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Reference Counting

Reference counting: a way to know whether an
object has other users

3



Reference Counting

Reference counting: a way to know whether an
object has other users

• Attach a count to every object, starting at 0

4



Reference Counting

Reference counting: a way to know whether an
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Reference Counting

Reference counting: a way to know whether an
object has other users

• Attach a count to every object, starting at 0

• When installing a pointer to an object (into a register
or another object), increment its count

• When replacing a pointer to an object, decrement its
count

• When a count is decremented to 0, decrement counts
for other objects referenced by the object, then free
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Reference Counting
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Top boxes are the roots, i.e.
registers and the stack

Boxes in the blue area (heap) are
allocated with malloc

7



Reference Counting
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Adjust counts when a pointer is
changed...
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Reference Counting
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... freeing an object if its count
goes to 0
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Reference Counting
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Same if the pointer is in a register
or on the stack
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Reference Counting
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Adjust counts after frees, too...
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Reference Counting
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... which can trigger more frees
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Reference Counting And Cycles
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An assignment can create a
cycle...
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Reference Counting And Cycles
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Adding a reference increments a
count
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Reference Counting And Cycles
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Lower-left objects are
inaccessible, but not deallocated

In general, cycles break reference
counting
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Garbage Collection

Garbage collection: a way to know whether an
object is accessible
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Garbage Collection

Garbage collection: a way to know whether an
object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because
there is no way to get to other objects
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Garbage Collection

Garbage collection: a way to know whether an
object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because
there is no way to get to other objects

• A garbage collector frees all objects that are not live

• Allocate until we run out of memory, then run a
garbage collector to get more space
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Garbage Collection Algorithm

• Color all objects white

• Color objects referenced by registers gray

• Repeat until there are no gray objects:

Pick a gray object, r

For each white object that r points to, make it gray

Color r black

• Deallocate all white objects
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Garbage Collection

All objects are marked white
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Garbage Collection

Mark objects referenced by
registers as gray
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Garbage Collection

Need to pick a gray object

Red arrow indicates the chosen
object
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Garbage Collection

Mark white objects referenced by
chosen object as gray
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Garbage Collection

Mark chosen object black
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Garbage Collection

Start again: pick a gray object
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Garbage Collection

No referenced objects; mark
black
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Garbage Collection

Start again: pick a gray object
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Garbage Collection

Mark white objects referenced by
chosen object as gray
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Garbage Collection

Mark chosen object black
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Garbage Collection

Start again: pick a gray object
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Garbage Collection

No referenced white objects;
mark black
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Garbage Collection

No more gray objects; deallocate
white objects

Cycles do not break garbage
collection
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Part 3
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Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to
to-space

• Choosing a gray object ⇒ walk once though the new
to-space, update pointers
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Two-Space Collection

Left = from-space
Right = to-space
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Two-Space Collection

Mark gray = copy and leave
forward address
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Two-Space Collection

Choose gray by walking through
to-space
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Two-Space Collection

Mark referenced as gray
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Two-Space Collection

Mark black = move gray-choosing
arrow
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Two-Space Collection

Nothing to color gray; increment
the arrow
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Two-Space Collection

Color referenced object gray
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Two-Space Collection

Increment the gray-choosing
arrow
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Two-Space Collection

Referenced is already copied, use
forwarding address
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Two-Space Collection

Choosing arrow reaches the end
of to-space: done
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Two-Space Collection

Right = from-space
Left = to-space
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