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ABSTRACT

We prove that the computational complexity of the problem
of deciding if an equation in a free group has a solution is
PSPACE.

The problem was proved decidable in 1982 by Makanin,
whose algorithm was proved later to be non primitive recur-
sive: this was the best upper bound known for this problem.
Our proof consists in reducing equations in free groups to
equations in free semigroups with antiinvolution, and pre-
senting an algorithm for deciding equations in free semi-
groups with antiinvolution.

1. INTRODUCTION

Let £ = {a1,...,an} be an alphabet. An equation in the
free group G generated by ¥ with unknowns zi,...,Znm is
an equality of the form w(z1,...,Zm,a1,...,a,) = 1, where

w is a word formed from the letters z1,...,2Zm,a1,...,an
and their inverses. A solution of such an equation is a
list v1,...,0Um of words in a1,...,an,a; >, ..., a,;" such that
w(v1,...,Um,a1,...,8) = 1 in the group G. In this paper
we prove that the problem of deciding if such an equation
has a solution is in PSPACE.

In the early 60’s Markov, studying algorithmic problems of
semigroups and groups, posed the following question: Is
there an algorithm for solving arbitrary equations in free
groups? (or in unification language: is the unification prob-
lem for groups decidable?). This problem and the related
one for free semigroups has lately attracted much attention
from the theoretical computer science community, see for
example 2], (8], [9], [3], [16], [17], [18]. Special particular
cases were answered positively by Lyndon [12], Lorents [10],
Kmelevskii [6], {7]. In 1982 Makanin [14] (corrections in [15])
presented an algorithm that solves the general case, still the
only one known. Koscielski and Pacholski [9], by showing
that ‘contrary to the common belief’ this algorithm is not
primitive recursive, stated the current upper bound for this
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problem. As for lower bounds, Durnev [2] showed a NP-hard
lower bound. On related algorithmic aspects of equations on
free groups we can mention the work of Razborov [19] who
presented an algorithm for generating all the solutions to
a given group equation, and Durnev [2] which proves the
undecidability of several related problems. )
Summarizing, the current complexity of the problem of sat-
isfiability of equations in free groups is between NP-hard
(see [2]) and PSPACE (this paper).

Overview of the paper

In [4] we reduced the problem of satisfiability of equations
in free groups to that of satisfiability of equations in a sim-
pler theory, namely in free semigroups with antiinvolution
(SGA), via a PSPACE translation. In this paper we prove
that satisfiability of equations in free SGA is in PSPACE,
hence giving a PSPACE upper bound for the case of free
groups. The theory SGA is ‘in between’ that of semigroups
and groups, and is defined by the equations z(yz) = (zy)z,
(zy)™' =y~ 'z ' and (z7')"! = z. A free SGA over the
set ¥ is the set of words over the alphabet ZU{a~! :a € T}
together with an operator ( )~! which reverses a word and
changes the exponent of the base letters.

Makanin in [14] reduces satisfiability of equations in free
groups to the satisfiability of a special kind of equations in
free SGA, namely those whose solutions are non-contractible.
A contractible word is, roughly speaking, one which does not
contain any factor of the kind cc™! or ¢~ !¢ for ¢ constant.
Then he applies to these special equations a methodology
stmilar to that of his famous previous algorithm on word
equations by defining generalized equations and the corre-
ponding transformations.

We followed a different path, whose schema can be summa-
rized as follows:

1. Reduce satisfiability of equations in groups to satisfia-

bility of equations in SGA with non-contractible solu-
tion.
Claim 1: For each equation F in free groups we get a
set of equations E1,..., E,, in SGA such that £ has a
solution iff one of the E} has a non-contractible solu-
tion.

(This first step is the same as in Makanin [14]; from
here on, the approaches differ completely.)

. Reduce satisfiability of equations in free SGA with
non-contractible solutions to satisfiability of equations
in free SGA (i.e. no restriction on the solutions).
Claim 2: For each equation E’ in free SGA there is



a set EY,...,EY of equations in free SGA such that
E' has a non-contractible solution iff one of E; has a
(ordinary) solution.

3. Generalize the method used in [18] for deciding sat-
isfiability of word equations to a method for deciding
satisfiability of equations in free SGA.

Claim: Satisfiability of equations in free SGA is in
PSPACE.

The size of the set of equations in Step 1 is exponentially
bigger than the size of E. Same for Step 2. The good
news is that they can be generated non-deterministically in
polynomial space. So we can conclude that satisfiability of
equations in free groups is in NPSPACE, hence in PSPACE.
As we said, Claim 1 is in Makanin’s paper [14]. We proved
Claim 2 in {4]. From these proofs it is straightforward to con-
clude that these sets can be generated non-deterministically
in polynomial space. For the sake of completeness, we will
state the relevant theorems from these papers in the Ap-
pendix.

What remains is Claim 3, which is what we essentially present
in this paper. This generalization follows the seminal Plandowski’s

paper [18], and is a combinatorial proof. The idea is to
define a non-deterministic transformation — among equa-
tions which preserves satisfiability. The algorithm consists
in generating non-deterministically equations from the sim-
ple (satisfiable) equation (¢ = ¢) for a constant c¢. The diffi-
cult part is to prove that this process can be done in poly-
nomial space. The reader familiar with [18] will recognize
our indebtedness to that paper.

2. PRELIMINARIES AND NOTATIONS
2.1 Equations in SGA

A semigroup with anti-involution (SGA) is an algebra with a
binary associative operation (written as concatenation) and
a unary operation ( )~! with the equational axioms

(zy)z = x(y2) ey
(zy)™! = y7lz (2)
! z. (3)

A free semigroup with anti-involution is an initial algebra
for this variety. It is not difficult to check that for a given
alphabet A, the set of words over AU A~?! together with
the operator ( )~*, which reverses a word (changing also the
exponent of the letters), is a free algebra for SGA over A.

2.1.1 Egquations and solutions

Let £ and V be two disjoint alphabets of constants and vari-
ables respectively. Denote by 37! = {¢”' : ¢ € £}. Simi-
larly for V=!. An equation E in free SGA with constants ¥
and variables V is a pair (w1, w2) of words over the alphabet
A=ZUS ' UV UV~ The number |E| = |wi| + |wz| is
the length of the equation. These equations are also known
as equations in a paired alphabet.

Amap h:V — (SUZ™)" can be uniquely extended to
a SGA-homomorphism A : A* — (S U X7') by defining
h(c) =cfor c € £ and h(u™') = (h(u))" foru e TUV.
We will use the same symbol h for the map A and the SGA-
homomorphism k. A solution h of the equation E is (the
unique SGA-homomorphism defined by) a map h : V —
SUT ™! such that h(wi1) = h(w2). The length of the solution
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h is |h(w1)|. By h(E) we denote the word h(wi) (which is
the same as h(ws)).

The exponent of periodicity of a word w is the maximal
integer p such that w = zy"z for z,y,2 words and y non-
empty. By the exponent of periodicity of a solution h we
mean the exponent of periodicity of h(E). The next is an
important theorem.

THEOREM 1. Let E be an equation in free SGA. Then,

the exponent of periodicity of a minimal solution of E is
bounded by 2°UED,

ProOF. The proof is a straightforward generalization to
SGA of the result proved in [8] for words; a sketch of the
proof can be found in [4]. O

2.2 Sequences of words

Given sequences S = w1,...,Wn, S2 = v1,...,Vm of ele-
ments of £*, the composition S1,S2 denotes the sequence
Wi,...,Wn,V1,...,Um. In general, for S; sequences of ¥,
we define inductively Si,...,Sn as the composition of the
sequence Si,...,Sn—1 with S,. By S* we denote the se-
quence S, ..., S consisting of t repetitions of S. Also S =
wil, . wit

Given a sequence S = wn,. .., Wn, we will give special names
to the following objects: conc(S) = wi - - - wn, length(S) =
ny first(S) = wi; last(S) = wn; ker(S) = wa, ..., wa-1 if
length S > 2, otherwise ker(S) = €. If R is another sequence,
then the substitution in S of w; by R is the composition of
the sequences w1, ..., w;j—1, R, wj41,...,wn. The sequence
S is a refinement of R if conc(S) = conc(R) and there are
indices ¢, < - -- < i such that

S Wig), .-

oyconc{Wip 41, -, Wa)

R = conc(wy, . .., wi, ), conc(wi; 41, . .

2.2.1 Exponential expressions

Given a word w and a positive integer ¢, we will denote
the sequence w,...,w (t-times) by w'. If we extend the
definition of sequence allowing these kind of expressions
we get what is called an ezponential ezpression. So we
can codify sequences by exponential erpressions in the ob-
vious way. For example ab,ab,ab,ab,a,a,a,b can be codi-
fied as (ab)?,a% b, etc. The height of an expression is de-
fined recursively as follows: height(w) = 0 for a word w,
height(S1, S2) = max(height S1, height S») and height(S?) =
1+ height(S). We will deal most of the time with sequences
of height no bigger than 1. The size of an exponential
expression is defined as follows: s{(w) = 1 for a word w,
5(S1,82) = s(S1) + 5(S2) and s5(S%) = 1+ s(S).

For our purposes what will be important are not the particu-
lar words in a sequence, but the pattern of their occurrences.
So we define two exponential expressions S, R to be isomor-
phic if for the sequences they represent, say wi,. .., wm and
v1,...,Un Tespectively, it holds m = n and there is a bijec-
tion @ : {wi1,...,wm} — {v1,...,vn} such that v; = p(w:)
and p(w™!) = (¢(w))~*. The following Lemma is due to
Plandowski [18]:

LEMMA 1. The isomorphism of two erponential ezpres-
stons of polynomial size can be checked in polynomial time.



2.3 Facts from word combinatorics

Given a word w, the subword starting at position ¢ and
ending at position 7 is denoted by wlt, 7]; we will write wli]
for w{i,t}. A period of w is a number p such that for all i,
wli] = wli + p] whenever both sides are defined.

The following result uses essentially a well known result by
Fine and Wilf about periodicity, and appears in [18]:

LEMMA 2. Let i < j < k be three consecutive starting
positions of occurrences of a word v inw. Ifi+|v] > k then
k—j=j—1iand k—j is a period of a word wi, k + |v] —1].

The following is an easy result on conjugate words, see e.g.
[11]):
LEMMA 3. Ifuiyw = wusz then there are words vi,ve such

that uy = v1ve and wiw = v1(vav1)™ for some integer m.

3. FACTORIZATIONS

DEFINITION 1. 1. A factorization F(w) of a word w is
a sequence of non-emtpy words

Flw) = wi,ws,...

(4)

y Wn
such that w = conc(wi,. .., wn).

2. For positions 1 < 1,5 < |w| of w, we define the parti-
tion F(w)[s, j], the restriction of the partition F(w) to
wlt, j], as follows:

)wfvwlpf-l-l - lyj]a

< pi are the starting positions of

F(w)[luﬂ = w[iyps-i-l - 1],’11)34.1, oo
where p1 < -

wi, ..., wn in the factorization (4), that isp; = |w1 - - wj_1|+

1, and s, f are the subindices such that ps < i < ps41
and ps < j < pr+1-

We will be mostly interested in the following kind of factor-
izations:

DEFINITION 2 (D-FAGCTORIZATION). Let D be a set of
words of the same even length 2t > 0 and w any word. Let
1< p1 < - < pi < |w| be the set of starting positions of all
the occurrences of words of D inw. Let v; = wlp;,p; +2t—1]
forj=1,... k.

1. The D-factorization of w is defined as:

Fp(w) =w[l,pr +t—1,wlp1 +t,p2 +t —1],...

owlpe +Ew]]. (5)

If no word of D occurs in w, then we define Fp(w) =
w.

2. For each j(1 < j < k), the pair of words vj,vj41 de-
termine the factor u; = wlp; + t,pj11 +t — 1] of (5).
The triple (uj,v;,vj41) is called the extended factor of
the factor u;.

For the cases ug = wl,p1 +t — 1] and ux = wlpx +
t,|w]], the extended factor is defined as (uo,$,v1) and
(uk, vk, $) respectively, where $ is a new symbol. If
Fp(w) = w then (w,$,$) is its extended factor.

3. For a subsequence S of Fp(w), we will denote by (S)°
the sequence of eztended factors obtained from S by
replacing each factor by its extended factor.
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Remark. The factorization Fp(w) above factors w along
the boundaries marked by the ‘middle’ of the words in D,
hence we need words of even length. (In [18] the beginning of
the words signal the marks for the factorization.) Typically
D will be a finite set of words of the same even length closed
under converse, i.e., if w € D then w™! € D.

LEMMA 4. Let D be a set of words of the same length
2t. Let 1 < j < k be starting positions of three consecutive
occurrences of a word v € D in w such that i+2t > k. Then

(Fp(w)fi +t,5+t—1)° = (Fp(w)[j + ¢,k +t — 1])°.

ProoF. Along the same lines as in [18]. By Lemma 2,
k—j=j—i4and k—jis a period of u = w[i, k + 2t — 1].
It is enough to prove that for 0 < p < j — ¢ the words of
length 2¢ starting at positions i +¢+p and j+t+pin w are
identical. This is true because these two words are wholy
contained in u and the distance between their occurrences
in u is equal to 7 — ¢ which is a period of u. [J

LEMMA 5. Let D be a set of words of the same length 2t.
Let 1 < k be occurrences of two words u,v € D in a word w.
Assume that 1 + 2t > k.

Then (Fp(w)[i + t,k + t — 1])° can be represented by an
exponential expression of size O(|D|?).

PROOF. Along the same lines as in [18]. [

The key point in Lemma 5 is the fact that the size of the
expression does not depend on ¢, but only on the size of the
set D.

LeMMA 6. Let D be a set of words of the same length 2t.

1. If ker Fp{wli, j]) is empty, then ((Fpw)[i, 7])° can be
represented by an exponential expression of size O(|D)?).

2. Ifker Fp(w[i, 7]) is not empty, then
((Fp(w))[i,5])° = (R1), (ker Fp(wl[i, j]))°, (R2)®

where R} and RS can be represented by exponential
expressions of size at most O(|D|?), and conc(R1) =
first(Fp (w(i, 7])) and conc(R2) = last(Fp(w(i, j])).

ProoF. The factorization Fp(w) of w and Fp(wlt, j]) of
w[t, j] are based on occurrences of the words of D in w and
wlt, j], respectively. (Fp(w))[i, 7] differs from Fp{wl[t, 5]) on
possible occurrences of words from D which either cover the
positions 7 or j in w. Apply then Lemma 5. [

We will need also the following result in the case of words
with converse:

LEMMA 7. Let D be a set bf words of the same length 2t
closed under converse, and w a word such that ker Fp(w) is
not empty. Then if

(ker Fp(w))® = (w1,v11,v12), - . -, (Wn, Un1, Unz)
it holds
(ker Fp(w™1))®

- - ~1
(wn17vn217vn1 ):

-1 -1, -1
s (wy 1:’”12177111 )-
PROOF. Just note that if there is a word u in D and
u=wlp—t+1,p+t], then 7! is also in D and uv™' =
wlfly] —p — ¢t +1,]v] — p + t]. The result follows then
immediately. [J



4. FACTORIZATIONS OF SOLUTIONS OF
EQUATIONS

From now on we are going to fix a satisfiable equation £ =
{u,v) in free SGA and a minimal solution h of it. Denote
|E| = |u| + |v]. A boundary of a word w is a pair (p,p +1)
of consecutives positions. By extension we define (0,1) and
(Jw|, |w| + 1) as the initial and final boundaries respectively.
Note that for each boundary (p,p + 1) of u (resp. v) there
is a unique ‘image’ boundary in h(u) (resp. h(v)), namely
(g,q + 1), where g = |h(u[1,p])|, which is called a cut of h.
Because h(u) = h(v) there are no more than |E| cuts.

The following proposition about cuts is a straightforward
generalization for free SGA of the similar result for words
due to Rytter and Plandowski [16]. The proof can be found
in [4].

ProposiTION 1 (LEMMA 2 IN [4]). Assume S is a min-
imal (w.r.t. length) solution of E. Then

1. For each subword w = h(E)[i, j] with jw| > 1, there is
and occurrence of w or w™" which contains e cut of
h which is neither the initial nor the final boundary of
that occurrence.

2. For each letter c = h(E)[i] of h(E), there is an occur-
rence of c or ¢~* in E.

We will need D-factorizations with a special set D as intro-
duced in the next definition.

DEFINITION 3 (THE SET OF WORDS D;). For each nat-
ural number | > 1 define, from E and h, the set D; of words
as follows: w € Dy if and only if either

1. w=nh(uwg—1+1,q+1] for some cut (g,q+1) of h.
2. w 1is the converse of a word in (1).

These sets D; (parameterized by [ > 1) are going to play a
key role in what follows. Observe that |Di| < 2|E|.

Notation. Given a word w, if no confusion arises, we will
write Fyw for the factorization Fp,(w).

We will prove next that the factors in Fih(u) have a small
representation.

LEMMA 8. Each factor in Fth(u) is of the form
wng‘wa

where |wi], |wz|, |ws| < 2l|E| and p € 20UED,

ProOF. The factorization of Fih(u) is determined by oc-
currences of words of D; in h(u). Consider a factor w
of Fih(u), and w.l.o.g suppose |w| > 6in, and let w =
h(u)[%, j]. By definition of factorization, h(u)[i —I,i 41~ 1]
and h(u)[j —{+ 1,7 + ] are in D; and there are no other
occurences of words of Dy in h(u)(i — I, 7 +1].

By Proposition 1, w or w™' has an occurrence over a cut;
w.l.o.g. suppose that w occurs over a cut in h(u). The cut
divides w into w',w”, and |w'] < [ or |w"| < I (otherwise
h(u)[i + |w'} — 1,1+ |w'| + 1 —1] € D; and w would not be a
factor).

Suppose |w'’| < I. Then consider w; = w’' and by Proposi-
tion 1, w; has an occurrence over a cut. The cut divides wn
into w},w, and |wi| <l or |wi| <.
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Continue on for 4|E| + 1 steps. Because there are no more
than |E| cuts in h, there must be two indices 79 < jo <
4|E| + 1 such that wi, and wj, (or wz-_o1 and wj"ol) hit the
same cut, say (g, ¢+ 1) of h(u), and either |wj,|, jwj | <lor
lwit|, lwj,| < I. Suppose w.lo.g. that wi, and wj, hit the
same cut, and |w} |, |wj | < (see Figure 1). We know that

same cut (q,q+1)

Figure 1: Visualization of proof of Lemma 8.

Wiy = viwjovz and |vi| < (jo — i)l and also that
viwj, = hlg+1,q+ 1+ |viwj,|] = wipvl

for some v1,v;. Then by Lemma 3, wj, = uo(vouo)® for
certain p > 0, and |vouo] = jv1]. The statement of the
lemma follows from the fact that h is a minimal solution,
hence by Proposition 1, p < 2¢181and so can be encoded
by c|E| bits. [

LEMMA 9. Let w be a factor of Fiy1h(u). Then the fol-
lowing hold:

1. It is refined in Fih(u) by a sequence of factors S and
(8)® can be represented by an erponential ezpression
of size O(|E|?).

2. Moreover, any two occurrences of w in Fiyah(u) which
have the same extended factor are refined in Fih(u) by
the same sequence of extended factors.

PROOF. Part 1. By Lemma 8, w = wiwhws with jw;| <
2l|E| and p can be encoded by c}E| bits. First, let us remark
that the proof of Lemma, 11 in [18] works for the general case
|w| < (alE| + b)l + ¢, where a,b, ¢ are positive integers. We
are going to use this case below. If |wj| < 2I then |w| <
(4|E|+2)I, and proceed as in the proof of Lemma 11 in [18].
Otherwise, let us write w§ = vyvovs with |vi| = |vs| =; so
W = wiv1v2v3we.

Because |wivi| < 2|E|l + 1 and |vaws| < 2|E|l + 1, we can
apply Lemma 11 in [18] to these pieces. As for vz, we can
write vz = zlw’z’l zs with |2;] < |wz|. The key point now
is the observation that the D;-factors of v are periodic: If
certain word of D; occurs in vs determining a boundary in
certain copy of ws, then that same word of D; determines a
boundary in each copy ws in vz (thus the choice of v1,v2).

Hence the extended factorization of the middle part w’z’, is
just the extended factorization of any copy of w» raised to
the power p’. Because p' < p < 2°/%! and |wa| < 2|EJl, it
follows that can be represented in space O(|E|*).

For Part 2, just notice that both occurrences of w must occur
inside identical contexts wiwws with |wi| =1+1. O



5. FACTOR EQUATIONS

It will be convenient to view free SGA equations as se-
quences of words instead of words themselves. So for ex-
ample, the equation (zay™', abzz) can be thought of as the
pair of sequences (z,a,y7 "), (a,b,z,2). A factor equation
is a pair (U, V) of sequences of of elements of (£* U V). A
solution is an assignment h: ¥V — S, where S is the set of
sequences of elements of £* such that the substitution k(x)
for the variables x occurring in U or V make both sequences
equal (i.e. both sequences have same i-th factors). Two
factor equations (Ui, V1) and (Us, V2) are isomorphic if the
sequence Uy, =, V1 is isomorphic to Uz, =, V3, where ‘=" is a
new symbol.

Notice that a free SGA equation over ¥ is naturally a factor
equation over X: the sequences built by transforming the
pair of words into a pair of sequences (each symbol is trans-
formed into an element of the sequence). In what follows we
will talk only of factor equations, and identify a free SGA
equation (via the above inclusion) with the corresponding
factor equation.

Let us recall some facts which will be useful in what follows.
E = (u,v) denotes a satisfiable free SGA equation, and h a
minimal solution of it. Let us assume that w = u,; - - - u, and
U= w1 U, for u,v; € BUV, If ug is a variable or the
inverse of a variable, say z, and i < j are such that h(us) =
h(u)[3, 5], then from Lemma 6 we know that if ker FjA(z) is
not empty,

((Fih(u)li, 51)° = (R1)*, (ker Fih(2))%, (R2)*  (6)

where (R1)®, (R2)® can be represented by exponential ex-
pressions of size O(|D|?). In particular, (ker Fih(z))® is the
same sequence for all occurrences of the variable z in E.
Also, from Lemma 7 we know that if k(z) and h(z~!) occur
in Fih(u),
(ker Fi h(z™))* = ((ker Fy h(z))™)". (7

DEFINITION 4 (FACTOR EQUATIONS Ej(h)). Let I > 1

be an integer, and E and h as before.

1. For each estended factor (w,vi,v2) in (Fih(u))® de-
fine a fresh constant C(y, vy vy)- Also, if (w,v1,v2) #
(w v vit) and both occur both in (Fih(u))®, iden-

tify the constants c and c,

H (w,v1,v2)°

(Lt)_1,1;2_1,1/1
2. Let (w,v1,v2) be an estended factor in (Fyh(u))®. De-
fine the map ()" as follows:

wuiwgy & (Wv1,02) =

(a) (w,v1,v2)" = Cw,v1,v2)€
(w™ vyt oY),

(6) (w,v1,v2)" = C,vy,05) Otherwise.

3. Define Uy as follows (the case for Vi is similar): con-
sider the extended factorization (Fih(u))®. Note that
for each symbol ux of u which is a variable (say x) and
ker Fih(z) is not empty, (ker Fih(x))® occurs as a sub-
sequence of (Fih(u))®. Then U, is built from (Fih(u))®
by replacing each such subsequence by the one-element
sequence consisting of the corresponding variable .

4. Define Uf" from U by replacing each element (w, v1, vz2)
of Uy which is not a variable by (w,v1,v2)*. Similarly
for V*.

Then define E;(h) as the pair (U, V}*).
For | = 0 we make the convention that Up = u1,...,un and
Vo =v1,...,vn, ie., Eolh) is E.

LEMMA 10. Same notations as before. For each integer
1 >0 it holds:

1. Ei(h) is satisfiable.

2. Ei(h) can be represented by an ezponential ezpression

of size O(|E®).

Proor. For Part 1 consider the map h’ defined for con-

stants as h’(c) = ¢, and for variables as h'(z) = ((ker F;h(z))®)",
that is (ker Fih(x))® with ( )* applied to each component.
Observe that ((ker Fih(z)))* does not depend on the oc-
currence of the variable z. Also A'(z) = (h'(z™1))~! follows
from (7) and the identification of some counstants in part 1 of
Definition 4. Finally it is clear from the definition of E;(h)
that h'(U;") = K (V).
For Part 2 just note that U; consists of: (1) possibly all
the constants of u (no more than those of E), and (2) the
extended factorization of each h(u;) for u; variables, with
(ker F1h(u;))° replaced by one symbol when it is not empty.
Then use Equation (6) and Lemma 6 to conclude that U; can
be represented by an exponential expression of size O(| E|*).
Hence U;", V;" have also a small representation. [J

DEFINITION 5 (NON-DETERM. TRANSFORMATION —).
Let En, B> be ezponential expressions representing factor equa-
tions. Then E1 — E, if and only if Ey is isomorphic to
an equation obtained from E; as follows

1. Replace constants of E1 by ezponential ezpressions of
size O(|E|®) with ezponents at most 2¢1E! consistently,
i.e., if a:= exp, then a™ ' := (exps) 1.

2. Suppose u is a variable and S1, Sz sequences. If all oc-
currences of u (resp. u™') in E1 are in the contest of
subsequences of the form Si,u, Sy (resp. S5, u™*,S71)
and they do not overlap, then replace all occurrences
of S1,u, 8y (resp. Syt u™',S7") by u (resp. u~!).

3. Replace some occurrences of a subsequence S by a new
variable y and S~ by y~! (for the same variables, the
sequences replaced should be the same).

LEMMA 11. Let E1, FEy be ezponential expressions repre-
senting factor equations. If Ey — E and E is satisfiable,
then E, is satisfiable.

PRroOOF. Let h1 be a solution of F;. For each constant q,

. denote by exp, the expression which replaces a in Step 1 of
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the definition of —». This replacement defines a morphism
o with o(w™") = (o(w))~" such that o(a) = exp, for each
constant a of E;.

Denote by ST, .53 the exponential expressions introduced in
Step 2 of the definition of —3 for the variable z. Denote
by PY the sequence of constants which is replaced by a new
variable y. Then it is not difficult to check that

hale) = {Si‘,a(hl(z)),Sf

if x occurs in E; and E>

pPY if y does not occur in E;

is a solution of E2. Observe that h2(z™') = (ha(z))™! be-
cause (ch1(2))™! = o(hi(z™Y)) and PY"" = (P¥)"!. O



PROPOSITION 2. For each integerl > 0, it holds E;y1(h) —  This theorem is proved in [4]. For the sake of completeness

Ei(h).

ProOF. For | = 0, it is easy to check that Ei(h) —
Eo(h).
Forl > 1, by Lemma 9, (F1h(u))¢ can be got from (Fiy1h(u))°
by replacing each extended factor of the sequence (Fi41h(u))®
by a sequence of extended factors representable by an expo-
nential expression of size O(|E|®), and moreover (Part 2 of
the lemma) two factors with identical extended factors are
replaced by the same sequence of extended factors.
Now recall that Uy, differs from (Fy41h(u))¢ in that for each
occurrence of a variable z in E with ker;11 h(z) not empty,
the corresponding occurrence of (ker;43 h(z))® is replaced by
. Also recall that if ker; h(z) is not empty, then (ker; h(x))®
is a subsequence S of (Fih(u))®. Moreover, if additionally
ker;y1 h(z) is not empty, then (ker h(z))® = S1,(K)°, 52
where K is a refinement of ker;+1 h(z) and S;, S2 are some
sequences of extended factors.
From these facts, it is clear that E;y1(h) — Ei(h) is got
by doing the steps 1,2,3 (in that order) in Definition 5. L[]

Remark. Observe that if E] (resp. Ej,;) is an expo-
nential expression representing E;(k) (resp. Ert1(h)), then
Ej,; — Ej. (Same replacements, sequernces, etc. used in
Ei11(h) — Ei(h) work here.)

LEMMA 12. (a = a) —"* E if and only if E is satisfiable.

ProoF. If E = (u,v) is satisfiable, let h be a minimal
solution. Then Ejn(uy (k) —* Eo(h) by Proposition 2, and
observe that Ejs(y)(h) is isomorphic to (a = a) and Eo(h)
is E. B
If E is not satisfiable, then from Lemma 11 it follows that
the equation (¢ = a), which is trivially satisfiable, cannot
rewrite to E. [}

THEOREM 2. Satisfiability of equations in free SGA is in
PSPACE.

ProoF. Consider the space M of exponential expressions
of size O(|E|®) representing factor equations. Consider (a =
a) and apply nondeterministically —. That the algorithm
is correct follows from Lemma 12 and the fact that the chain
(a a) —* E can be done in M, which follows from
Lemma 10, Part 2, the remark above, and Lemma 1. O

6. SATISFIABILITY OF EQUATIONS IN
FREE GROUPS

As we mentioned in the introduction, the first step to de-
cide satisfiability of equations in free groups is the following
reduction:

THEOREM 3 (THEOREM 9, [4]). For each equation E in
a free group G with generators C there is a finite set Q of
equations in a free semigroup with anti-involution G’ with
generators C U {c1,c2}, c1,c2 ¢ C, such that the following
hold:

1. E is satisfiable in G if and only if one of the equations
in Q is satisfiable in G'.

2. There is ¢ > 0 constant such that for each E' € Q, it
holds |E'| < c|E|3.
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we will indicate the steps of the proof given in [4] using the
Propositions in the Appendix.

1. From E generate a finite list of system of equations in
SGA with properties as in Proposition 4.

2. From each of these systems, using Proposition 3 build
a non-contractible equation in SGA.

3. From each non-contractible equation got in (2), gener-
ate a list of systems of equations in SGA with proper-
ties as of Proposition 5.

4. Again use Proposition 3 to obtain from each system in
(3) and equivalent equation in SGA.

Remark. The equations in the set @ can be generated
non-deterministically in polynomial space.
Finally the main result of this paper:

THEOREM 4. Satisfiability of equations in free groups is
i PSPACE.

Proo¥. The algorithm works as follows: From an equa-
tion E generate non-deterministically an SGA-equation E’
in the set Q (as in Theorem 3). Then use Theorem 2. [

After Theorem 4, the current complexity of the problem of
satisfiability of equations in free groups is between NP-hard
(see [2]) and PSPACE (this paper).

6.1 Comparison with other work

The only published upper bound on the complexity of equa-
tions in free groups is [9], which is non primitive recursive.
The problem of equations in free SGA was stated in [4],
where the problem about its decidability is asked. It seems
that nothing was known before about this problem. Diekert
and Hagenah [1] have recently proved independently of us
its decidability. The lower bound NP-hard is proved in [{4].
Theorem 2 gives a tight upper bound. As for the method-
ology in proving Theorem 2, Theorem 1 generalizes (8], and
Lemmas 4, 5, 6, 8, 10, 9, 11, 12 and Prop. 2 have their
counterparts in {18].
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Appendix

The first proposition is an old observation of Kmelevskii [5]
for free semigroups which extends easily to free SGA:

PRrROPOSITION 3  (PROPOSITION 4, [4]). For each system
of equations ¥ in free SGA with generators C, there is an
equation E in free SGA with generators CUc, ¢ ¢ (CUC™?),
such that

1. S is a solution of E if and only if S is a solution of ..
2. |E) < 4]%|.

Moreover, if the equations in £ are non-contractible, the E
s non-contractible.

ProposiTION 4 (LeEMMA 1.1 IN [14]). For any non con-
tractible equation E in the free group G with generators C
we can construct a finite list of systems of non-contractible
equations in the free SGA G' with generators C y,...,%
such that the following conditions are satisfied:

1. E has a non-contractible solution in G if and only if k >
0 and some system X; has a non-contractible solution
in G'.

2. There is a constant ¢ > 0 such that |Z;| < c|E|® for
eachi=1,...,k.

3. k< 9¢l B for some constant ¢ > 0.
ProrosITiON 5 (PROPOSITION 3, {4]). For each non con-

tractible equation E there is o finite list of systems of equa-
tions X1,..., Sk such that the following conditions hold:

1. E has a non-contractible solution if and only if some
of the 3; has a solution.

2
2. k<29%1° for ¢ > 0 a constant.

3. There is a constant ¢ > 0 such that for each i, |Z;| <
c|E|.



