or the discarding (Sects. 5.2.3–5.2.6) of some AO solutions of the GoF patterns.

5.2.1 Prototype
The use of the selected metrics for separation of concerns was important to detect
remaining crosscutting concerns relative to the design patterns. For example, the
original AspectJ implementation of the Prototype pattern left the declaration of the
Cloneable interface, which is a pattern-specific responsibility, in the description of
the application-specific classes. This solution was refactored based on the use of an
intertype declaration in order to improve the separation of concerns, overcoming the
crosscutting problem present in the original version of the AspectJ implementation
[15].

5.2.2 Chain of Responsibility and Memento
The coupling measures were also important to detect opportunities for improvements
in the AO implementations. For example, the implementations of some client classes,
such as in the CoR and Memento patterns, have explicit references to the aspects
implementing the pattern roles that increase the system coupling. These references are
used in the client classes to trigger aspect initializations. This kind of coupling is
unnecessary and could be avoided. The aspects associated with these patterns could
incorporate, in addition to the initialization methods in the aspects, the definition of
simple pointcuts to capture the joinpoints where the initializations should be
triggered. This finding was also supported by the metrics for separation of concerns.

5.2.3 Flyweight and Interpreter
The presence of several negative results can also serve as warnings of unhelpful
designs. As mentioned before, the AspectJ implementation of the Flyweight pattern
did not provide evident benefits. All the metrics for separation of concerns (Sect. 3.2)
and almost all the metrics for coupling, cohesion and size (Sect. 4.4) supported this
finding.

In the same way, the metrics did not show advantages for the AO solution of the
Interpreter pattern. In fact, there is no difference between the AO and OO
implementations in terms of the structure of this pattern. This claim is supported by
similar results for all the metrics. There are minor differences in favor of the OO
version in terms of coupling and size. This difference is caused by the use of an aspect
to attach methods to the participant classes by means of the intertype declaration
mechanism. However, this aspect does not change the OO structure of the pattern. It
is only used to add methods in the participant classes without changing them.
Therefore, the AO solution is not useful for removing pattern code from the
participant classes. Actually, in this aspect code there is a comment where
Hannemann and Kiczales claim that, due the very nature of the Interpreter pattern,
using aspect to remove the pattern code from the participants does not work
nicely [15].

 Modularizing Design Patterns with Aspects: A Quantitative Study 69

5.2.4 Strategy
As stated earlier, for some patterns, the AO solution was more complex than the OO
solution in terms of coupling and size. This problem occurred for the Strategy pattern
and was detected with the help of the coupling between components (CBC) and lines
of code (LOC) metrics. The results of these metrics showed high values for the
concrete aspect used to assign the roles to the Strategy and Context classes and trigger
the execution of the strategy algorithm. In order to choose what is the strategy to be
executed for a given Context class, this aspect uses a sequence of “if” statements and
references to all Strategy classes. This design is less flexible than the OO design since
this aspect has to be changed whenever a new Strategy class is created.

5.2.5 Command
The problem of the aspect-oriented solution of the Command pattern is similar to the
problem described for the Strategy pattern (Sect. 5.2.4). The aspects, which
modularize pattern roles, are highly coupled to the other elements in the design. In the
case of the Command pattern, a concrete aspect is coupled to all Invoker, Receiver
and Command classes. As a consequence, adding new participants to an instance of
the AspectJ version of this pattern requires more effort than to an instance of the Java
version. This occurs because the aspect needs to be inevitably changed.

Another deficiency of the AO version of this pattern concerns to the use of
parameters on the execute() method of the Command classes. In the AspectJ
implementation, the Invoker classes are not aware of the command execution as they
are in the OO implementation. Instead, the execution of the commands is triggered by
the aspects. This design decision does not allow the Invokers to pass information of
their context to the commands as parameters of the execute() method. Thus, if the
Command classes need information from the context of the Invokers, this AO solution
of the Command pattern should not be used.

5.2.6 Decorator
The AO implementation of the Decorator pattern showed better results for most
metrics. However the inferior results obtained for the coupling between components
(CBC) metric highlight an important limitation of this design. One of the Decorator
aspects is coupled to all other aspects, since it determines the order in which the
decorators are applied to the component by means of the declare precedence
construct. Therefore, this aspect has to be changed whenever a new decorator is
created. Besides, this design is very rigid in the sense that the decorators must be
applied in the same order for every component. Hence, if it is necessary to apply
decorators in different orders, this AO solution should be discarded.

5.3 Study Constraints and Lessons Learned

Concerning our experimental assessment, there is one general type of criticism that
could be applied to the used software metrics (Sect. 2.3). This refers to theoretical
arguments leveled at the use of conventional size metrics (e.g., LOC), as they are
applied to traditional (non-AO software) development. Despite, or possibly even
because of, simplicity of these metrics, it has been subjected to severe criticism [37].
In fact, these measures are sometimes difficult to evaluate with respect to a software

70 A. Garcia et al.

quality attribute. For example, the LOC measures are difficult to interpret since
sometimes a high LOC value means improved modularization, but sometimes it
means code replication.

However, in spite of the well-known limitations of these metrics, we have learned
that their application cannot be analyzed in isolation, and they have shown themselves
to be extremely useful when analyzed in conjunction with the other used metrics. In
addition, some researchers (such as Henderson-Sellers [16]) have criticized the
cohesion metric as being without solid theoretical bases and lacking empirical
validation. However, we understand this issue as a general research problem in terms
of cohesion metrics. In the future, we intend to use other emerging cohesion metrics
based on program dynamics.

We have also learned some lessons when using the separation of concerns metrics.
We have observed that these three metrics complement each other. CDC and CDO
respectively measure the number of components and operations that implement a
concern. However, a concern may be spread through many classes, but may not be
tangled with other concerns, since these components and operations may only
implement a single concern. The isolate use of CDC and CDO are not enough to
capture the noncrosscutting nature of such a concern; even worse, they will likely
provide false warnings to the AO designers. In this way, CDLOC metric complements
CDC and CDO metrics by measuring if the concern is tangled with other concerns.
Therefore, these metrics are complementary since we need to measure both degrees of
scattering and tangling in order to verify whether a concern is well modularized. In
addition, CDC and CDO also complement each other because a concern may be
scattered over few components but may affect many operations in those components.
This situation was observed in the AO solution for the Chain of Responsibility
pattern, where Handler role was implemented by few aspects but scattered over many
operations, indeed, more operations than the OO solution.

The limited size and complexity of the examples used in the implementations may
restrict the extrapolation of our results. In addition, our assessment is restricted to the
specific pattern instances at hand. However, while the results may not be directly
generalized to the context of real-world systems and professional developers, these
representative examples allow us to make useful initial assessments of whether the
use of aspects for the modularization of classical design patterns would be worth
studying further. In spite of its limitations, the study constitutes an important initial
empirical work and is complementary to qualitative work (e.g., [15]) previously
performed. In addition, although the replication is often desirable in experimental
studies, it is not a major problem in the context of our study due to the nature of our
investigation. Design patterns are generic solutions and, as a consequence, exhibit
similar structures across the different kinds of applications where they are used.

Finally, we have also learned that some problems may be directly related to the
programming language used in this study. There is a pressing need to perform similar
studies applying other AO programming languages, such as Hyper/J [18] and Caesar
[26]. Each of these languages has different features that certainly impact on the
pattern implementations with respect to the quality software attributes investigated in
this quantitative study. In fact, other quantitative studies on the aspectization of
design patterns are needed; for example, it would be important to investigate whether
and how the AO solutions scale in real large-scale systems. In this sense, it would be

 Modularizing Design Patterns with Aspects: A Quantitative Study 71

possible to quantify the effects of modularizing pattern-related crosscutting concerns
with aspects in systems where the pattern implementations are not simple pattern
instances and are inserted in richer application contexts. In addition, it would be
important to explore and assess the use of aspects when combining the use of two or
more design patterns, as was done in [21] where an OO version of the Builder pattern
and an AO version of the Decorator pattern were composed.

6 Related Work

There is little related work focusing either on the quantitative assessment of AO
solutions in general, or on the empirical investigation of using aspects to modularize
crosscutting concerns of classical design patterns. Up to now, most empirical studies
involving aspects rest on subjective criteria and qualitative investigation. In a
previous work [30], we have quantitatively analyzed only six patterns. The present
paper presents a complete study involving all the 23 design patterns. There are some
other works [13, 14, 17, 27] that investigate the interplay between aspects and design
patterns. However, they focus on specific patterns and do not provide systematic
quantitative assessments.

One of the first case studies was conducted by Kersten and Murphy [21]. They
built a Web-based learning system using AspectJ. In this study, they discussed the
effect of aspects on their OO practices and described some rules they employed to
achieve their goals of modifiability and maintainability using aspects. Since several
design patterns were used in the design of the system, they considered which of them
should be expressed as classes and which should be expressed as aspects. They found
that Builder, Composite, Façade and Strategy patterns [9] were more easily expressed
as classes, once these patterns had little or no crosscutting behaviors. We have found
here similar results for the Strategy, Builder and Façade patterns (Sects. 3 and 4).
However, the AO implementation of the Composite pattern achieved better separation
of concerns in our study.

Soares et al. [32] reported their experience using AspectJ to implement distribution
and persistence aspects in a Web-based information system. They implemented the
system in Java using specific design patterns and restructured it with AspectJ. They
argued that the AspectJ implementation of the system bring significant advantages
with the corresponding pure Java implementation.

Garcia et al. [11] have presented a quantitative study designed to compare the
maintenance and reuse support of a pattern-oriented approach and an AO approach
for a multiagent system. The subjects in the study used both approaches to try to
modularize agent-related concerns, including autonomy, interaction, mobility,
learning, adaptation and collaboration. They used an assessment framework that
includes the same metrics suite used in our study. The results showed that the AO
approach allowed the construction of the investigated system with improved
modularization of the crosscutting agent-specific concerns. The use of aspects
resulted in superior separation of the agent-related concerns, lower coupling (although
less cohesive) and fewer lines of code. However, their study was also not focused on
the use of aspects to isolate the crosscutting concerns relative to classical design
patterns.

72 A. Garcia et al.

Zhao and Xu [35, 36] have proposed new cohesion measures that consider the
peculiarities of the AO abstractions and mechanisms. Their metrics are based on a
dependence model for AO software that consists of a group of dependence graphs;
each of them can be used to explicitly represent various dependence relations at
different levels of an AO program. Also, the cohesion measures [36] proposed by the
authors are formally defined. The authors have shown that their measures satisfy
some properties that good measures should have. However, these metrics have not yet
been validated or applied to the assessment of realistic AO systems.

7 Conclusion

This paper presented a quantitative study comparing the AO and OO implementations
of the GoF patterns. The results have shown that most AO implementations provided
improved separation of concerns. However, some patterns resulted in higher coupled
components, more complex operations and more LOCs in the AO solutions. Another
important conclusion of this study is that separation of concerns cannot be taken as
the only factor to conclude for the use of aspects. It must be analyzed in conjunction
with other important factors, including coupling, cohesion and size. Sometimes, the
separation achieved with aspects can generate more complicated designs. Hence,
based on our analysis, many AO implementations present implementation alternatives
with different tradeoffs from their OO equivalents. Also, since this is a first
exploratory study, to further confirm the findings, other rigorous and controlled
experiments are needed.

It is important to notice that from this experience, especially in a nonrigorous
area such as software engineering, general conclusions cannot be drawn. The scope
of our experience is indeed limited to (a) the patterns selected for this comparative
study, (b) the specific implementations from the GoF book [9] and the HK study
[15], (c) the Java and AspectJ programming languages, and (d) a given subset of
application scenarios that were taken from our development background. However,
the goal was to provide some evidence for a more general discussion of what
benefits and dangers the use of AO abstractions might create, as well as what and
when features of the AO paradigm might be useful for the modularization of
classical design patterns. Finally, it should also be noted that properties such as
reliability must be also examined before one could establish preference
recommendations of one approach relative to the other.

Acknowledgments. We would like to thank Jan Hannemann and Gregor Kiczales for
making the pattern implementations available, and Brian Henderson-Sellers and
Barbara Kitchenham for the discussions on the selection of the software metrics. This
work has been partially supported by CNPq-Brazil under grant No. 381724/04-2 for
Alessandro, grant No. 140214/04-6 for Cláudio and under grant No. 140252/03-7 for
Uirá. The authors are also supported by the ESSMA Project under grant 552068/02-0.

 Modularizing Design Patterns with Aspects: A Quantitative Study 73

References

[1] Aspect-Oriented Design Pattern Implementations. http://www.cs.ubc.ca/~jan/AODPs/.
Cited May 2005

[2] AspectJ Team. The AspectJ Guide. http://eclipse.org/aspectj/
[3] Basili V., Briand, L., Melo W. A validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering, 22(10):751–761, 1996
[4] Basili V., Selby R., Hutchins D. Experimentation in software engineering. IEEE

Transactions on Software Engineering, SE-12, 733–743, 1986
[5] Chidamber S., Kemerer C. A metrics suite for OO design. IEEE Transactions on

Software Engineering, 20(6):476–493, 1994
[6] Fenton N., Pfleeger S. Software metrics: A rigorous practical approach. PWS, London

1997
[7] Figueiredo E., Garcia A., Sant’Anna C., Kulesza U., and Lucena C. Assessing aspect-

oriented artifacts: Towards a tool-supported quantitative method. In: QAOOSE.05:
Proceedings of the 9th ECOOP Workshop on Quantitative Approaches in OO Software
Engineering, Glasgow, 2005

[8] Filho F., Rubira C., and Garcia A. A quantitative study on the aspectization of exception
handling. In: Proceedings of the ECOOP Workshop on Exception Handling in Object-
Oriented Systems, 2005

[9] Gamma E. et al. Design patterns: Elements of reusable object-oriented software.
Addison-Wesley, Reading, 1995

[10] Garcia A. From objects to agents: An aspect-oriented approach. Doctoral Thesis, PUC-
Rio, Rio de Janeiro, Brazil, 2004

[11] Garcia A. et al. Separation of concerns in multi-agent systems: An empirical study. In:
Software Engineering for Multi-Agent Systems II, LNCS vol. 2940, Springer, 2004

[12] Garcia A., Silva V., Chavez C., Lucena C. Engineering multi-agent systems with aspects
and patterns. Journal of the Brazilian Computer Society, 8(1):57–72, 2002

[13] Hachani Q., and Bardou D. On Aspect-oriented technology and object-oriented design
patterns. In: ECOOP: Workshop on Analysis of Aspect-Oriented Software, Springer,
Germany, 2003

[14] Hachani Q., and Bardou D. Using aspect-oriented programming for design patterns
implementation. In: OOIS: Workshop on Reuse in Object-Oriented Information Systems
Design, 2002

[15] Hannemann J., and Kiczales G. Design pattern implementation in java and AspectJ. In:
OOPSLA’02: Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages and Applications, pp. 161–173, 2002

[16] Henderson-Sellers B. Object-oriented metrics: Measures of complexity. Prentice Hall,
New Jersey, USA, 1996

[17] Hirschfeld R et al. Design patterns and aspects - Modular designs with seamless run-time
integration. 3rd German GI Workshop on Aspect-Oriented Software Development,
German Informatics Association, University of Essen, Germany, 2003

[18] Hyper/J Web page. http://www.research.ibm.com/ hyperspace/HyperJ/HyperJ.htm, 2001
[19] Godil I., Jacobsen H. Horizontal decomposition of prevayler. In: Proceedings of

CASCON 2005, Richmond Hill, Canada, 2005
[20] Java Reference Documentation. http://java.sun.com/reference/docs/index.html
[21] Kersten M., and Murphy G. Atlas: A case study in building a web-based learning

environment using aspect-oriented programming. In: OOPSLA’99: Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Applications, 1999

74 A. Garcia et al.

[22] Kiczales G. et al. Aspect-oriented programming. In: ECOOP’97: Proceedings of the
European Conference on Object-Oriented Programming, LNCS vol. 1241, Springer,
pp. 220–242, 1997

[23] Kitchenham B. Evaluating software engineering methods and tools, part 1: The
evaluation context and evaluation methods. ACM SIGSOFT Software Engineering Notes,
21(1):11–15, 1996

[24] Lopes C. D: A language framework for distributed programming. PhD Thesis,
Northeastern University, Boston, USA, 1997

[25] Malaiya Y., and Denton J. Module size distribution and defect density. In: ISSRE'00:
Proceedings of the 11th International Symposium on Software Reliability Engineering,
2000

[26] Mezini M., and Ostermann K. Conquering aspects with caesar. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development, Boston, USA, 2003

[27] Miles R. AspectJ cookbook. O’Reilly, UK, 2004
[28] Modularizing Patterns with Aspects: A Quantitative Study. http://www.teccomm.les.inf.

puc-rio.br/alessandro/GoFpatterns/empiricalresults.htm
[29] Sant’Anna C. et al. On the reuse and maintenance of aspect-oriented software: An

assessment framework. In: SBES’03: Proceedings of the Brazilian Symposium on
Software Engineering, Manaus, Brazil, pp. 19–34, 2003

[30] Sant’Anna C. et al. Design patterns as aspects: A quantitative assessment. Journal of the
Brazilian Computer Society (SBES’04 Best Paper Award), 10(2), Porto Alegre, Brazil,
2004

[31] Soares S. An aspect-oriented implementation method. Doctoral Thesis, Federal
University of Pernambuco, Recife, Brazil, 2004

[32] Soares S., Laureano E., and Borba P. Implementing distribution and persistence aspects
with AspectJ. In: OOPSLA’02: Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp. 174–190, 2002

[33] Tarr P. et al. N degrees of separation: Multi-dimensional separation of concerns.
In: ICSE’99: Proceedings of the International Conference on Software Engineering,
pp. 107–119, 1999

[34] Together Technologies. http://www.borland.com/together/
[35] Zhao J. Towards a metrics suite for aspect-oriented software. Technical-Report

SE-136-25, Information Processing Society of Japan (IPSJ), 2002
[36] Zhao J., and Xu B. Measuring aspect cohesion. In: FASE'04: Proceedings Conference on

Fundamental Approaches to Software Engineering, LNCS vol. 2984, Springer, pp. 54–68,
2004

[37] Zuse H. History of software measurement. http://irb.cs.tu-berlin.de/~zuse/metrics/
History_00.html

	Introduction
	Study Setting
	Hannemann and Kiczales’ Study
	Example: The Mediator Pattern
	The Metrics
	Assessment Procedures

	Results: Separation of Concerns
	Group 1: Increased Separation
	Group 2: Decreased Separation
	Group 3: No Effect

	Results: Coupling, Cohesion and Size
	Group 1: Better Results for AO
	Group 2: Better Results for AO in Most Measures
	Group 3: Better Results for OO in Most Measures
	Group 4: Better Results for OO
	Group 5: No Effect

	Discussions
	General Analysis
	Analysis of Specific Patterns
	Study Constraints and Lessons Learned

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

