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Abstract. The main result of the paper is the reduction of the problem
of satisfiability of equations in free groups to the satisfiability of equations
in free semigroups with anti-involution (SGA), by a non-deterministic
polynomial time transformation.
A free SGA is essentially the set of words over a given alphabet plus an
operator which reverses words. We study equations in free SGA, general-
izing several results known for equations in free semigroups, among them
that the exponent of periodicity of a minimal solution of an equation E
in free SGA is bounded by 2O(|E|).

1 Introduction

The study of the problem of solving equations in free SGA (unification in free
SGA) and its computational complexity is a problem closely related to the prob-
lem of solving equations in free semigroups and in free groups, which lately have
attracted much attention of the theoretical computer science community [3], [12],
[13], [14].

Free semigroups with anti-involution is a structure which lies in between that
of free semigroups and free groups. Besides the relationship with semigroups and
groups, the axioms defining SGA show up in several important theories, like
algebras of binary relations, transpose in matrices, inverse semigroups.

The problem of solving equations in free semigroups was proven to be decid-
able by Makanin in 1976 in a long paper [10] . Some years later, in 1982, again
Makanin proved that solving equations in free groups was a decidable problem
[11]. The technique used was similar to that of the first paper, although the
details are much more involved. He reduced equations in free groups to solving
equations in free SGA with special properties (‘non contractible’), and showed
decidability for equation of this type. For free SGA (without any further condi-
tion) the decidability of the problem of satisfiability of equations is still open,
although we conjecture it is decidable.

Both of Makanin’s algorithms have received very much attention. The enu-
meration of all unifiers was done by Jaffar for semigroups [6] and by Razborov
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for groups [15]. Then, the complexity has become the main issue. Several authors
have analyzed the complexity of Makanin’s algorithm for semigroups [6], [16], [1],
being EXPSPACE the best upper-bound so far [3]. Very recently Plandowski,
without using Makanin’s algorithm, presented an upper-bound of PSPACE for
the problem of satisfiability of equations in free semigroups [14]. On the other
hand, the analysis of the complexity of Makanin’s algorithm for groups was done
by Koscielski and Pacholski [8], who showed that it is not primitive recursive.

With respect to lower bounds, the only known lower bound for both problems
is NP-hard, which seems to be weak for the case of free groups. It is easy to see
that this lower bound works for the case of free SGA as well.

The main result of this paper is the reduction of equations in free groups to
equations in free SGA (Theorem 9 and Corollary 10). This is achieved by gen-
eralizing to SGA several known results for semigroups, using some of Makanin’s
results in [11], and proving a result that links these results (Proposition 3).
Although we do not use it here, we show that the standard bounds on the expo-
nent of periodicity of minimal solutions to word equations also hold with minor
modifications in the case of free SGA (Theorem 5).

For concepts of word combinatorics we will follow the notation of [9]. By ε
we denote the empty word.

2 Equations in Free SGA

A semigroup with anti-involution (SGA) is an algebra with a binary associa-
tive operation (written as concatenation) and a unary operation ( )−1 with the
equational axioms

(xy)z = x(yz), (xy)−1 = y−1x−1, x−1−1 = x. (1)

A free semigroup with anti-involution is an initial algebra for this variety. It is
not difficult to check that for a given alphabet C, the set of words over C ∪ C−1

together with the operator ( )−1, which reverses a word and changes every letter
to its twin (e.g. a to a−1 and conversely) is a free algebra for SGA over A.

Equations and Solutions. Let C and V be two disjoint alphabets of constants
and variables respectively. Denote by C−1 = {c−1 : c ∈ C}. Similarly for V −1.
An equation E in free SGA with constants C and variables V is a pair (w1, w2) of
words over the alphabet A = C∪C−1∪V ∪V −1. The number |E| = |w1|+ |w2| is
the length of the equation E and |E|V will denote the number of occurrences of
variables in E. These equations are also known as equations in a paired alphabet.

A map S : V −→ (C ∪ C−1)∗ can be uniquely extended to a SGA-
homomorphism S̄ : A∗ −→ (C ∪ C−1)∗ by defining S(c) = c for c ∈ C and
S(u−1) = (S(u))−1 for u ∈ C ∪ V . We will use the same symbol S for the map
S and the SGA-homomorphism S̄. A solution S of the equation E = (w1, w2)
is (the unique SGA-homomorphism defined by) a map S : V −→ (C ∪ C−1)∗

such that S(w1) = S(w2). The length of the solution S is |S(w1)|. By S(E)
we denote the word S(w1) (which is the same as S(w2)). Each occurrence of
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a symbol u ∈ A in E with S(u) 6= ε determines a unique factor in S(E), say
S(E)[i, j], which we will denote by S(u, i, j) and call simply an image of u in
S(E).

The Equivalence Relation (S, E). Let S be a solution of E and P be the set of
positions of S(E). Define the binary relation (S, E)′ in P × P as follows: given
positions p, q ∈ P , p(S, E)′q if and only if one of the following hold:

1. p = i + k and q = i′ + k, where S(x, i, j) and S(x, i′, j′) are images of x in
S(E) and 0 ≤ k < |S(x)|.

2. p = i + k and q = j′ − k, where S(x, i, j) and S(x−1, i′, j′) are images of x
and x−1 in S(E) and 0 ≤ k < |S(x)|.

Then define (S, E) as the transitive closure of (S, E)′. Observe that (S, E) is an
equivalence relation.

Contractible Words. A word w ∈ A∗ is called non-contractible if for every u ∈ A
the word w contains neither the factor uu−1 nor u−1u. An equation (w1, w2) is
called non-contractible if both w1 and w2 are non-contractible. A solution S to
an equation E is called non-contractible if for every variable x which occurs in
E, the word S(x) is non-contractible.

Boundaries and Superpositions. Given a word w ∈ A∗, we define a boundary of
w as a pair of consecutive positions (p, p + 1) in w. We will write simply pw, the
subindex denoting the corresponding word. By extension, we define i(w) = 0w

and f(w) = |w|w, the initial and final boundaries respectively. Note that the
boundaries of w have a natural linear order (pw ≤ qw iff p ≤ q as integers).

Given an equation E = (w1, w2), a superposition (of the boundaries of the
left and right hand sides) of E is a linear order ≤ of the set of boundaries of w1
and w2 extending the natural orders of the boundaries of w1 and w2, such that
i(w1) = i(w2) and f(w1) = f(w2) and possibly identifying some pw1 and qw2 .

Cuts and Witnesses. Given a superposition ≤ of E = (w1, w2), a cut is a bound-
ary j of w2 (resp. w1) such that j 6= b for all boundaries b of w1 (resp. w2).
Hence a cut determines at least three symbols of E, namely w2[j], w2[j +1] and
w1[i + 1], where i is such that iw1 < jw2 < (i + 1)w1 in the linear order, see
Figure 1. The triple of symbols (w2[j], w2[j + 1], w1[i]) is called a witness of the
cut. A superposition is called consistent if w1[i + 1] is a variable.

Observe that every superposition gives rise to a system of equations (E,≤),
which codifies the constraints given by ≤, by adding the corresponding equations
and variables x = x′y which the cuts determine. Also observe that every solution
S of E determines a unique consistent superposition, denoted ≤S . Note finally
that the cut j determines a boundary (r, r + 1) in S(E); if p ≤ r < q, we say
that the subword S(E)[p, q] of S(E) contains the cut j.

Lemma 1 Let E be an equation in free SGA. Then E has a solution if and only
if (E,≤) has a solution for some consistent superposition ≤. There are no more
than |E|4|E|V consistent superpositions.
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Fig. 1. The cut jw.

Proof. Obviously if for some consistent superposition ≤, (E,≤) has a solution,
then E has a solution. Conversely, if E has a solution S, consider the superpo-
sition generated by S.

As for the bound, let E = (w1, w2) and write v for |E|V . First observe
that if w2 consists only of constants, then there are at most |w2|v consistent
superpositions. To get a consistent superposition in the general case, first insert
each initial and final boundary of each variable in w2 in the linear order of the
boundaries of w1 (this can be done in at most |E| + v ways). Then it rest to
deal with the subwords of w2 in between variables (hence consisting only of
constants and of total length ≤ |E| − v). Summing up, there are no more than
(|E| + v)2v(|E| − v)v ≤ |E|4v consistent superpositions.

Lemma 2 (Compare Lemma 6, [12]) Assume S is a minimal (w.r.t. length)
solution of E. Then

1. For each subword w = S(E)[i, j] with |w| > 1, there is an occurrence of w
or w−1 which contains a cut of (E,≤S).

2. For each letter c = S(E)[i] of S(E), there is an occurrence of c or c−1 in E.

Proof. Let 1 ≤ p ≤ q ≤ |S(E)|. Suppose neither w = S(E)[p, q] nor w−1 have
occurrences in S(E) which contain cuts. Consider the position p in S(E) and its
(S, E)-equivalence class P , and define for each variable x occurring in E,

S′(x) = the subsequence of some image S(x, i, j) of x consisting of
all positions which are not in the set P . (i.e. “cut off” from S(x, i, j) all
the positions in P ).

It is not difficult to see that S′ is well defined, i.e., it does not depend on the
particular image S(x, i, j) of x chosen, and that S′(w1) = S′(w2) (these facts
follow from the definition of (S, E)-equivalence). Now, if P does not contain any
images of constants of E, it is easy to see that S′ is a solution of the equation E.
But |S′(E)| < |S(E)|, which is impossible because S was assumed to be minimal.

Hence, for each word w = S[p, q], its first position must in the same (S, E)-
class of the position of the image of a constant c of E. If p < q the right (resp.
left) boundary of that constant is a cut in w (resp. w−1) which is neither initial
nor final (check definition of (S, E)-equivalence for S(E)[p+1], etc.), and we are
in case 1. If p = q we are in case 2.
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Proposition 3 For each non-contractible equation E there is a finite list of
systems of equations Σ1, . . . , Σk such that the following conditions hold:

1. E has a non-contractible solution if and only if one Σi has a solution.
2. k ≤ |E|8|E|V .
3. There is c > 0 constant such that |Σi| ≤ c|E| and |Σi|V ≤ c|E|V for each

i = 1, . . . , k.

Proof. Let ≤ be a consistent superposition of E, and let

(x1, y1, z1), . . . , (xr, yr, zr) (2)

be a list of those witnesses of the cuts of (E,≤) for which at least one of the
xi, yi is a variable. Let

D = {(c, d) ∈ (C ∪ C−1)2 : c 6= d−1 ∧ d 6= c−1},

and define for each r-tuple 〈(ci, di)〉i, of pairs of D the system

Σ〈(ci,di)〉i
= (E,≤) ∪ {(xi, x

′
ici), (yi, diy

′
i) : i = 1, . . . , r}.

Now, if S is a non-contractible solution of (E,≤) then S define a solution of
some Σi, namely the one defined by the r-tuple defined by the elements (ci, di) =
(S(xi)[|S(xi)|], S(yi)[1]), for i = 1, . . . , r. Note that because E and S are non-
contractible, each (ci, di) is in D.

On the other direction, suppose that S is a solution of some Σi. Then ob-
viously S is a solution of (E,≤). We only need to prove that the S(z) is non-
contractible for all variables z occurring in E. Suppose some z has a factor cc−1,
for c ∈ C. Then by Lemma 2 there is an occurrence of cc−1 (its converse is
the same) which contains a cut of (E,≤). But because E is non-contractible, we
must have that one of the terms in (2), say (xj , yj , zj), witnesses this occurrence,
hence xj = x′

jc and yj = c−1y′
j , which is impossible by the definition of the Σi’s.

The bound in 2. follows by simple counting: observe that r ≤ 2|E|V and |D| ≤
|C|2r ≤ |E|4|E|V , and the number k of systems is no bigger than the number
of superpositions times |D|. For the bounds in 3. just sum the corresponding
numbers of the new equations added.

The following is an old observation of Hmelevskii [5] for free semigroups
which extends easily to free SGA:

Proposition 4 For each system of equations Σ in free SGA with generators C,
there is an equation E in free SGA with generators C ∪ c, c /∈ (C ∪ C−1), such
that

1. S is a solution of E if and only if S is a solution of Σ.
2. |E| ≤ 4|Σ| and |E|V = |Σ|V .

Moreover, if the equations in Σ are non-contractible, the E is non-contractible.
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Proof. Let (v1, w1), . . . , (vn, wn) the system of equations Σ. Define E as

(v1cv2c · · · cvncv1c
−1v2c

−1 · · · c−1vn, w1cw2c · · · cwncw1c
−1w2c

−1 · · · c−1wn).

Clearly E is non-contractible because so was each equation (vi, wi), and c is a
fresh letter. Also if S is a solution of Σ, obviously it is a solution of E. Conversely,
if S is a solution of E, then

|S(v1cv2c · · · cvn)| = |S(v1c
−1v2c

−1 · · · c−1vn)|,

hence
|S(v1cv2c · · · cvn)| = |S(w1cw2c · · · cwn)|,

and the same for the second pair of expressions with c−1. Now it is easy to show
that S(vi) = S(wi) for all i: suppose not, for example |S(v1)| < |S(w1)|. Then
S(w1)[|S(v1)| + 1] = c and S(w1)[|S(v1)| + 1] = c−1, impossible. Then argue the
same for the rest.

The bounds are simple calculations.

The next result is a very important one, and follows from a straightforward
generalization of the result in [7], where it is proved for semigroups.

Theorem 5 Let E be an equation in free SGA. Then, the exponent of periodicity
of a minimal solution of E is bounded by 2O(|E|).

Proof. It is not worth reproducing here the ten-pages proof in [7] because the
changes needed to generalize it to free SGA are minor ones. We will assume that
the reader is familiar with the paper [7].

The proof there consist of two independent parts: (1) To obtain from the
word equation E a linear Diophantine equation, and (2) To get good bound
for it. We will sketch how to do step (1) for free SGA. The rest is completely
identical.

First, let us sketch how the system of linear equations is obtained from a
word equation E. Let S be a solution of E. Recall that a P -stable presentation
of S(x), for a variable x, has the form

S(x) = w0P
µ1w1P

µ2 . . . wn−1P
µn−1wn.

¿From here, for a suitable P (which is the word that witnesses the exponent of
periodicity of S(E)), a system of linear Diophantine equations LDP (E) is built,
roughly speaking, by replacing the µi by variables xµi

in the case of variables,
plus some other pieces of data. Then it is proved that if S is a minimal solution
of E, the solution xµi = µi is a minimal solution of LDP (E).

For the case of free SGA, the are two key points to note. First, for the
variables of the form x−1, the solution S(x−1) will have the following P−1-stable
presentation (same P, wi, µi as before):

S(x−1) = w−1
n (P−1)µn−1w−1

n−1(P
−1)µn−2 . . . w−1

1 (P−1)µ1w−1
0 .
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Second, note that P−1 is a subword of PP if and only if P is a subword of
P−1P−1. Call a repeated occurrence of P in w, say w = uP kv, maximal, if P
is neither the suffix of u nor a prefix of v. So it holds that maximal occurrences
of P and P−1 in w either (1) do not overlap each other, or (2) overlap almost
completely (exponents will differ at most by 1).

In case (1), consider the system LDP (E′)∪LDP −1(E′) (each one constructed
exactly as in the case of word equations) where E′ is the equation E where we
consider the pairs of variables x−1, x as independent for the sake of building
the system of linear Diophantine equations. And, of course, the variables xµi

obtained from the same µi in S(x) and S(x−1) are the same.
In case (2), notice that P -stable and P−1-stable presentations for a variable

x differ very little. So it is enough to consider LDP (E′), taking care of using for
the P -presentation of S(x−1) the same set of Diophantine variables (adding 1
or −1 where it corresponds) used for the P -presentation of S(x).

It must be proved then that if S is a minimal solution of the equation in free
SGA E, then the solution xµi

= µi is a minimal solution of the corresponding
system of linear Diophantine equations defined as above. This can be proved
easily with the help of Lemma 2.

Finally, as for the the parameters of the system of Diophantine equations,
observe that |E′| = |E|, hence the only parameters that grow are the number of
variables and equations, and by a factor of at most 2. So the asymptotic bound
remains the same as for the case of E′, which is 2O(|E|).

The last result concerning equations in free SGA we will prove follows from
the trivial observation that every equation in free semigroups is an equation in
free SGA. Moreover:

Proposition 6 Let M be a free semigroup on the set of generators C, and N
be a free SGA on the set of generators C, and E an equation in M . Then E is
satisfiable in M if and only if it is satisfiable in N .

Proof. An equation in free SGA which does no contain ( )−1 has a solution if
and only if it has a solution which does not contain ( )−1. So the codification of
equations in free semigroups into free SGA is straightforward: the same equation.

We get immediately a lower bound for the problem of satisfiability of equa-
tions in free SGA by using the corresponding result for the free semigroup case.

Corollary 7 Satisfiability of equations in free SGA is NP-hard.

3 Reducing the Problem of Satisfiability of Equations in
Free Groups to Satisfiability of Equations in Free SGA

A group is an algebra with a binary associative operation (written as concate-
nation), a unary operation ( )−1, and a constant 1, with the axioms (1) plus

xx−1 = 1, x−1x = 1, 1x = x1 = 1. (3)
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As in the case of free SGA, is not hard to see that the set of non-contractible
words over C ∪C−1 plus the empty word, and the operations of composition and
reverse suitable defined, is a free group with generators C.

Equations in free groups. The formal concept of equation in free groups is almost
exactly the same as that for free SGA, hence we will not repeat it here. The
difference comes when speaking of solutions. A solution S of the equation E
is (the unique group-homomorphism S : A −→ (C ∪ C−1)∗ defined by) a map
S : V −→ (C∪C−1)∗ extended by defining S(c) = c for each c ∈ C and S(w−1) =
(S(w))−1, which satisfy S(w1) = S(w2). Observe that the only difference with
the case of SGA is that now we possibly have ‘simplifications’ of subexpressions
of the form ww−1 or w−1w to 1, i.e. the use of the equations (3).

Proposition 8 (Makanin, Lemma 1.1 in [11]) For any non-contractible
equation E in the free group G with generators C we can construct a finite list
Σ1, . . . , Σk of systems of non-contractible equations in the free SGA G′ with
generators C such that the following conditions are satisfied:

1. E has a non-contractible solution in G if and only if k > 0 and some system
Σj has a non-contractible solution in G′.

2. There is c > 0 constant such that |Σi| ≤ |E| + c|E| 2
V and |Σi|V ≤ c|E| 2

V for
each i = 1, . . . , k.

3. There is c > 0 constant such that k ≤ (|E|V )c|E| 2
V .

Proof. This is essentially the proof in [11] with the bounds improved. Let E be
the equation

C0X1C1X2 · · ·Cv−1XvCv = 1, (4)

where Ci are non-contractible, v = |E|V , and Xi are meta-variables representing
the actual variables in E.

Let S be a non-contractible solution of E. By a known result (see [11], p. 486),
there is a set W of non-contractible words in the alphabet C, |W | ≤ 2v(2v + 1),
such that each Ci and S(Xi) can be written as a concatenation of no more than
2v words in W , and after replacement Equation (4) holds in the free group with
generators W .

Let Z be a set of 2v(2v + 1) fresh variables. Then choose words
y0, x1, y1, x1, . . . , xv, yv ∈ (Z∪Z−1)∗, each of length at most 2v, non-contractible,
and define the system of equations

1. Cj = yj , j = 0, . . . , v,
2. Xj = xj , j = 1, . . . , v.

Each such set of equations, for which Equation (4) holds in the free group with
generators Z when replacing Ci and Xi by the corresponding words in (Z∪Z−1)∗,
defines one system Σi.

It is clear from the result mentioned earlier, that E has a solution if and
only if there is some Σi which has a non-contractible solution. How many Σi are
there? No more than [(2v(2v + 1))2v]2v+1.
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Theorem 9 For each equation E in a free group G with generators C there
is a finite set Q of equations in a free semigroup with anti-involution G′ with
generators C ∪ {c1, c2}, c1, c2 /∈ C, such that the following hold:

1. E is satisfiable in G if and only if one of the equations in Q is satisfiable in
G′.

2. There is c > 0 constant, such that for each E′ ∈ Q, it holds |E′| ≤ c|E|2.
3. |Q| ≤ |E|c|E| 3

V , for c > 0 a constant.

Proof. By Proposition 8, there is a list of systems of non-contractible equa-
tions Σ1, . . . , Σk which are equivalent to E (w.r.t. non-contractible satisfiabil-
ity). By Proposition 4, each such system Σj is equivalent (w.r.t. to satisfiability)
to a non-contractible equation E′. Then, by Proposition 3, for each such non-
contractible E′, there is a system of equations (now without the restriction of
non-contractibility) Σ′

1, . . . , Σ
′
k′ such that E′ has a non-contractible solution if

and only if one of the Σ′
j has a solution (not necessarily non-contractible). Fi-

nally, by Proposition 4, for each system Σ′, we have an equation E′′ which have
the same solutions (if any) of Σ′. So we have a finite set of equations (the E′′’s)
with the property that E is satisfiable in G if and only if one of the E′′ is
satisfiable in G′.

The bounds in 2. and 3. follow by easy calculations from the bounds in the
corresponding results used above.

Remark. It is not difficult to check that the set Q in the previous theorem can
be generated non-deterministically in polynomial time.

Corollary 10 Assume that fT is an upper bound for the deterministic TIME-
complexity of the problem of satisfiability of equations in free SGA. Then

max{fT (c|E|2), |E|c|E| 3
V },

for c > 0 a constant, is an upper bound for the deterministic TIME-complexity
of the problem of satisfiability of equations in free groups.

4 Conclusions

Our results show that solving equations in free SGA comprises the cases of free
groups and free semigroups, the first with an exponential reduction (Theorem
9), and the latter with a linear reduction (Proposition 6). This suggest that free
SGA, due to its simplicity, is the ‘appropriate’ theory to study when seeking
algorithms for solving equations in those theories.

In a preliminary version of this paper we stated the following conjectures:

1. Satisfiability of equations in free groups is PSPACE-hard.
2. Satisfiability of equations in free groups is in EXPTIME.
3. Satisfiability of equations in free SGA is decidable.

In the meantime the author proved that satisfiability of equations in free SGA is
in PSPACE, hence answering positively (2) and (3). Also independently, Diekert
and Hagenah announced the solution of (3) [2].
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