
RDF Compression: Basic Approaches∗

Javier D. Fernández
Dept. of Computer Science

University of Valladolid (Spain)
jfergar@infor.uva.es

Claudio Gutierrez
Dept. of Computer Science
University of Chile (Chile)
cgutierr@dcc.uchile.cl

Miguel A. Martínez-Prieto
Dept. of Computer Science

University of Valladolid (Spain)
migumar2@infor.uva.es

ABSTRACT
This paper studies the compressibility of RDF data sets.
We show that big RDF data sets are highly compressible
due to the structure of RDF graphs (power law), organiza-
tion of URIs and RDF syntax verbosity. We present basic
approaches to compress RDF data and test them with three
well-known, real-world RDF data sets.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression

General Terms
Experimentation, Measurements

1. INTRODUCTION
RDF data management has become a major track in Web

development. Real-world RDF data (as shown in Linked
Open Data datasets[3]) reveal an increasing number of huge
data collections, as well as great diversity in terms of sources
and use. It is well known that they form labeled graphs and
that their nodes and edges follow power law distributions[2].
Hence the data include redundancy from the graph itself
(repeated nodes and edges), the hierarchical organization
of URIs, and the verbosity of the given syntax (especially
significant in RDF/XML).

Compression appears as a natural choice for exchanging
this type of data in order to achieve a better time/space
tradeoff, or for storing it modularly, as data dictionary plus
the graph itself. The graph, in turn, can be represented
by generalized adjacency lists, which can take advantage
of the heavy-tailed graph structure of big RDF data sets.
With some add-ons, this splitting can support basic search-
ing/retrieving operations such as the common Resource ↔
Identifier assignation in triples stores.

We present different approaches for compressing RDF data
using its particularities with standard compression techniques,
testing these methods in three well-known data sets: Billion

∗
Partly funded by Erasmus Mundus (first author), MICINN

(TIN2009-14009-C02-02), a fellowship from the Regional Government

of Castilla y Leon (Spain) and the European Social Fund (first and

third authors) and Fondecyt 1090565 (C. Gutierrez, DCC).

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

SUBJECT PREDICATE OBJECT

TRIPLES+( )
TREEDELTA

b
z
ip
2
,g
z
ip
,p
p
m
d
i

H
u
ff
m
a
nb
z
ip
2
,g
z
ip
,p
p
m
d
i

a)b) c) d)

UNCOMPRESSED

COMPRESSED

ADJACENCY

LIST
DICTIONARY

ORIGINAL

SUBJECT PREDICATE OBJECT

ADJACENCY

LIST

(b
z
ip
2
,g
z
ip
,p
p
m
d
i)
+
H
u
ff
m
a
n

Figure 1: Approaches to RDF compression.

B.Triples Uniprot US Census

Original Size 541.5 239.4 148.2
a) Direct Compr. 37.9 (7.0%) 7.5 (3.1%) 6.4 (4.3%)
b) Adjacency List 35.5 (6.6%) 5.3 (2.2%) 4.8 (3.3%)
c) Delta+Triples 37.9 (7.0%) 9.1 (3.8%) 9.0 (6.1%)
d) Trie+Triples 39.4 (7.3%) 9.7 (4.1%) 9.0 (6.1%)

Table 1: Results of different approaches (in MB).

Triples is a large data set given within the SemanticWeb
Challenge from a mashup of sources, whereas Uniprot RDF
and U.S. Census are real-world RDF data sets of protein se-
quences and U.S census information respectively. RDF data
is normalized from its original format to plain N3, sampling
a chunk of 3 Million triples (hereafter “Original”).

2. APPROACHES TO RDF COMPRESSION
Based on natural RDF features, we study four different

approaches to compress RDF as shown in Fig. 1.
a) Direct Compression. First, we tested direct compres-

sion of the original file (Figure 1a). We consider three well-
known techniques which cover the main compressor families:
a dictionary-based gzip built on an LZ77 adaptation, bzip2
based on the Burrows-Wheeler Transform and ppmdi which
implements a high-order predictive model on PPM. As we
expected, a high repetition of data given by power-law distri-
bution results in high levels of compression, shown in Table
3. PPM, as a high order compressor, gets the best results
(up to 3.12% in Uniprot). The diversity of sources of Bil-



B.Triples Uniprot US Census
Dictionary Triples Dictionary Triples Dictionary Triples

Orig. Compr. Orig. Compr. Orig. Compr. Orig. Compr. Orig. Compr. Orig. Compr.
Original 153.2 28.0 (18.3%)

65.5
9.5
(4.2%)

26.3 1.4 (5.3%) 58.6
8.1
(13.8%)

6.8 0.9 (13.2%) 49.6 10.7 (21.6%)
Delta 105.3 28.4 (18.5%) 4.4 1.0 (3.8%)

59.6 5.7 1.3 (19.1%) 52.8 7.7 (15.5%)
Tree 114.0 29.9 (19.5%) 15.9 1.6 (6.1%)

Table 2: Original and compressed size (in MB) of Dictionary+Triples decomposition.

B.Triples Uniprot US Census

Original Size 541.5 239.4 148.2
bzip2 46.9 (8.7%) 10.8 (4.5%) 9.7 (6.6%)
gzip 55.2 (10.2%) 18.3 (7.7%) 13.4 (9.0%)
ppmdi-6 37.9 (7.0%) 7.5 (3.1%) 6.4 (4.4%)

Table 3: Direct Compression (in MB).

B.Triples Uniprot US Census

Original Size 541.5 239.4 148.2
Subject A.L 35.5 (6.6%) 5.3 (2.2%) 4.8 (3.3%)
Predicate A.L. 50.7 (9.4%) 6.60 (2.8%) 7.9 (5.3%)
Object A.L. 42.5 (7.9%) 6.6 (2.8%) 7.5 (5.0%)

Table 4: Adjacency Lists Representations (in MB).

lion Triples data set results in weaker compression, while the
numeric data nature of U.S. Census is also punished.

b) Adjacency Lists. A second approximation focus data
repeatability by using Adjacency Lists (Figure 1b). For ex-
ample, the set of triples {(s, p1, o11), · · · , (s, p1, o1n1 ), · · ·
(s, p2, o21), · · · (s, p2, o2n2 ), · · · (s, pk, oknk

)} would be written as
the adjacency list s → [(p1, ObjList1), · · · (pk, ObjListk)].

We considered three types of adjacency lists: subject (pre-
sent in Turtle and N3), predicate and object headed. Predi-
cates and subjects precede objects in sublists, and both lists
and sublists are ordered lexicographically. Table 4 shows
that subject adjacency lists compression (using ppmdi to
compare best results) improves direct compression in every
case, while predicate and object have better results only in
Uniprot. Adjacency lists levels of compression depend on
both their compact power and their ability to produce re-
peated elements in sublists.

c,d) Dictionary+Triples. The next two tests are focused
on the graph nature of RDF. Note that standard Web graph
compression is hardly applicable to RDF because they ex-
ploit locality and similiarity features of their link struc-
ture[1]. Locality implies that the source and the target of a
link tend to share the same domain, therefore lexicographi-
cal order benefits the compression. By means of similarity,
some successors are shared by pages in the same domain,
facilitating compression too. In RDF, these properties are
rarely present. Nevertheless, power law assumption and high
compression levels previously presented, show a regularity in
triples that might be exploited.

A simple graph representation is proposed to test RDF
compressibility: we split the data into the dictionary of ele-
ments and the triples substituting for each element, the cor-
responding number assignation in the dictionary. Triples, in
turn, can be represented as one type of adjacency lists. Liter-
als in the dictionary were sorted lexicographically and man-
aged independently, as we focused on URIs, exploiting the
redundancy of their long shared prefixes. Figure 1c stands
for a commonly used delta coding, in which URIs are also
sorted lexicographically and each one is coded by two inte-
gers and a string. Integers delimit the number of characters

shared with the previous symbol and the number of differ-
ent characters, while the string represents the portion of the
URI that differs from the previous one.

Delta encoding is a compression-oriented representation,
so that operations with the dictionary (mainly to find the
identifier of an element and vice versa, commonly in RDF
triples stores) become more complex. In order to facilitate
these operations, we considered a compact tree representa-
tion (referred to as DFUDS) built on a sequence of balanced
parentheses, as shown in Figure 1d. We stored the preorder
traversal sequence of the tree and two bits per node to repre-
sent the structure. When using this succinct representation
in-memory, an auxiliary structure is needed, with cost o(n),
where n is the number of nodes. This structure facilitates
common operations without uncompression.

Table 2 details different Dictionary+Triples decomposi-
tion. In compression, triples and delta integers are coded by
canonical bit-oriented Huffman, while the preorder sequence
and the literals are compressed with ppmdi. Compressed
values of triples correspond to subject adjacency lists. As a
general observation, both delta and tree coding dictionaries
reduce original size. In contrast, identifiers re-assignation
can slightly increase the size of triples representation. B.T
and U.S datasets are composed of a great variety of literals,
so that the improvement of both delta and tree coding do
not compensate for the uncompressibility of numeric literals
in U.S or the variability in B.T. In these cases, they do not
reach original compressing levels.

Uniprot is highly compressible due to the massive presence
of URIs, which benefits the compression of the dictionary.
Most of these URIs are named sequentially, so that tree
coding size is bigger than delta before compression, as it only
stores the difference and tree repeats the whole identifier.

3. CONCLUSIONS
Table 1 summarizes the results of the different approaches

tested. From this study we can conclude:

1. RDF data at big scale is highly compressible.

2. Dedicated data structures, e.g. adjacency lists, code
triples efficiently and facilitate compression (both string
with ppmdi and integer with Huffman).

3. RDF URIs are prone to efficient compression with stan-
dard techniques, but compression of literals deserve
finer approaches.

4. The structure of RDF graphs differs from XML or Web
data, hence, classical approaches such as [1] are not
directly applicable.

4. REFERENCES
[1] P. Boldi and S. Vigna. The webgraph framework i:

compression techniques. In WWW, pp. 595–602, 2004.

[2] L. Ding and T. Finin. Characterizing the semantic web
on the web. In ISWC, pp. 242–257, 2006.

[3] LOD data sets. http://linkeddata.org/data-sets.


