
Memory Management

material by Matthew Flatt 

1



Part 1

2



Reference Counting

Reference counting: a way to know whether an
object has other users

3



Reference Counting

Reference counting: a way to know whether an
object has other users

• Attach a count to every object, starting at 0

4



Reference Counting

Reference counting: a way to know whether an
object has other users

• Attach a count to every object, starting at 0

• When installing a pointer to an object (into a register
or another object), increment its count

• When replacing a pointer to an object, decrement its
count

5



Reference Counting

Reference counting: a way to know whether an
object has other users

• Attach a count to every object, starting at 0

• When installing a pointer to an object (into a register
or another object), increment its count

• When replacing a pointer to an object, decrement its
count

• When a count is decremented to 0, decrement counts
for other objects referenced by the object, then free

6



Reference Counting

1
1

1

1

2

1
1

Top boxes are the roots, i.e.
registers and the stack

Boxes in the blue area (heap) are
allocated with malloc

7



Reference Counting

1
1

0

1

3

1
1

Adjust counts when a pointer is
changed...

8



Reference Counting

1
1

1

2

1
1

... freeing an object if its count
goes to 0

9



Reference Counting

1
1

0

2

1
1

Same if the pointer is in a register
or on the stack

1�



Reference Counting

1
1

2

0
1

Adjust counts after frees, too...

11



Reference Counting

1
1

2

1

... which can trigger more frees

12



Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a
cycle...

13



Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments a
count

14



Reference Counting And Cycles

1
1

1

2

1
1

Lower-left objects are
inaccessible, but not deallocated

In general, cycles break reference
counting

15



Part 2

16



Garbage Collection

Garbage collection: a way to know whether an
object is accessible

17



Garbage Collection

Garbage collection: a way to know whether an
object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because
there is no way to get to other objects

18



Garbage Collection

Garbage collection: a way to know whether an
object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because
there is no way to get to other objects

• A garbage collector frees all objects that are not live

• Allocate until we run out of memory, then run a
garbage collector to get more space

19



Garbage Collection Algorithm

• Color all objects white

• Color objects referenced by registers gray

• Repeat until there are no gray objects:

Pick a gray object, r

For each white object that r points to, make it gray

Color r black

• Deallocate all white objects

2�



Garbage Collection

All objects are marked white

21



Garbage Collection

Mark objects referenced by
registers as gray

22



Garbage Collection

Need to pick a gray object

Red arrow indicates the chosen
object

23



Garbage Collection

Mark white objects referenced by
chosen object as gray

24



Garbage Collection

Mark chosen object black

25



Garbage Collection

Start again: pick a gray object

26



Garbage Collection

No referenced objects; mark
black

27



Garbage Collection

Start again: pick a gray object

28



Garbage Collection

Mark white objects referenced by
chosen object as gray

29



Garbage Collection

Mark chosen object black

3�



Garbage Collection

Start again: pick a gray object

31



Garbage Collection

No referenced white objects;
mark black

32



Garbage Collection

No more gray objects; deallocate
white objects

Cycles do not break garbage
collection

33



Part 3

34



Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to
to-space

• Choosing a gray object ⇒ walk once though the new
to-space, update pointers

35



Two-Space Collection

Left = from-space
Right = to-space

36



Two-Space Collection

Mark gray = copy and leave
forward address

37



Two-Space Collection

Choose gray by walking through
to-space

38



Two-Space Collection

Mark referenced as gray

39



Two-Space Collection

Mark black = move gray-choosing
arrow

4�



Two-Space Collection

Nothing to color gray; increment
the arrow

41



Two-Space Collection

Color referenced object gray

42



Two-Space Collection

Increment the gray-choosing
arrow

43



Two-Space Collection

Referenced is already copied, use
forwarding address

44



Two-Space Collection

Choosing arrow reaches the end
of to-space: done

45



Two-Space Collection

Right = from-space
Left = to-space

46


