
A core SPARQL fragment

Daniel Hernandez

About this document. This is an extract of a thesis I submitted to the University of Chile, in pursuance

of a PhD in December 2019. This document summarizes the core algebraic fragment of SPARQL I study

throughout the thesis. I made this document available to facilitate the reuse of this fragment in other works.

The Resource Description Framework (RDF) [17, 11, 12] was promoted by the W3C as the main data model

to share data on the Web. The initial idea was to publish RDF documents similarly as previously was done

with HTML. RDF documents are essentially a set of claims about resources. Resources are named with

Web identifiers (URLs). Data about resources can be retrieved with the Web protocol (HTTP) by sending

a request on the resource identifier. With this design, the Web infrastructure for documents serves also to

build the Web of Data.

After the standardization of the RDF data model, several query languages were proposed [3] for the RDF

data model, including RQL [5], SquishQL [15], NautiLOD [8], and SPARQL [20, 10], among others. SPARQL

became a W3C Recommendation in 2008, and it is still considered the standard language for querying RDF

data.

This chapter reviews the RDF data model (Section 1) and the SPARQL query language (Section 2). To

simplify the study of SPARQL, we use the algebraic formalization by Perez et al. [18]. Their formalization

has some differences with the standard SPARQL algebra, but as Angles and Gutierrez [1], and Kaminski et

al. [14] showed, the differences do not imply a different expressive power.

1 The RDF data model

RDF is based on a special type of labeled digraph called RDF graph. The structure of RDF graphs is stated

by the following definition.

Definition 1 (RDF Syntax). We assume three disjoints sets I, B and L of identifiers, blank nodes and literals,
respectively. An RDF graph G is a set of triples (s , p , o) in the universe (I ∪ B) × I × (I ∪ B ∪ L) where s is called the
subject, p is called the predicate, and o is called the object.

Notation. We denote identifiers as words with one or more letters (e.g., a, b, c, name, email, and knows). We

denote literals with quotation marks (e.g., “Alice” and “Bob”), except for literals codifying numbers where

we omit the quotation marks (e.g., 1, 2, and 3). We denote blank nodes using the symbol ⊥ with a numeric

subscript when there is more than one blank node (e.g., ⊥1, ⊥2, and ⊥3).

Example 1. The following figure depicts an RDF graph:

1

a

“Alice”

“alice@a.org”

“Bob”

b ⊥

name

email

knows
name

knows

Each triple (s , p , o) of the RDF graph is depicted as an arc from s to o with label p. In this graph, elements “Alice”,
“Bob” and “alice@a.org” are literals; elements a, b, name, knows, and email are identifiers; and ⊥ is a blank node.

Since RDF graphs are sets of RDF triples, we use the operators ∪, ∩, and \ between RDF graphs, with

their standard meaning for sets.

Definition 2 (RDF vocabulary). An RDF vocabulary (or simply a vocabulary) is a finite subset of I ∪ L. Given an
RDF graph G, the vocabulary of G, denoted voc(G), is the set of all identifiers and literals occurring in G.

Example 2. If G is the graph of Example 1 then voc(G) is composed of all labels of nodes and arcs occurring in G,
except the blank node ⊥.

We next present the semantics of RDF graphs as defined by Hogan et al. [13] based in the definition

by Hayes [11]. We will omit datatype interpretations, and the use of RDF vocabularies with predefined

semantics (e.g., RDFS [4] and OWL [16]) as they are not directly concerned with the subject of this thesis.

Definition 3 (Semantics of ground triples [13]). An interpretation A over a vocabulary V is a tuple (R, P, E, I)
such that R is a non-empty set, called the domain, or the universe or the resources of A; P is a set of (not necessarily
disjoint from or a subset of R) called the properties ofA; E : P → 2

R×R is a mapping that assigns an extension, denoted
pA , to each property p ∈ P; and I : V → R ∪ P is the interpretation mapping that assigns a resource or a property to
each element of V such that I is the identity for literals.

Given a vocabulary V , an interpretation A � (R, P, E, I) over V , and a triple (s , p , o) ∈ V3, we say that
A |� (s , p , o) if and only if I(p) ∈ P and (s , o) ∈ E(p).

Observe that Definition 3 gives a special status to literals. Since I is the identity function for literals,

then R includes all literals occurring in V . On the other hand, the definition imposes no restriction to

interpretations of an RDF graph regarding the resource associated to an IRI. This restriction comes from the

RDF 1.0 specification [11, §1.4] that states that ‘if E is a plain literal "aaa" in V then I(E) � aaa.’ This restriction
is not present in the RDF 1.1 specification [12, §], where there is a different treatment for literals. These

nuances are not relevant for this thesis.

Definition 3 provides a semantics for RDF triples without blank nodes. In order to define the semantics

of RDF graphs with blank nodes we have to consider a function that maps blank nodes to elements in I ∪ L.

Definition 4 (Semantics of an RDF graph). Let G be an RDF graph, V be a vocabulary such that V ⊇ voc(G),
A � (R, P, E, I) be an interpretation over V , v : B → R be a function, and Iv denote an amended version of I
that includes B as part of its domain such that Iv(b) � v(b) for b ∈ B and Iv(x) � I(x) for x ∈ I ∪ L. We say
that A is a model of G, denoted A |� G, if there exists a function v such that for each (s , p , o) ∈ G, it holds that
A |� (Iv(s), Iv(p), Iv(o)).

Example 3. Let G be the following RDF graph:

2

a b ⊥knows knows

Then, interpretationsA1 toA4 below are models of G.

A1 � ({1, 2, 3}, {p}, {p 7→ {(1, 2), (2, 3)}}, {a 7→ 1, b 7→ 2,⊥ 7→ 3, knows 7→ p})
A2 � ({1}, {p}, {p 7→ {(1, 1)}}, {a 7→ 1, b 7→ 1,⊥ 7→ 1, knows 7→ p})
A3 � ({1, 2, 3}, {p}, {p 7→ {(1, 2), (2, 3), (3, 1)}}, {a 7→ 1, b 7→ 2,⊥ 7→ 3, knows 7→ p})
A4 � ({1, 2}, {p , q}, {p 7→ {(1, 1)}, q 7→ {(1, 2)}}, {a 7→ 1, b 7→ 1,⊥ 7→ 1, knows 7→ p})

The semantics of an RDF graph G is defined in terms of the interpretations of G. This approach to define

the semantics of a data-model in terms of finite structures or models is called model-theoretic. In this thesis

we assume familiarity with the model-theoretic and the proof-theoretic semantics of relational databases.

An introduction of both approaches is given by Reiter [23]. RDF graphs have the following differences with

the usual model-theoretic and proof-theoretic semantics given to relational databases:

1. Interpretations of RDF graphs allow predicates to occur as elements in relations. The main reason of

this design is that RDF aims to describe not only resources (i.e., the elements of the relations), but also

notions as predicates and classes used to describe the resources.

2. Interpretations of an RDF graph are not bounded to a specific “relational” vocabulary as the models of

a relation do. In fact, the interpretations of an RDF graph G may contain relations that are not referred

by the predicates in G. For instance, in Example 3, predicate q of interpretationA4 does not represent

a predicate in the graph G. The RDF model is designed for the Web. In this context we cannot assume

that people will get a consensus over a fixed set of predicates to be used to describe the world.

The notions of entailment and equivalence between RDF graphs are defined as usual.

Definition 5 (Simple entailment). An RDF graph G1 entails an RDF graph G2, denoted G1 |� G2, if and only if
every interpretation over the vocabulary of G1 ∪ G2 which satisfies G1 also satisfies G2. We say that two RDF graphs
G1 and G2 are equivalent, denoted G1 ≡ G2, if and only if G1 |� G2 and G2 |� G1.

A notion that is closely related with entailment and the equivalence of RDF graphs is the notion of map

between graphs.

Definition 6 (Map between RDF graphs). A map h : I ∪ B ∪ L→ I ∪ B ∪ L is a function preserving elements in
I ∪ L, i.e., h(x) � x if x ∈ I ∪ L. Given a graph G and a map h, h(G) denotes the RDF graph {(h(s), h(p), h(o)) |
(s , p , o) ∈ G}. Two RDF graphs G1 and G2 are said isomorphic if and only if there are maps h1 and h2 such that
h1(G1) � G2 and h2(G2) � G1.

We overloaded the meaning of map to speak of a map h : G1 → G2 if and only if G1 and G2 are RDF graphs, h is a
map, and h(G1) ⊆ G2.

So far, we have reviewed the standard notions of entailment and map among RDF graphs. It is well-

known that these notions are equivalent (see [6, 12, 9]). This equivalence is formalized by the following

theorem:

Theorem 1 ([6, 12, 9]). Let G1 and G2 be two RDF graphs. Then, G1 |� G2 if and only if there is a map h : G2 → G1.

3

In this thesis we assumed familiarity with the Reiter [21] proof-theoretic semantics of the relational model

extended with null values, whose theory codifies three assumptions over a relational database, namely the

closed-domain, the unique-name, and the closed-world assumptions. We next discus the differences among the

relational model and the RDF model regarding these assumptions.

1. No Unique Name Assumption: As is exemplified by the modelA2 of Example 3, different identifiers and

blank nodes may refer to the same resource (in this case a, b, and ⊥ refer to resource 1). The lack of

the unique name assumption is motivated by the distributed nature of the Web. Data publishers in

different parts of the world may use different identifiers to refer to the same resource.

2. No Closed World Assumption: Let G be an RDF graph and (s , p , o) be a triple without blank nodes that is

not in G. Then, there exists an interpretationA of G such thatA |� (s , p , o). To see this, let G1 and G2

be two RDF graphs where G2 � G1∪{(s , p , o)} and (s , p , o) < G1. Since there exists a map h : G1 → G2,

by Theorem 1, it holds that G2 |� G1. Under the semantics provided by Definition 4, all RDF graphs

G are satisfiable because a triple in G cannot express information that contradicts other triples in G.

Since RDF graphs are satisfiable, there exists an interpretationA such thatA |� G2. Since G2 |� G1, by

definition, A |� G1. Since (s , p , o) ∈ G2, it holds thatA |� (s , p , o). Thus, for every graph G and triple

(s , p , o) there exists an interpretation A of G such that A |� (s , p , o). Hence, no negative information

can be inferred from RDF graphs, and thus RDF graphs do not follow the closed world assumption in

the sense of Reiter [22].

2 The SPARQL query language

SPARQL is a query language designed to query RDF graphs. In this section we present the core fragment

of the SPARQL language for consideration in this thesis. This fragment is essentially the fragment studied

by Perez et al. [18]. We do not include the clauses FROM and GRAPH as they do because those features are

not related to the focus of this thesis, but we add the clauses VALUES, BIND and EXISTS.

In order to define the syntax and semantics of SPARQL, we need to introduce some notions. We assume

a countable infinite set V, called the set of variables, and a set F, called the set of functions, that consists in

functions of the form f : (I∪B∪L∪ {∅})n → I∪B∪L∪ {∅}, where sets I, B, and L are the same sets that in

Definition 1, sets V, F, I, B, and L are pairwise disjoint, and ∅, called the unbound value, is an element that

is not in the set I∪B∪L. The prefix “?” is used to denote variables (e.g., ?x). A SPARQL mapping (or simply a

mappingwhen no confusion arises) is a partial function µ : V→ I∪B∪L. Two mappings µ1 and µ2 are said

to be compatible, denoted µ1 ∼ µ2 if and only if for every common variable X holds µ1(X) � µ2(X). Given

two compatible mappings µ1 and µ2, the join of µ1 and µ2, denoted µ1 ` µ2, is the mapping with domain

dom(µ1) ∪dom(µ2) that is compatible with µ1 and µ2. Given a mapping µ and a finite setX of variables, we

write µ |X to denote the mapping µ restricted to the domainX, that is, µ |X ∼ µ and dom(µ |X) � dom(µ) ∩X.
Throughout this thesis we sometimes use the translation of sets of mappings to relations used by Cy-

ganiak [7] and Polleres [19], among others. This consists in viewing mappings as tuples under the named

perspective. However, as mappings in a set Ω of mappings may have different domains, we need to choose

one for the relation associated to Ω. The set of variables X of the chosen domain must be big enough to

contain the domains of all mappings inΩ. Then, for each variable ?x ∈ X, we extend (“fill” in) all mappings µ

where ?x < dom(µ) defining µ(?x) � ∅. The result of this procedure is a relation in the domain I∪B∪L∪{∅}.
This procedure is formalized as follows:

4

Definition 7 (Filled mapping). Given a SPARQL mapping µ with dom(µ) � X and a set of variablesY such that
X ⊆ Y, the filling of µ overY, denoted fill(µ,Y), is the mapping such that dom(fill(µ,Y)) � Y and

fill(µ,Y)(?x) �
{
µ(?x) if ?x ∈ dom(µ),
∅ otherwise.

Now we are ready to define the SPARQL syntax.

Definition 8 (SPARQL syntax). The set of SPARQL queries (or simply queries) is defined recursively as follows:

• An element of (I∪B∪V)× (I∪V)× (I∪B∪L∪V) is a triple pattern. A set of triple patterns is a query—called
a basic graph pattern.

• If Q1 ,Q2 are queries, then:

– (Q1 UNION Q2) is a query—called a UNION query.

– (Q1 AND Q2) is a query—called an AND query.

– (Q1 OPT Q2) is a query—called an OPT query.

– (Q1 MINUS Q2) is a query—called a MINUS query.

• If Q is a query andX ⊂ V is a finite set of variables, then (SELECTXWHERE Q) is a query—called a SELECT
query.

• If Q is a query and ϕ is a SPARQL buit-in condition (see below), then (Q FILTER ϕ) is a query—called a
FILTER query.

• IfX ⊂ X is a finite set of variables, andΩ is a set of SPARQL mappings such that dom(µ) ⊆ X for each µ ∈ Ω,
then (VALUES X Ω) is a query—called a VALUES query.

• If Q is a query, f : (I ∪ B ∪ L ∪ {∅})n → (I ∪ B ∪ L ∪ {∅}) is a function in F, and ?y, ?x1 , . . . , ?xn are
variables such that ?y does not occur in Q nor in {?x1 , . . . , ?xn}, then (Q BIND f (?x1 , . . . , ?xn) AS ?y) is a
query—called a BIND query.

• A SPARQL built-in condition (or symply a filter-condition) is defined recursively as follows:

– An equality t1 � t2, where t1 , t2 are elements of I ∪ B ∪ L ∪V, is a filter-condition.

– If t is an element of I ∪ B ∪ L ∪V then isBlank(t) is a filter-condition.
– If ?x is a variable then bound(?x) is a filter-condition.
– A Boolean combination of filter-conditions (with operators ∧, ∨, and ¬) is a filter-condition.

We will call this SPARQL fragment AMUSFOVB capturing the initial letters of the operations: AND, MINUS,
UNION, SELECT, FILTER, OPT, VALUES, and BIND, applied over basic graph patterns. We will name subsets of
this fragment by removing the corresponding initials. For instance, the fragment considering only operators AND,
SELECT, and OPT will be denoted ASO.

Historically, SPARQL queries and graph patterns were two different concepts. Polleres [19] defines a

SPARQL query as a quadruple (V, P,DS, SM) where V is the result form, P is a graph pattern, DS is a

dataset, and SM is a set of solution modifiers. In this thesis we ignore datasets and solution modifiers, so

5

according to Polleres notation, a query is simple a pair (V, P). Furthermore, in this thesis we restrict result

forms to the SELECT clause. Thus, we only study SELECT queries.

Note: Since in SPARQL 1.1 graph patterns admit SELECT queries as graph patterns, there is no need to

consider SPARQL queries and graph patterns as different concepts. Thus, throughout this thesis we will use

both terms with the same meaning.

Before presenting the semantics of SPARQL we have to discuss set and multiset semantics. A multiset is

a modification of the concept of set, that unlike sets, allows repeated elements. In SPARQL 1.0 a SELECT

query has either the form (SELECTXWHERE P) or (SELECT DISTINCTXWHERE P) where P is a graph

pattern without another SELECT query inside. In the former case the query returns multisets, and in the

latter case returns sets. Thus, there were two alternative semantics for graph patterns, namely set and

multiset semantics. Since SPARQL 1.1 admits SELECT queries as graph patterns, queries can be evaluated

as a combination of both semantics. The theory of multisets is complex (see the work of Angles and

Gutierrez [2]). For the sake of the simplicity, in this thesis we will focus on the set semantics of SPARQL

(where repeated elements are removed) as in done by Perez et al. [18].

According to Perez et al. [18], the semantics of SPARQL is defined using operations over sets ofmappings.

These operators are presented in the following definition:

Definition 9 (Algebra of mappings [18]). LetΩ1 andΩ2 be two sets of mappings. Then, the operators 1, ∪, −, and
1 are defined over sets of mappings as follows:

Ω1 1 Ω2 � {µ1 ` µ2 | µ1 ∈ Ω1 , µ2 ∈ Ω2 , µ1 ∼ µ2},
Ω1 ∪Ω2 � {µ | µ ∈ Ω1 or µ ∈ Ω2},
Ω1 −Ω2 � {µ1 | µ1 ∈ Ω1 , and there does not exist µ2 ∈ Ω2 , µ1 ∼ µ2},
Ω1 1Ω2 � (Ω1 1 Ω2) ∪ (Ω1 −Ω2).

Given a query Q we write var(Q) to denote the set of variables occurring in Q. We use this notation also

for filter-conditions, i.e., var(ϕ) are the variables occurring in the filter-condition ϕ.

Now we are ready to present the semantics of SPARQL.

Definition 10 (SPARQL semantics). Let G be a RDF graph, and Q be a SPARQL query. Then, the evaluation of Q
over G, denoted JQKG, is the set of mappings recursively defined as follows:

• If Q is a basic graph pattern, then JQKG is the set of all mappings µ|
var(Q) such that µ(Q′) ⊆ G, where Q′ is the

result of replacing all blank nodes in Q by fresh variables, and µ is a mapping with dom(µ) � var(Q′).

• If Q is (Q1 AND Q2) then JQKG � JQ1KG 1 JQ2KG.

• If Q is (Q1 UNION Q2) then JQKG � JQ1KG ∪ JQ2KG.

• If Q is (Q1 MINUS Q2) then JQKG � JQ1KG − JQ2KG.

• If Q is (Q1 OPT Q2) then JQKG � JQ1KG 1 JQ2KG.

• If Q is (SELECTXWHERE Q1) then JQKG is the set of mappings µ|X such that µ ∈ JQ1KG.

• If Q is (VALUES X Ω) then JQKG is the set of mappings Ω.

• If Q is (Q1 FILTER ϕ) then JQKG is the set of mappings µ ∈ JQ1KG such that µ(ϕ) is true (see Definition 11).

6

• If Q is (Q1 BIND f (?x1 , . . . , ?xn)AS ?y) then let µ′ be the mapping fill(µ, {?x1 , . . . , ?xn}), and yµ be the value
f (µ′(?x1), . . . , µ′(?xn)). Then, JQKG is the set of SPARQL mappings

{µ ∈ JQ1KG | yµ � ∅} ∪ {µ ` {?y 7→ yµ} | µ ∈ JQ1KG and yµ , ∅}.

A filter-condition ϕ drops all mappings µ where µ(ϕ) is not true. The following definition defines the

truth value of µ(ϕ) for filter-conditions.

Definition 11 (Semantics of SPARQL filter-conditions). Let µ be a finite mapping from variables to elements in
I∪B∪L, ϕ be a SPARQL filter-condition without occurrences of EXISTS clauses, and t1 , t2 be elements inV∪I∪B∪L.
Let ν : V ∪ I ∪ B ∪ L→ V ∪ I ∪ B ∪ L be the function defined as

ν(t) �


µ(t) if t ∈ dom(µ),
∅ if t ∈ V \ dom(µ),
t if t < V.

The truth value of µ(ϕ) is defined recursively as follows:

• If ϕ is an equality t1 � t2 then:

1. µ(ϕ) is error if ν(t1) � ∅ or ν(t1) � ∅.

2. µ(ϕ) is true if ν(t1) , ∅, ν(t1) , ∅, and ν(t1) � ν(t2).
3. µ(ϕ) is false if ν(t1) , ∅, ν(t1) , ∅, and ν(t1) , ν(t2).

• If ϕ is an expression of the form bound(?x) then µ(ϕ) is true if ?x ∈ dom(µ). Otherwise, µ(ϕ) is false.

• If ϕ is an expression of the form isBlank(t1) then:

1. µ(ϕ) is error if ν(t) � ∅.

2. µ(ϕ) is true if ν(t) , ∅ and ν(t) ∈ B.

3. µ(ϕ) is false if ν(t) , ∅ and ν(t) < B.

• If ϕ is a Boolean combination of conditions using operators ∧, ∨ and ¬, then the truth value of µ(ϕ) is the usual
for 3-valued logic (where error is interpreted as unknown).

We write µ |� ϕ to mean that ϕ is true over µ.

The following definition of dom(Q) corresponds to the set of variables that in the specification [10,

§18.2.1] are called the in-scope variables of a query Q. Despite the fact that the output of a SPARQL is not a

relation because its mappings can have different domains (e.g., when Q is a union of queries with different

variables), most engines use dom(Q) as the attributes of the “relation” that result of evaluating Q.

Definition 12 (Domain of a SPARQL query). Let (s , p , o) be a triple pattern, Q1 ,Q2 be SPARQL queries, ϕ be a
filter condition, andX be a set of variables. The domain of a SPARQL query Q, denoted dom(Q), is defined recursively

7

as follows:

dom((s , p , o)) � var((s , p , o)),
dom(Q1 AND Q2) � dom(Q1) ∪ dom(Q2),

dom(Q1 UNION Q2) � dom(Q1) ∪ dom(Q2),
dom(Q1 MINUS Q2) � dom(Q1),

dom(Q1 FILTER ϕ) � dom(Q1),
dom(Q1 OPT Q2) � dom(Q1) ∪ dom(Q2),

dom(SELECTX Q1) � X ,
dom(VALUESX Ω) � X ,

dom(Q1 BIND(f (?x1 , . . . , ?xn)AS ?y)) � dom(Q1) ∪ {?y}.

References

[1] Renzo Angles and Claudio Gutiérrez. “Negation in SPARQL”. In: AMW. Vol. 1644. CEUR Workshop

Proceedings. CEUR-WS.org, 2016.

[2] Renzo Angles and Claudio Gutiérrez. “The Multiset Semantics of SPARQL Patterns”. In: International
Semantic Web Conference (1). Vol. 9981. LNCS. 2016, pp. 20–36.

[3] James Bailey et al. “Web and Semantic Web Query Languages: A Survey”. In: Reasoning Web, First
International Summer School 2005, Msida, Malta, July 25-29, 2005, Tutorial Lectures. Vol. 3564. LNCS.

Springer, 2005, pp. 35–133.

[4] Dan Brickley and R.V. Guha. RDF Schema 1.1. W3C Recommendation. Feb. 2014.

[5] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. “Sesame: A Generic Architecture for

Storing and Querying RDF and RDF Schema”. In: The Semantic Web - ISWC 2002, First International
Semantic Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings. Vol. 2342. LNCS. Springer, 2002,

pp. 54–68.

[6] Ashok K. Chandra and Philip M. Merlin. “Optimal Implementation of Conjunctive Queries in Rela-

tional Data Bases”. In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA. ACM, 1977, pp. 77–90.

[7] Richard Cyganiak. “A relational algebra for SPARQL”. In: Digital Media Systems Laboratory HP Labora-
tories Bristol. HPL-2005-170 (2005), p. 35.

[8] Valeria Fionda, Giuseppe Pirrò, and Claudio Gutiérrez. “NautiLOD: A Formal Language for the Web

of Data Graph”. In: TWEB 9.1 (2015), 5:1–5:43.

[9] Claudio Gutierrez et al. “Foundations of Semantic Web databases”. In: J. Comput. Syst. Sci. 77.3 (2011),
pp. 520–541.

[10] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Language. W3C Recom-

mendation. 2013.

[11] Patrick Hayes. RDF Semantics. W3C Recommendation. Feb. 2004.

[12] Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation. Feb. 2014.

8

[13] Aidan Hogan et al. “Everything you always wanted to know about blank nodes”. In: J. Web Sem. 27
(2014), pp. 42–69.

[14] Mark Kaminski, Egor V. Kostylev, and Bernardo Cuenca Grau. “Query Nesting, Assignment, and

Aggregation in SPARQL 1.1”. In: ACM Trans. Database Syst. 42.3 (2017), 17:1–17:46.

[15] Libby Miller, Andy Seaborne, and Alberto Reggiori. “Three Implementations of SquishQL, a Simple

RDF Query Language”. In: The Semantic Web - ISWC 2002, First International Semantic Web Conference,
Sardinia, Italy, June 9-12, 2002, Proceedings. Ed. by Ian Horrocks and James A. Hendler. Vol. 2342. LNCS.

Springer, 2002, pp. 423–435.

[16] Boris Motik, Peter F. Patel-Schneider, and Bĳan Parsia. OWL 2 Web Ontology Language Structural Speci-
fication and Functional-Style Syntax (Second Edition). W3C Recommendation. Dec. 2012.

[17] Ralph R. Swick Ora Lassila. Resource Description Framework (RDF) Model and Syntax Specification. W3C

Recommendation. Feb. 1999.

[18] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. “Semantics and complexity of SPARQL”. In:

ACM Trans. Database Syst. 34.3 (2009), 16:1–16:45.

[19] Axel Polleres. “From SPARQL to rules (and back)”. In: Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. Ed. by Carey L. Williamson et al.

ACM, 2007, pp. 787–796.

[20] Eric Prud’hommeaux and Andy Seaborne. PARQL Query Language for RDF. W3C Recommendation.

2008.

[21] Raymond Reiter. “A Sound and Sometimes Complete Query Evaluation Algorithm for Relational

Databases with Null Values”. In: J. ACM 33.2 (Apr. 1986), pp. 349–370. issn: 0004-5411.

[22] Raymond Reiter. “On Closed World Data Bases”. In: Logic and Data Bases. Advances in Data Base

Theory. New York: Plemum Press, 1977, pp. 55–76.

[23] Raymond Reiter. “Towards a Logical Reconstruction of Relational Database Theory”. In:OnConceptual
Modelling (Intervale). 1982, pp. 191–233.

9

	The RDF data model
	The SPARQL query language

