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Abstract. We study formal aspects of querying databases containing
RDF data. We present a formal definition of a query language for RDF
and compare it with other proposals. Our language is intended to make it
easy to formalize and prove results about its properties. We study novel
features of query languages derived from the presence of blank nodes and
reification. Finally we provide complexity results for query processing,
static optimization of queries, and redundancy elimination in answers.

1 Introduction

The Resource Description Framework (RDF) [10] is the proposal of the W3C
for a standard metadata model and language. RDF follows the W3C design
principles of interoperability, evolution and decentralization. The RDF model is
simple: the universe to be modeled is a set of resources (essentially anything that
can have a universal resource identifier, URI); the language to describe them is
a set of properties (technically binary predicates); descriptions are statements
very much in the subject-predicate-object structure, where predicate and object
are resources or strings. Both subject and object can be undetermined objects,
known as blank nodes. The subject or object of an RDF statement can be another
statement, a feature known as reification. A vocabulary of properties for this
language can be defined along the lines given in the RDF Schema language [12].

Languages for querying RDF have been developed in parallel with RDF itself.
We can mention rdfDB [3], an influential simple graph-matching query language
from which several other query languages evolved. Among them, SquishQL [5]
is a graph-navigation query language that was designed to test some of the
functionalities of an RDF query language. It adds constraints on the variables
and returns as results a table. SquishQL has several implementations like RDQL
and Inkling [5]. RQL [4] has a very different syntax based on OQL, but can
perform similar sorts of queries. It is a typed language following a functional
approach and supports generalized path expressions. Other languages are Triple
[9], a query and transformation language, QEL [7], a query-exchange language
designed to work across heterogeneous repositories, and DQL [15], a language
and protocol for querying DAML+OIL knowledge bases. Good surveys are [16,
17].



1.1 Problem Statement

There is very little research so far on foundational aspects of these languages,
such as query semantics and the complexity of query processing. Such research
is made necessary by the new features that arise in querying RDF graphs as
opposed to standard databases; in particular, two main differences that deserve
formal study are blank nodes and reification.

The presence of blank nodes in RDF graphs introduces redundancy. Further-
more, queries themselves, as we will show later, can create redundancy. Central
issues in RDF query processing are how to keep RDF graphs as concise as pos-
sible, and what is the computational cost of obtaining such representations.

In order to support reification, the language needs expressiveness beyond
what is encountered in classical databases. Another open issue is whether this
extra expressiveness boosts the complexity of query processing and size of an-
swers compared to classical databases.

1.2 Contributions

We study formal aspects of querying databases containing RDF data. We view
RDF specifications as data (although we keep its knowledge base semantics),
and study how to efficiently retrieve information from them.

This paper presents:

– A formal definition of a query language for RDF and comparison with other
proposals (such as DQL). We present the language in a streamlined form
that is not intended for practical use, but to make it easy to formalize and
prove results about its properties.

– A formal study of novel features of query languages derived from the presence
of blank nodes and reification, and the differences with standard languages
studied in the database community.

– Complexity results for query processing, static optimization of queries, and
redundancy elimination.

1.3 Related Work

One point of view has considered RDF metadata as a knowledge base and ap-
plied knowledge representation and reasoning techniques to RDF metadata. An
example of this approach is DQL, a query language for the Semantic Web pro-
posed in [15]. We discuss the database aspects of DQL in Section 3.4.

Another point of view follows the SQL/XQL approach, which views RDF
metadata as a relational or XML database. We already mentioned several pro-
posals and working implementation of such languages. They mainly concentrate
on expressiveness and implementation issues. Although very rich from these
points of view, none of them address formal issues. There are studies compar-
ing features of these languages, such as syntax (body, head and variables in the
query), serialization (XML, N3, ASCII), implementation aspects, etc. See for
example [16, 17].



2 Preliminaries

In this section we present the RDF model following the W3C documents [10–12]
and discuss different variants of some notions.

2.1 RDF graphs

Assume there is an infinite set U (RDF URI references); an infinite set B = {bj :
j ∈ N} (Blank nodes); and an infinite set L (RDF literals). A triple (v1, v2, v3) ∈
(U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple. We often denote by UBL
the union of the sets U , B and L.

Definition 1. An RDF graph (just graph from now on) is a set of RDF triples.
A subgraph is a subset of a graph.

A graph is ground if it has no blank nodes.
Two graphs G1, G2 are isomorphic3 if G2 is obtained from G1 by renaming its

blank nodes by blank nodes in a consistent manner (i.e. avoiding name clashes).
(Note that if G2 can be obtained from G1 in this way, then so can G1 from G2.)

The merge of two graphs G1, G2 is defined as the union of the set of triples
of G1 and G′

2, where G′
2 is an isomorphic copy of G2 whose set of blank nodes

is disjoint with that of G1. (Note that the merge is unique up to isomorphism).

2.2 RDF graphs and standard graphs

RDF graphs are not quite classical graphs. They resemble labelled graphs with
the particularity that edge labels are chosen from the set of nodes of the graph.

Definition 2. 1. A pseudograph is a triple (V,E, f) where V is a finite set of
nodes, E is a finite set of edge names, and f is a function from E to V ×V .
(That is, a directed graph that allows self-loops and multiple edges between
pairs of nodes).
An edge-labeled pseudograph (just pseudograph from now on) is a pseudo-
graph with an additional labeling function � : E → V .

2. Two pseudographs (Vi, Ei, �i) are isomorphic if (1) There is a (directed)
graph isomorphism φ : (V1, E1) → (V2, E2), and (2) φ ◦ �1 = �2 ◦ φ.

With the previous definition, an RDF graph is a pseudograph where V is
a disjoint union of three sets: the URI References, Blank nodes, and Literals,
respectively, that appear in any triple in the RDF graph, and with the following
restrictions: (1) source nodes cannot be literals; (2) The image of the labeling
function � is contained in the set of URI references. The next theorem follows
directly from the definitions.

Theorem 1. Two RDF graphs G1, G2 are isomorphic if and only if there is an
isomorphism φ : G1 → G2 of pseudo-graphs such that φ preserves URI references
and literals.
3 In the RDF Concepts document [13] this notion is called “equality” of graphs.



Note 1 (Encoding of Standard Graphs). Note that standard graphs can be en-
coded by RDF graphs as follows. Choose a distinguished URI reference e. For
a graph G = (V,E), choose a set S of distinct blank nodes of the same size
as V , and a bijection c : V → S. The graph G is encoded by the RDF graph
{(c(u), e, c(v)) : (u, v) ∈ E}.

2.3 Semantics of RDF graphs

In this section we deal with simple RDF Graphs, i.e. those that do not use a
pre-defined vocabulary (class, subject, object, etc.) defined in RDF Schemas; in
Section 3.3 we deal with a fragment of RDF(S) vocabulary. We implicitly use the
same model-theoretic semantics as the W3C RDF Semantics document [11], al-
though all we need for our purposes is to define entailment, which is characterized
by Theorem 2 below, and corresponds roughly to logical consequence between
the logical specifications defined by both graphs. The RDF Semantics document
[11] describes entailment as follows: “Entailment is the key idea which connects
model-theoretic semantics to real-world applications. If A entails B, then any
interpretation that makes A true also makes B true, so that an assertion of A
already contains the same ”meaning” as an assertion of B; we could say that the
meaning of B is somehow contained in, or subsumed by, that of A.”

A mapping is a function µ : UBL → UBL preserving URI references and
literals (i.e., µ(u) = u and µ(l) = l for all u ∈ U and l ∈ L). Given a graph
G, we define µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. A
mapping µ is consistent with G if µ(G) is an RDF graph (i.e., if s is a subject
of a triple, µ(s) ∈ UB). In this case, we say that the graph µ(G) is an instance
of the graph G. An instance of G is proper if µ(G) has fewer blank nodes than
G. (This means that either µ instantiates a blank node or identifies two blank
nodes of G.)4

The following theorem characterizes entailment among RDF graphs. For the
purposes of this paper, we can think of it as the definition of entailment.

Theorem 2 (cf. RDF Semantics [11], Interpolation Lemma). Let G1, G2

be RDF graphs. Then G1 entails G2 (denoted G1 |= G2) if and only if an instance
of G2 is a subgraph of G1.

We say that two graphs are equivalent (denoted G1 ≡ G2) if G1 |= G2 and
G2 |= G1.

Example 1. A graph G entails any of its subgraphs.

Example 2. Consider the RDF graphs G1 = {(a, b, c), (X, b, c), (a, b, Y )} and
G2 = {(U, b, V ), (V, b, c)}, and G3 = {(a, b, c), (X, b, Y )}, where capital letters
indicate blank nodes. Then G1 |= G3 but G1 �|= G2.

4 In the RDF Semantics document [11] “proper instance” refers only to the case where
a blank node is instantiated.



Note 2. Yang and Kifer, in [14], present an F-logic version of RDF. They define
two notions of entailment: |= and |≈. The first corresponds to the standard notion
defined in the RDF Semantics document of the W3C as defined in Theorem 2.
The second corresponds to a notion obtained using the same characterization
of Theorem 2, but considering only non-proper mappings in the definition of
instance.

2.4 Minimal representations: lean graphs

Conciseness in RDF is bound to the notion of lean graphs. In this section we
study lean graphs.

Definition 3. A graph G is lean if no proper instance of G is a subgraph of G.
(That is, there is no mapping µ such that µ(G) is a proper subgraph of G.)

Note 3. There is a significant difference between this notion of “lean” and the
one stated in the RDF Semantics document [11]. The document reads: “a graph
is lean if none of its triples is an instance of any other.” Our definition captures
more precisely the notion of “no redundancy” in an RDF graph which is the
idea behind the concept of “lean”. While every graph that is lean in the sense of
that document is lean in our sense, the converse is not true. See for example the
graph G1 in Example 3, which under the RDF Semantics document definition
is not lean.

With our definition we can still prove Anonymity Lemmas 1 and 2 in [11]:
Anonymity Lemma 1: A lean graph does not entail any of its proper instances.
Anonymity Lemma 2: If E′ is obtained from a lean graph E by identifying
two distinct blank nodes, then E does not entail E′.

Our notion has other desirable properties, e.g. Theorem 3 below.

Example 3. Let G1 = {(X, b, d), (X, b, c), (Y, b, c), (Y, b, e)} and G2 = {(a, b, c),
(X, b, c), (Y, b, c)}. Then G1 is lean, but G2 is not lean.

Fundamental issues regarding lean graphs have not been yet studied. The
first fundamental question that arises is whether there is a unique lean graph
equivalent to a given one. The following theorem answers this question:

Theorem 3. Each RDF graph is equivalent to a unique (up to isomorphism)
lean graph.

Proof. Define in the set of RDF graphs, the relation G ⇒ µ(G), if µ is a mapping
and µ(G) is a proper subgraph of G. The relation ⇒ has the property: if B ⇐
A ⇒ C, then there is D such that B ⇒∗ D and C ⇒∗ D (where ⇒∗ is the
transitive closure of ⇒). The proof of this goes as follows: Let B = µ1(A) and
C = µ2(A), and consider the mapping µ2µ1. Then, because (µ2µ1)(µ2µ1)j(A)
is a subgraph of (µ2µ1)j(A), for some finite k ≥ 1 it holds that (µ2µ1)k(A) is
isomorphic to (µ2µ1)k+1(A).

From its definition, it follows that the relation ⇒ clearly cannot have infinite
chains A1 ⇒ A2 ⇒ · · · . From the above argument, it also follows that ⇒ is



confluent. (For rewriting concepts, see [2].) Hence for each G there is a unique
G∗ such that G ⇒∗ G∗ and G∗ is irreducible with respect to ⇒ (i.e. is lean).
This is the desired unique lean graph.

The following results show that it is hard to compute lean graphs.

Theorem 4. Deciding if a graph is lean is coNP-complete.

Proof. Recall that RDF graphs can encode standard graphs. Hence the proof is
an encoding of the problem CORE:

Instance: A graph G
Question: Is there a homomorphism of G to a proper subgraph?
This problem was shown to be NP-complete by Hell and Nesetril [6].

From the above theorem it follows that finding minimal representations for
graphs is hard.

3 Querying RDF databases

An RDF graph can be considered a standard relational database: a relation of
triples with the attributes Subject, Predicate, and Object. The difference with
standard relational databases is the presence of blank nodes, which stand for
anonymous elements.

Thus, for us, an RDF database will be simply an RDF graph.

3.1 Query language

Let V be a set of variables (disjoint from UBL).
As query language, we will use the notion of tableau borrowed from the

database literature (see for example [1]) but slightly extended to allow also a set
of tuples in the head. A tableau is a pair (H,B) where H,B are RDF graphs over
V ∪UBL and all variables of H occur also in B. We often write a tableau in the
form H ← B to indicate the similarity with logic programming and Datalog.

For example, a tableau such as

(?Dept,pays, ?Instr) ← (?Instr, lectures, ?Course), (?Dept, offers, ?Course),

where identifiers preceded by ? are variables, intuitively defines the instructors
paid by a department to be those who teach courses offered by the department.

Definition 4. A query is a tableau (H,B) plus a set of constraints C, which
is a subset of the variables occurring in H. In other words, a query is a triple
(H,B,C) such that:

1. H is an RDF graph over UBL ∪ V , with var(H) ⊆ var(B).
2. B is an RDF graph over UL ∪ V . (i.e. has no blank nodes).
3. C ⊆ var(H). (Constraints).



For example, the tableau above is a query with no constraints. We can add to
it the constraint {?Instr}; intuitively, as we will formalize in the next subsection,
this means that the ?Instr variable must be bound to a non-blank element in
each answer to the query.

Note 4. The condition var(H) ⊆ var(B) avoids the presence of free variables
in the head of the query. The presence of blank nodes in the body of the query
is unnecessary, because –as we will see– a variable plays exactly the same role
in this position. However, we do allow blank nodes in the head of the query to
support reification at the query level. (See Examples 7 and 8 in Section 3.3.)
Finally, as shown in the example above, C ⊆ var(H) will represent the set of
variables in the query that we are forcing to be instantiated by constants.

Note 5. Blank nodes in the head of the query are technically free terms of the
form f(x1, . . . , xn), where x1, . . . , xk are variables occurring in the query, and f
is a function symbol. Hence in our language, there is an arbitrary set of uninter-
preted function symbols of different arities. We follow here the same approach
as [8].

3.2 Answers to a query

Let D be a database, and V a set of variables.
A valuation is a function v : V → UBL. For a set C of variables, the valuation

v satisfies the constraint C (denoted v |= C) if for all x ∈ C, v(x) is not blank.5

A matching of the graph B in database D is a valuation v such that an
instance of v(B) is a subgraph of D, i.e. such that D |= v(B).

The matchings that interest us are those that satisfy the constraints C.

Definition 5. Let q = (H,B,C) be a query and D a database. A pre-answer to
q over D is the set

preans(q,D) = {v(H) : v(B) is a matching in D and v |= C}.
A graph v(H) is called a single answer of the query q over D.

We can combine single answers in two different ways to obtain the answers
to a query, leading to two main query semantics:

1. ans∪(q,D) is the set-theoretic union of all single answers. With this ap-
proach, queries properly capture the information carried by blank nodes
inside D (in particular when blank nodes play the role of bridges between
two single answers).

2. An alternative approach, ansm(q,D), is to merge all single answers, which
means to rename blank nodes if necessary to avoid name clashes.

Note that if there are no blank nodes in D, both approaches are the same
and we are in the realm of classical databases.
5 This constraint is called a must-bind variable in DQL [15].



Proposition 1. Let D,D′ be databases, and q a query. Then for both semantics,
if D |= D′ then ans(q,D) |= ans(q,D′).

Proof. By hypothesis, there is a mapping µ such that µ(D′) is a subgraph of
D. It is enough to prove that every graph G ∈ preans(q,D′) is a subgraph of
a graph in preans(q,D). Let H the head and B the body of the query. Then
G = v(H) for a valuation v, with v(B) a subgraph of D′. Then µ(v(B)) is a
subgraph of D, hence µ(G) = µ(v(H)) ∈ preans(q,D).

Proposition 2. For all queries q and databases D, ans∪(q,D) |= ansm(q,D).

Proof. The statement follows from the fact that G1 ∪ G2 |= (G1 merge G2). To
check this last fact just consider the mapping from (G1 merge G2) → G1 ∪ G2

that reverses the renaming of variables done in the merge.

Note 6. The converse of Proposition 2 does not hold. Consider the identity
query q and the database D = {(X, b, c), (X, b, d)}. Then ans∪(q,D) = D
and ansm(q,D) = {(X, b, c), (Y, b, d)}. Clearly there is no mapping from D to
ansm(q,D).

In the sequel, unless stated otherwise, we will assume the union-semantics.

Example 4. Consider a database D which has a blank node B with several prop-
erties, i.e., there are in D several triples (B, p1, z1), (B, p2, z3), . . . . If we follow
the merge-semantics, we cannot retrieve the properties of B with a data inde-
pendent query. On the other hand, if we follow the union-semantics, the query
H = (X, feature, Y ), B = (X,Y,Z), C = ∅ will do it.

Example 5 (Identity query). With merge-semantics, there is no data-independent
query that retrieves the whole database for all D’s. With the union-semantics,
the query q defined by H = (X,Y,Z), B = (X,Y,Z) and C = ∅ returns all
triples in D, i.e. ans(q,D) = D.

Example 6. Consider an RDF database consisting of tuples of the following sort:

(Course, name, CourseName)
(Lecturer, lectures, Course)
(Lecturer, name, LecturerName)
(Department, offers, Course)
(Department, belongs, University)
(University, located, Country)

In this database name, lectures, offers, belongs, located are RDF predicates
defined in some ontology. Courses, Lecturers, Departments and Universities are
URLs. CourseName is of type literal.

The predicates belongs, worksAt and teachIn which appear in the answers
belong to another ontology.



1. Database courses in Canada. First consider the query defined by

H = (?Department,belongs, ?University)
B = (?Course,name, “Database”), (?Department, offers, ?Course),

(?Department,belongs, ?University), (?University, located, “Canada”)
C = {?Department, ?University}.

This query returns all triples (Department, belongs, University), where De-
partment belongs to University and offers a Database course, University is
located in Canada, and enforcing that Department and University are not
blank.

2. In what universities (and if known, what departments) does John Bassi lec-
ture?

H = (?Lecturer,worksAt, ?University), (?Lecturer, teachIn, ?Department)
B = (?Lecturer,name, “John Bassi”), (?Lecturer, lectures, ?Course),

(?Department, offers, ?Course), (?Department,belongs, ?University)
C = {?Lecturer, ?University}.

This query will return the name of all Universities at which John Bassi
teaches. If the database contains information about the particular Depart-
ment where Bassi teaches, it will be included. Otherwise, the Department
will appear as a blank node in the answer.

Note 7 (Redundancy). We give some observations on redundancies in queries,
databases and set of answers.

1. It is desirable to have queries with lean heads. Otherwise, the answer gener-
ated will have redundancies which could have been avoided.

2. It is not always possible to have lean graphs in body of queries. For example,
consider the query q = (H,B, ∅), where H = (?Course, related, “Database”)
and B = (?Department, offers, “Database”), (?Department, offers, ?Course).
Clearly B is not lean and is equivalent to the lean graph B′ = (?Department,
offers, “Database”). It turns out that the query q cannot be reduced to one
with body B′ (see Note 9).

3. Even having lean databases and queries with lean heads and bodies does not
avoid redundancies in the answer set. Consider the lean graph G1 in Exam-
ple 3, and the query (Z, b, c) ← (Z, b, c). The answer set is {(X, b, c), (Y, b, c)}
which is not lean.

3.3 Reification

Now we will explore the previous concepts when some constant vocabulary is
introduced. In this section we will restrict ourselves to a small subset of RDF’s
vocabulary description language, RDF Schema, which is an extension of RDF. It



provides mechanisms for describing groups of related resources and the relation-
ships among these resources. We will be particularly interested in the vocabulary
needed to do reification.

Consider the following statement:

A triple (a, b, c) is a statement. (1)

To state this inside RDF one can say: “There is an object B that is a statement,
whose subject is a, predicate is b, and object is c.” In order to write this down
as a set of RDF statements, we need a vocabulary. We will use the following
predicate constants:

rdf:statement
rdf:subject
rfd:predicate
rdf:object
rdf:type
They have a more or less self-explanatory semantics. For example, the triple

(a, rdf : type, c) means a is an instance of the class c. Using this vocabulary
(whose formal definitions can be found in [12]), the sentence in (1) can be ex-
pressed as the following set of triples (when not needed, we will avoid the use of
the namespace prefix rdf):

(B, type, statement), (B, subject, a), (B, predicate, b), (B, object, c)

This process is called reification of the statement. Our goal in this section
is to study our query language extended with the vocabulary of reification in
RDFSchema [12].

Note 8. In RDF semantics, statements are referred to by names, i.e. they are
not by themselves objects. An implication of this is that from the existence of
a triple (a, b, c) it does not follow that its reification also exists. Observe –using
Theorem 2– that a triple does not entail its reification and its reification does
not entail the triple. RDF follows the conservative approach that a statement
is referred to, and there can be several such references, all distinct. Another
alternative is to assume that the triple itself is an object of the universe. This is
the approach of [14], where the advantages of such an approach are argued. From
a database point of view, the current approach of RDF seems more adequate.
With the current RDF semantics, an RDF specification, i.e. an RDF graph
(database) is a finite set of objects, and answers to queries (as defined in this
paper) are finite set of objects. However, if the triple itself is an object i1, then
having (a, b, c) in a database D would imply that (i1, subject, a) is also a valid
statement (and hence an object i2), hence (i2, subject, i1) is a valid statement,
and so on.

Example 7. The query that reifies a triple (a, b, c) (and creates a blank node
f(a, b, c) to refer to it) is:

(f(a, b, c), type, statement), (f(a, b, c), subject, a),
(f(a, b, c), predicate, b), (f(a, b, c), object, c) ← (a, b, c).



The answer to this query applied to a database D is exactly a reification of the
triple (a, b, c) if it exists in the database D. Note that we need a Skolem function
f to give a different blank node to each triple.

Example 8. A generalization of the previous example: the reification of all triples
in the database D.

(f(X,Y,Z), type, statement), (f(X,Y,Z), subject,X),
(f(X,Y,Z), predicate, Y ), (f(X,Y,Z), object, Z) ← (X,Y,Z).

Example 9. All properties of an object b (in the database to be queried):
(X, type, property) ← (b,X, Y )
It is interesting to note that now we can test Leibniz’s identity on a database

by just comparing the results of two queries. Recall Leibniz’s identity Law: a ≡ b
if and only if for all properties P (·), P (a) iff P (b).

Example 10. (Following an example in Yang and Kifer [14]). All statements
made by Encyclopedia Britannica are true. Note that we will need different
queries depending on the structure of the database containing the information.

1. If we assume that Encyclopedia Britannica is a database containing all its
statements (triples), the following query of would do the work:

(f(X,Y,Z), veracity, true), (f(X,Y,Z), type, statement),
(f(X,Y,Z), subject,X), (f(X,Y,Z), predicate, Y ),

(f(X,Y,Z), object, Z) ← (X,Y,Z).

2. If we assume that the statements of Encyclopedia Britannica are mixed in
with several other statements from other sources (but already referred to as
belonging to the E. Britannica) we need a query like:
(X, veracity, true) ← (X, type, statement), (X, made, EncycB).

3.4 The language DQL

We will discuss here aspects of DQL that are relevant from a database perspective
and compare them with our approach.

1. DQL has a query pattern (our B), an answer pattern (our H) and a set of
constraints very similar to our set of constraints C.

2. DQL has three sets of variables, “must-bind”, “don’t-bind” and “may-bind”,
which are a partition of the set of variables occurring in the query. Must-bind
variables are those that must be bound in each answer. Don’t-bind variables
are those that must be not bound. In DQL this schema is oriented towards
the type of answers the user is asking.
In our setting, “must-bind” variables correspond to the set of constraints C,
“don’t-bind” correspond to the the set var(B) \ var(H) (they do not occur
in the answer), and “may-bind” correspond to var(H) \ C.



3. In DQL the answer set is defined as the largest set of single answers that are
entailed by the database such that no answer in the set is entailed by any
other answer in the set.
We do not enforce this condition, due to complexity issues shown in Theo-
rem 4. We think that redundancy cleaning should be an option, and in the
next section study the implications of avoiding such redundancies.

4 Complexity issues

In this section we focus on the complexity of query answering. This process
has three main components: computing matchings, minimization of queries, and
redundancy elimination in answers.

4.1 Computing matchings

In order to understand the complexity of computing the set of matchings for a
query over a database, we consider the simpler problem of testing emptiness of
the query answer set. Following the usual database theory practice, we distin-
guish between query complexity, that is, evaluation time as a function of query
size for a fixed database, and data complexity, evaluation time as a function of
database size for a fixed query.

1. Query complexity version: For a fixed database D, given a query q, is q(D)
non-empty?

2. Data complexity version: For a fixed query q, given a database D, is q(D)
non-empty?

Theorem 5. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the database complexity version.

Proof. Reduction of 3SAT to the problem of evaluating a conjunctive query over
a database. Membership in NP follows immediately.

Data complexity version: This follows from the fact that the number of po-
tential matchings of the body of q in D is bounded by the number of subgraphs
of D of size q.

From the proof it also follows that the size of the set of answers of a query
q issued against a database D is bounded by |D||q|, where |D| is the size of the
database (number of triples) and |q| is the number of symbols in the query.

Also note that reification does not play any relevant role in this, that is, even
with reification the query language preserves the tractability of answers.



4.2 Minimization of queries

Since Theorem 5 implies that query evaluation is likely to be exponential in
query size, static optimization of queries is an important goal. To perform this
analysis, we apply techniques similar to classical tableau analysis [1].

A homomorphism h : q′ → q is a substitution (of variables and blank nodes)
θ such that θ(B′) ⊆ B and θ(H ′) = H and C ′ ⊆ C. As usual, we define q ⊆ q′

if ans(q,D) ⊆ ans(q′,D) for all databases D.

Theorem 6. q ⊆ q′ if and only if there exists a homomorphism h : q′ → q.

Proof. Assume there exists a homomorphism h : q′ → q. Then C ′ ⊆ C and
using Theorem 2, for each valuation v, we have v(B) |= v(θ(B′)). Then, for each
database D, if D |= v(B), then D |= v(θ(B′)). Hence, each answer v(H) of q will
also be an answer v(H ′) of q′ (recall θ(H ′) = H and C ′ ⊆ C.)

Conversely, assume q ⊆ q′. Consider the database DB obtained from B by
replacing each variable x by a constant ax. Let v the valuation assigning x to
ax. Then v(H) ∈ ans(q,DB) ⊆ ans(q′,DB). So, there is a valuation v′ such that
D |= v′(B) and v′(H) = v(H). Clearly v = v′ on the variables of H. Consider
the substitution θ = v′ ◦ v−1. The condition C ′ ⊆ C follows from q ⊆ q′.

We say that a query q = (H,B,C) is minimal if there is no query q′ =
(H ′, B′, C ′) equivalent to q such that |B′| < |B| (where |X| means the size of
the set).

Theorem 7. For each query q = (H,B,C) there is a minimal query qm =
(H,Bm, Cm) equivalent to q and Bm ⊆ B and Cm ⊆ C.

Proof. Let q′ = (H ′, B′, C ′) be a minimal query equivalent to q. Then there are
homomorphisms θ1 : q → q′ and θ2 : q′ → q. Consider qm = θ2θ1(q).

Note 9. Observe that this minimization does not coincide exactly with the leaniza-
tion of the body of the query, because the homomorphism that reduces query
q to qm poses another condition besides a mapping from body to body, namely
that it must preserve heads. This is the rason why in Note 7, the query in item
2 cannot be further reduced.

Theorem 8. Let q, q′ be two queries. The following problems are NP-complete.

1. Is q ⊆ q′?
2. Is q ≡ q′?

Proof. NP-hardness: coding of classical tableau. (Note that one relation with 3
attributes suffices.)

Membership in NP follows from noting that a witness is the homomorphism.



4.3 Redundancy elimination

Answers to queries in RDF usually have redundancies. Ideally, the answer set
ans(q,D) should reduce these redundancies to the minimum, i.e. to an equivalent
lean graph.

Now we will apply these results to redundance elimination in queries.
The naive approach to eliminate redundancy in answers is (1) to compute

ans(q,D), and (2) to compute a lean equivalent to ans(q,D). Next theorem shows
that in the worst case there is no better approach.

Theorem 9. Given a lean database D and a query q, to decide whether ans∪(q,D)
is lean is coNP-complete (in the size of D).

The Theorem directly follows the fact that there is a query that computes
the identity and from Theorem 4.

For merge-semantics redundancy elimination can be done much more effi-
ciently:

Theorem 10. Given a lean database D and a query q, deciding whether ansm(q,D)
is lean can be done in polynomial time in the size of D.

Proof. Let A = ansm(q,D) and let us refer to mappings from single answers to
A as single mappings.

The key observation is that, because single answers do not share variables
in merge-semantics, mappings µ : A → A are exactly unions of single mappings
µj : Gj → A for each Gj single answer. (Note that in the case of union-semantics
the union of the µj would not be a function.)

Thus an algorithm for finding proper mapping µ : A → A only needs to
compute single mappings and check whether (1) at least a single mapping is
proper, or (2) two of them share a blank node in their range. This can be done
in time polynomial on the set of single mappings, which size is polynomial on
the size of D. Thus the complete test can be done in polytime.

5 Conclusions and Future Work

RDF databases pose new challenges to query languages, which arise due to
particularities of the RDF model, such as reification and blank nodes. This paper
intends to provide conceptual insight into the problem of dealing with these new
features in query languages. Our work also establishes theoretical foundations
for further research in this area.

Blank nodes play a crucial role in the semantics of query answering, although
they do not affect complexity bounds dramatically. In fact, the behaviour of
blank nodes is at the heart of different interpretations, both in query languages
and in the formal semantics of RDF itself. For examle, the notions of lean and
proper instance deserve further development.



The expressive power of reification in query languages needs further study.
In particular, the proper fragment of logic in which RDF query languages must
operate is still not well understood.

Our study brought forth the need to formalize richer properties and mech-
anisms of current working query languages for RDF. This formalization would
establish a solid base to compare functionalities, features and limitations of these
languages. For example, features like connectedness, reachability, paths, recur-
sion, extended constraints, aggregation and views.
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