6 Conclusions

We proved that the compl exity of deciding if aword equa-
tion with constantsis solvableis EXPSPACE. On the other
side, the known lower bound is NP-hard. The conjecturein
[16] isthat the problem is NP-complete.

Itisinteresting to note that the improvement in the com-
plexity of the decision problem presented in thispaper gives
also an improvement for the upper bound on the length of
minimal solutions of word equations, triple exponentia as
shown above. Rytter and Plandowski [16] showed recently,
using compression of solutions, that if the length of a min-
imal solutionto aword equation £ is L >> |£|, then there
isanon-deterministica gorithm running in time polynomial
inlg L. Unfortunately, dueto the current bounds on lengths
of minimal solutions (triple exponential in |£]), thisis till
not enough to improve the above Theorem 5.

Itisalsointeresting to note the result mentioned Remark
1 above, and in genera the use of different parameters in
the measuring of the complexity of solving equations (the
classical isthelength of the equation |£]). In thisdirection,
we isolated a reasonable subclass of word equations (those
whose number of ocurrences of variables is bounded by a
constant) whose decision problem, we conjecture, can be
proved tractable.

Finally, it is worth noticing that the improvement of the
upper bound presented in this paper works aso for the case
of word equationswith regular constraints (see[18], and the
proof in forthcoming [6]).
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For the case §Z C S;11 the only difference is that now
left(y) < left(x) and hence we get a negative sign:

US| = U (Sia)| = —|U(left(y), left(x)].

Fact 7. There are no morethan Vn"~ different subbases
S which havea convex chain S, Sy, .. ., S, landingin xq of
length n.
Proof. By enumerating the elements in D, let us say
Ds,...,Dip|, and grouping identicall summands in the
equation in Fact 5, we get:

|U(S)| = a1D1 + - - -+ ayp| Dip| + [U(col (z0))],

with g + --- 4+ ap; = n and o; > O integers. So the
number |U7(S)| can take no more than »!P! values. From
Fact 4 we know that .S, is completely determined by = and
|U7(S)|. Hence there are no more than V' n!P! subbases S
with the desired property. Finaly just notethat [D| < V2.
Fact 8. The number of different subbases S which have
a convex chain S, 5>, ..., S; landingin zg of length! < n
islessthan Vn" +1.
Proof. For eachlength ! useFact 7and calculate ") _, ViV".
Fact 9. Finadly, denote by L the length of the longest
chain which lands in zg. From Facts 3 and 8, we have

1
Mo2N < y Vi, soweget L > (Mo2¥) v, O

Proof of Theorem 2. By Theorem 4, for n = (M;—?V)ﬁ

there is a clean convex chain 51,...,95;,...,5, where S,
is the turning point of the chain. Hence Si,...,.S; or
Sn, ..., Sy isamonotone chain of length k > n/2.

Let I/ be astrict unifier of GE. By Lemma 4 we have
adomino tower B1(1, ..., B;C}, of height k& associated to
the chain, al of whose words are B; C; = U(col (x;,)) €
{U(col(z)) : z € X'}. Thereare V variable bases, so for
every 1,inS;, . .., S;yv necessarily appear two subbases of
the same variable. Because al subbases are different (the
chainisclean), |Bitv | = [U(Si4v)| > |U(S:)| = | Bil. So
we can apply Proposition 1 to thisdomino tower to conclude
that there isaword B; C; (= U(col (x) for some z € X)
of the form P with P non-empty and s + 1 > Vl’}lz >

n/2 2 [M‘;ZzN]V%H_

V(V/2?2 — V3
5 Complexity

Theorem 5 Let |£| denote the length of the word equation
£. The satisfiability problem for word equationsis in the
following complexity classes:

DTIME(ZZO('S'S)), i.e., double exponential deterministic
time.
DSPACE(20U¢1)), i e, exponential deterministic space.

Proof. Let us analyze Makanin. The worst case time-
complexity for Gen is exponential in |£|: the num-
ber of all possible generaized equations which can be
built from £. As for the time-complexity of the Search
procedure, the key point is the bound A (£) which is
A|g 2(LELRED yael+1 | 4)¢] (see proof of Theorem 3))
On the other side the procedure Transform takes time
bounded by an exponentia in the number of boundaries
of itsinput G E (essentialy the number of all possible gen-
eralized equations which can be built from GF. See [7].)
Therest isto cal culate how much time does the search take.
A rough estimation is the number of nodes in the subtree
formed by all the generalized equationswith | BD| < K (&)
which is exponential in K(£).

As for the space-complexity, using an argument from
[6], the space needed to generate non-deterministically with
Transform a new node from a given GE is roughly the
number of boundariesof G F. But we need to generate only
nodeswithlessthan & (£) number of boundaries. Hencethe
agorithmuses space inNSPACE( £ (£)), and consequently,
by Savitch's Theorem, DSPACE(20(€1")). O

Corollary 1 If aword equation £ issolvable, thenthelength
of aminimal solution of £ istriple exponential in |£].

Proof.(Sketch). The path to a solved node in 7(£) is no
longer than the number of nodesin the tree, that is, double
exponential. Also, itisnot difficult to seethat if anode has
asolution of length [, its parent has a solution of length no
more than 2/ (see for example the code for Transform in
[7]). Now, because a solution in a solved node has length
exponential in |£], it followsthat the length of a solution of
&, theroot of 7(&), is no more than triple exponentia in
|£]. O

Remark 1 It isinteresting to note (see Theorem 2) that our
bounds depend heavily on V' (the number of ocurrences of
variables), as oposed to |£] (the length of the equation).
Moreover, noting that for word equations with V' bounded
by a fixed constant vg, their exponent of periodicity is a
function polynomial on the length of the equation (for ex-
ample, check the proof of Lemma 1.3 in Makanin's paper
[12]), we can conclude the following: Let V' be bounded
by afixed constant vo which is not part of the input. Then,
the satisfiability problem for word equationswhere V' < g
isin PSPACE, result that israther interesting when dealing
with equations with fixed small humber of ocurrences of
variables. Moreover, we conjecture that this last problem
is tractable, i.e, there is a deterministic polynomial time
algorithm which solvesit.



2. Each subbase S, hasitsdua (the corresponding col-
umninthedual variable), denoted Sz or S,.. Thispair
is called a boundary equation and denoted S, ~ S,.
Notethatif I isaunifier of GE, then U (S, ) = U(Se).

Definition 5 Let 51,55, ..., S, besubbasesof GF.

1. 51 C S, (Syisasuffix of 55) iff S5 = (b]_, l) and S, =
(b2, ¢) and b, < b1. Note that the second boundary in
both subbasesisthe same.

2. A monotone suffix chain in GE is a_sequence
S1,52,....5, of subbaseswith 51 C Sp ~ So C S3 ~
S3g "'gSn—lNSn—lgSn-

3. Aconvex suffix chainisaseguence S1, ..., S, ..., Sy
such that S1,S52,...,5; and S,,S,_1,...,5; are
monotone suffix chains.

Note that whent = 1 or ¢+ = n we have chainsasin
(2), i.e. convex chains generalize monotone chains.

The next lemma—whose proof isan easy check—shows
the precise relationship between suffix chains and domino
towers.

Lemma4 Let 51, ..., S; beasuffixmonotonechainof GE
and U a dtrict unifier of GE. Suppose S; is a subbase of

1 U(S;)isasuffixof U(S;41) forall j =1,... n.

2. Define B; = U(S;) and C; such that U(col (x;,)) =
B;C;. Then the sequence of words B1C1, . . ., B;Cy
isa domino tower of height k.

We need two more concepts in order to state the next
results. A convex chain Si,...,.5, issaid to land in a
varisblebase , if S, = (b, 1), withi = right(xz). A convex
chainwill becalled clean if each subbase appearsjust once.

The next proposition has a rather technica proof. Itis
sketched in [7]. (Also compare [9], Lemmas 3.1, 3.2, and
[18], Lemma 5.9 and Appendix.)

Proposition 2 For each non-empty subbase S of GE €
7 (&), thereis a clean convex chain of non-emtpy subbases
S, S2,...,5, landingina variablebase x.

We arrived to the key point in our proof. In [9] there
is a similar result with a bound logarithmic in the number
of boundary equations. The main result of this paper is
its improvement to a polynomia bound in the number M
of boundaries. The essence of the idea is to use the ex-
trainformation provided by the fact that the domino towers
come from generalized equations, hence the number of pos-
sible different B;'s (see Definition 3 and Lemma 4) can be
bounded by the square of the number of variable bases.

Theorem 4 Let GE(M, N,V) be a node of 7(£) which
has a strict unifier. Then there is a clean convex chain of

length bigger than (M;—ZZN)l/(VZ+1)'

Proof. Let U be astrict unifier of GE(M, N, V).

Fact 1. Each subbaseiscompletely determined by a base
x and a boundary :.

Proof. Just note that a subbase is of the form (b, ¢), with
b = left(x).

Fact 2. The number of different non-emtpy subbases of

GE(M,N,V)isnolessthan A/ — 2N.
Proof. From Fact 1 and Lemma 2(3), intheworst case (each
i € BD occursonly inonebase) there are as many different
non-emtpy subbasesas different boundaries, discountingthe
left and right boundaries of bases.

Fact 3. There is a variable base z such that at least

(M — 2N)/V non-empty different subbases have a convex
chainlandingin xo.
Proof. By Proposition 2, each subbase has a convex chain
landinginavariablebase x. But thereare /' variables bases
in GE, hence there is a variable base xo with the required
property.

Fact 4. Each subbase S is completely determined by its
underlying base and the natural number |/ (S)| (thelength
of theword U/ (.9)).

Proof. From Fect 1, S = (b, ), iscompletely determined
by its base x and the boundary i. Now because U is strict,
i # Gt U, )| £ U5, ).

Fact 5. Let 51, ..., S, beaconvex chainlandingin zg.

Then thelength of U (.S1) is:

n—1
sl = QUS| = U (Sia)l) +
i=1
+ ([U(Sn)[ = [U(col (x0))]) + |U(col (z0))|

Proof. Usethetelescopic rule.
Fact 6. Each of the summands in the equation in Fact 5
aboveisin the set

D = {|U(left(x), left(y))| : left(z) < left(y)

and z, y are variable bases}

Proof. By definition of convex chain, for each i, S; ~
S; € Siy10rS; ~S; D S;11. First suppose that the latter
case happens, and denote S; = (left(x), j), and S;41 =
(left(y), j), . Thenleft(x) < left(y) and notethat the second
boundary j must be the same in both subbases. Now, from
the definition of unifier, U (S;) = U(.S;), hence

U(So) = US| = 1U(S)] = [U(Sig0)]
= [U(left(x), )| — [U(left(y), j)|
= |U(left(x), left(y))].



The next result can befound in[12] and in[9]. The new
bound, exponentialy better than Jaffar’s[9] isour contribu-
tion.

Theorem 2 Let GE(M, N, V) be a node of 7(£) which
has a unifier with exponent of periodicity p. Thenp + 1 >
(M) TR,

Before proving it, we use it to prove the following:
Theorem 3 Makanin is correct and terminates.

Proof. Let £ be a word equation, and define K(&) =
4|g 2 ELREOD Al +1 | 4)¢) where p(€) is asin Theo-
rem1.

The termination of Makanin (&) reduces to showing that
Search(Gen(¢&), K (£)) terminates. Observe first that for
fixed parameters M, N there are only finitely many differ-
ent generalized equations G E'(M, N'). Second, every non-
vistednode GE(M, N) € S hasaparent with M < K(€)
(line7 of Search) and N < 2|£| (Lemmas 1(3) and 2(3)).
Finally notethat every node has only finitely many children
(definition of Gen and Transform). Hence thereis afixed
finite number (depending solely on |£|) which bounds the
sizeof S at any stage. Now, because in each loop one more
element of S isvisited, Search will eventually stop. (No-
tice that for the union of setsin line 10 of Search we need
to check if two generalized equations are the same: thisis
staightforward.)

Makanin iscorrect. If £ hasno unifier, then by Lemma3
thereis no solved nodein 7 (£). Hence Search will never
reach line 6. Therefore eventually al nodes will be visited
and Search will output FAILURE.

Now suppose that £ has a unifier. Then by Theorem 1,
it has a unifier with exponent of periodicity p(£). From
Lemma 3 it follows that there is a branch in 7 () end-
ing in a node labelled with a solved generaized equation
SGE. By Lemmas 1(1) and 2(1), it followsthat each node
GE(M,N,V) in the branch has a strict unifier with ex-
ponent of periodicity p’ < p(&). Also from Theorem 2 we
have & (Mz2Y)1/(V*+1) < 1/ 1 1. Sowe can conclude, us-

ingV < N < 2¢|,that M < V2[LREHDIVEL L oy o
K (&). Hence @l the nodes in the branch eventually will be
in .S, so Search will visit SGE and check that it is solved
(line5) and return SUCCESS. O

4  Proof of Theorem 2

The proof is essentidly the construction of some com-
binatoria objects called domino towers (Definition 3). The
general lines of the proof are as follows:

(1) Long domino towers imply big exponent of period-
icity of some of its congtituent words. This is Proposition
1

(2) Domino towers can be constructed from a solution
to a generalized equation GE € 7(£). This fact, which
uses the relations generated by the boundary sequences of
the bases, is stated in Lemma 4 and Proposition 2.

(3) A big number of boundariesin GFE impliesthe exis-
tence of long dominotowersof thosein (2). ThisisTheorem
4, acounting argument.

Let us begin defining formally the chains of words.

Definition 3 A domino tower is a sequence of words
B1C, ..., ByCy, (B; and C; non-empty) such that for all
1<i<k

1. There are (possible empty) words S; such that B; .1 =
S; Bi.

2. There are (possibly empty) words R;, T; such that
Ci Ry = Gy,

By condition 2, there are two possible cases for each i:

s, | B, | c, |
| Bit1 | Cig1 |Tz
or
S’L B’L C’L R’L
| Bit1 Cig1 |

The length of the sequence is called the height of the
domino tower.

The following result—whose proof can be found in
[19]—establishes a relationship between the length of
domino towers and the exponent of periodicity of some of
its building blocks (the words B; C;'s).

Proposition1 Let ¥ = {Xi,..., Xy} be a sa of
non-empty words. Suppose the sequence of words
B1Cq,...ByCy is a domino tower of height £ and each
B;C; € X. Ifforall i, |Biym| > |B;:l|, then some word
B,C; has the form B,C; = P*(Q), where P is non-empty
ands+ 1> £

mNZ2*

Our next goal will beto generate—fromthedataof G F—
long domino towerswhose building blocks (the B;C;’s) are
the variablesin X’. Then, using the Proposition above, we
shall conclude that one variable will have big exponent of
periodicity. The next definitions give the elements needed
to construct the domino tower (as is shown in Lemma 4
below).

Definition 4 Let G E be a generalized equation, and let =
be a variable base of GF.

1. Asubbaseof x, S, isacolumn of theform (left(x), )
with ¢ € E, and i # right(z). If 7 = left(x) the
subbaseis called empty.



1. For each pair of duals + = (z,(e1,...,e,)) and
r = (x,(e1,...,€,)), and for every sub-index s
it holds U(es,es+1) = Ules,es41). In particular
U(col () = U(col ().

2. For each constant base bs of labd ¢,
U(col (bs)) = c.

Uisstrictif U (i, i+ 1) # ¢ for every i € BD. Theindex of
U isthenumber |U (b1, bar)|, where by isthefirstand b, the
last element of BD. The exponent of periodicity of U isthe
maximal exponent of periodicity of the words U (col (x)),
where r isvariable base

2 TheAlgorithm

Makanin’s Algorithm consists of the generation of atree
in which @l the solutions of £ (if any) can be found. This
is acomplished by two main procedures, Gen, whose in-
put is a word eguation, and output a finite set of general-
ized equations, and Transform, whose input isanon-solved
generalized equation, and output afinite set of generalized
equations. Lemmas 1 and 2 below review their properties.
Unfortunately we do not have enough space here to give
a thorough description of them (The detailed code and the
proofsof Lemmas 1, 2 and 3 which statetheir propertiescan
befoundin[7]).

For a word equation &£, define its associated Makanin’s
tree, 7 (&), recursively asfollows:

e Therootof 7(&)is&.
e Thechildrenof £ aregen(£).

e For each node G'E # root, the set of its children is
Transform(G E).

Lemmal (Properties of Gen) (Compare Lemma 2.3 in
[18], Generalization Theorem in [9]). Let £ be a word
equation. The followingassertions hold:

1. If £ has a unifier with exponent of periodicity p then
some G'E € gen(&) hasa strict unifier with exponent
of periodicity p. Conversely, if some GE € Gen(€)
has a unifier, then £ has a unifier.

2. Foreach GF € gen(&), every boundaryistheright or
left boundary of abase. Also, every boundary sequence
consists precisely of these two boundaries.

3. For GE € gen(£), the number of bases of GE does
not exceed 2|£|.

Lemma 2 (Properties of Transform) (Compare Theorems
4.7, 4.8 in [18], procedure REDUCE in [9]). Let GFE be
a non-solved generalized equation (node) of 7(£). The
following assertions hol d:

1. If GF hasadtrict unifier I/ with index I and exponent
of periodicity p, then Transform(G E) has an € ement
GFE' that has a dtrict unifier U’ with index I’ < T
and exponent of periodicity p’ < p. Conversdly, if an
element of Transform(G E') has a unifier, then G E has
a unifier.

2. For each GE' € Transform(G E), each boundary of
G E’ occursin the boundary sequence of some base.

3. For GE' € Transform(GE), the number of bases of
(G E' does not exceed the number of thosein GE.

Lemma3 (Properties of 7(£)) (Compare Corollary 4.9
in [18]). Let £ be a word egquation. Then £ has a uni-
fier if and only if 7(£) has a node labelled with a solved
generalized equation (i.e. withall variables bases empty.)

Lemma 3 immediately gives a semi-decision procedure
because it is easy to decide if a base is empty or not. But
in general, the tree could be infinite. Makanin showed that
thereexistsaconstant X (&) whichdependsonly on & which
alowsto restrict the search to a finite subtree of 7(£). For
acurrent bound on K (&) see the proof of Theorem 3 bel ow.

Makanin(&)

1. K — K(&) 1 boundof thesearch
2. S+~ Gen(¢)
3. Search(S, K)

Search(S, K)

1. if dl dementsof S arevisitedthen

2 return FAILURE

3. dse

4 pick anon-visited GE(M, N) € S

5 if GF issolved then

6. return SUCCESS

7 eseif M > K then

8 mark GE asvisited, Search(S, K)
9. dse

10. S — S UTransform(GE)

11 mark GE asvisited, Search(S, K)
3 Correctness and Termination

The cornerstones of Makanin's algorithm are the next
two theorems. The first is based on a deep result in word
combinatorics, stated by Bulitkoin 1970, whose bound was
improved by Koscielski and Pacholski [10].

Theorem 1 Let £ be a word equation which has a unifier.
Denote by p(€) the minimum among the exponent of peri-
odicity of all unifiersof £. Then p(&) < 3|£[2107I¢l,



p(€)° for some congtant ¢ ~ |£]2, But we know that there
are only a finite number of nodes with A bounded by that
constant. Hence the search isfinite.

Summarizing, the complexity of Makanin’s Algorithm
has three main points: (1) the bound of the exponent of pe-
riodicity of word equations, (Theorem 1, which isoptimal),
(2) the relationship between the number of boundaries of a
generalized equation and its exponent of periodicity (The-
orem 2, whose bound we improved exponentialy in this
paper), and (3) possibleways of doing the search. Currently
there is no known better way of doing it than by doing a
complete search of the subtree of those nodes with number
of boundaries M < p(&)°, which amounts to a complex-
ity exponentia in p(&). This gives a time-complexity for
Makanin's Algorithm double exponentia in |£]. Also by
noticing, as pointed out by Diekert in [6], that the tree can
be non-deterministically generated in the space used by the
biggest node (hence in our case exponentid in |£]), it fol-
lows that the satisfiability problem for word equationsisin
NEXPSPACE, and using Savitch's Theorem, conclude that
itisin EXPSPACE.

Many of the arguments in this paper are implicit in
Makanin's work and that of his followers. We give an
overview of the whole agorithm (along the lines of [7]) in
order to make the paper as self-contained as possible. The
essential arguments are in Section 4, especialy Theorem 4.

1 Basic Conceptsand Definitions

Let C = {ai,...,a,} beafinite set of constants, and
V = {v1,vz,...} beaninfinite set of variables. A word w
over C UV isa(possibly empty) finite sequence of elements
of C U V. Thelength of w, denoted |w|, is the length of the
sequence. The exponent of periodicity of aword w isthe
maximal number p such that w can be written as uv? z for
somewords u, v, z with v non-empty.

A word equation & isapair (wq, w) of wordsover CUYV,
usually written as w; = wp. The number |€] = |wa| + |w2|
is the length of the equation £. Note that in an equation
£ only afinite number of variables occur, let ussay X' =
{e1,...,2,} C V. A unifier of £ is a sequence U =
(Ux,...,U,)of wordsover CUY such that both sides of the
equation become graphically identical when we replace al
ocurrencesof z; by U;,foreach: = 1, ..., n. The exponent
of periodicity of the unifier U is the maxima exponent of
periodicity of thewords U;. Usualy aunifier U with every
U; € C* iscaled asolution.

The key concept in Makanin's algorithmis that of gen-
eralized equation. The version presented here follows [7]
(compare aso[12],[9], [18].)

Definition 1 (Generalized Equation) A generalized equa
tion G E' consists of

1. Twofinitedigoint setsC and X, the labels.
2. Afinitelinear orderd set (B D, <), the boundaries.

3. Afiniteset B.S of bases. A base bs is alabel together
with an ordered sequence of boundaries, i.e bs =
(t,(e1,...,en)),Wheren > 2,t € CUV, ¢e; € BD
and e; < e;11. The bases are subject to the following
conditions:*

(a) For each variable x € X, there are exactly two
baseswithlabel x, called dua s (abusing notation
denoted by = and z respectively). Also, their re-
spective boundary sequences must have the same
length.

(b) For each base bs with ¢ € C, its boundary se-
guence has exactly two elements and they are
consecutives in the order <.

Examplel Thegeneralized equation (1) of theintroduction
isformally: C = {a,b}, X = {z,y}, BD = {1,...,6}
and BS = {(a,(2,3)), (a,(24,5)), (b,(3,4)), (x,(1,2)),
(#,(5,6)), (v, (1,3)), (v, (4,6)).

Some definitions and conventions to easy the notation:
The boundary sequence of a base bs is denoted by E;,. A
basebs = (¢, Ey) iscaled constantif ¢ € C, and variableif
t € X. Thefirstelementin £, iscaled theleft boundary of
the base, denoted left(bs), and the last, the right boundary,
right(bs).

Letters z,y, z will be used as metavariables for vari-
able bases. Also letters s, 7, ... will denote boundaries. A
pair (i,7) of boundaries with i < j is caled a column
of GE. The column of a base z is defined as col (z) =
(left(z), right(z)). A base is empty if left(x) = right(z).
A generalized equation is solved if al its variable bases are
empty.

By GE(M, N,V) wewill denote the generalized equa-
tionwith parameters M = |BD|, N = |BS|and V = 2|X|
(the number of boundaries, of bases, and of variables bases
respectively.)

Definition 2 (Unifier) Let I/ be a function that assigns to
each column (¢,7 + 1) of GE a word over C UV. Note
that U can be extended by concatenation to all columns by
U, ) =UE, KUk, j)ifi <k =<jandU(i i) = ¢, the
empty word. U is called a unifier of GFE' if the following
properties are satisfied:

1These are the normalizing conditions: (&) says that we have exactly
two ocurrences of each variable. It is necessary also to record all known
information about identical subwords in these two ocurrences. This is
the role of the boundary sequence, which intuitively is coding: “the word
between boundariese; and e; isequal to that betweene; ande;”. (b) says
that constants have length 1.



node (the previous bound was logarithmic).

Using (1) and (2) it can be shown that we have to search
for solutions only in those nodes of the tree which are
“small”, and because there is a finite number of them, the
procedure succeds.

Finally, let us mention that the only known lower bound
for this problem is NP-hard, see eg. [4]. Alternatively, it
follows from the fact that integer programming problems
(with non-negative solutions) can be coded as systems of
word equationsin an a phabet of one |etter.

Outline of the Algorithm

Given a word eguation £, Makanin's agorithm can be
thought of as the generation of a possibly infinitetree 7 (&)
whoseroot is £, and whose nodes are generalized equations
which approximate the solutions of £. The tree 7 (£) has
the property that the word equation £ has a solution if and
only if thereisanodein thetree which is solved (i.e. asan
equation it has no variables, hence it is easily detectable).
The idea of atree in which the nodes are aproximations to
the solutionswas essentialy contained in [11], [15].

Makanin’sachievement ishaving devised away torestrict
the search to afinite part of that tree. Tothisend, heused the
two key resultsmentioned above. Inorder toimplement this
aparently simpleidea, a better datatype for word equations
was needed.

Makaninintroduced the concept of generalized equation:
a graphic representation of approximations to a solution.
Consider the equation zaby = ybax. The variables z, y
represent unknown words. Graphicaly zaby isrepresented

as Iilﬂil__?i__l wherethelength of thehorizontal lineinthe
caseof thevariablesisunknown. Thevertical linesarecalled
boundaries. An approximation to a solution is essentialy
to make some decision about how both sides of the equation
overlap. See for example two possible overlappings for the
equation zaby = ybax in the diagrams below. In general,
there may be many such overlappings.

After thisinitial setup, the a gorithm proceeds by replac-
ing equals by equals (elimination of variables) from left to
right. For example, in diagram (1), you can replace y = za
(the first two columns) into the y in between boundaries 4
and 6 (notethat a new overlapping must be guessed), and so
on. Each stepwill be onenew nodeinthetree. This process
in principleincreases the number of boundaries. (The num-
ber of variables is kept bounded by the trick of replacing
the equation by an equiva ent system which has exactly two
ocurrences of each variable))

x b
a Yy
y a (1)
b x
1 2 3 4 5 6
x b
a Yy
y a (2)
b x
1 2 3 4 5 6 7 8

Hence a generalized equation consists of: (1) A finite
set of boundaries, (2) A finite set of generalized variables
and constants (called bases). A base is defined by a label
and alist of redevant boundaries, starting from its left end
to its right end, subject to some technica normalization
conditions. Standard concepts like solution, exponent of
periodicity, etc. for word equations have their counterparts
in generalized equations. Note that a generalized equation
is a finite object with two parameters. the number M of
boundaries and the number N of bases.

It can be proved that all nodes (generalized equations) in
7 (&) have anumber of bases bounded by 2|£] (due to the
fact of having only two ocurrences of each variable). Hence,
the “size” of a node (generalized equation) of 7 (&) is es
sentially determined by its number of boundaries M. Also,
note that for a given fixed number of bases and boundaries,
thereare only finitely many different generalized equations.

As we pointed out, the two key results in proving the
termination of Makanin’s algorithm involve what is called
the exponent of periodicity of a solution, i.e. the maximal
n for which the solution contains a subword of the form
w”. Rephrased in this new language, the results are: (1)
There is a constant p(&) with the property that if £ has a
solution, it has also a solution with exponent of periodicity
p(&) (Ko&cieski and Pacholski [10] proved that p(€) €
2°0€D), and (2) Any solution to a node with large number
of boundaries must have big exponent of periodicity. Our
main contribution is the exponential improvement of this
last dependence, i.e. the proof that if anodeof 7 (&) has M
boundaries, then the exponent of periodicity of any solution
to that node must be larger than Q(MY¢), for ¢ ~ |£|? for
M bigenough (The old bound was of the order of Ig M, see
eg. [7].[9])

So the agorithmworksas follows: If £ hasasolution, it
has a solution with exponent of periodicity n < p(£). But
that solution must show up in a node of 7 (&) for whose
number of boundaries, M, holds MY¢ < n, that is M <
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Abstract

In this paper we study solvability of equations over
free semigroups, known as word equations, particularly
Makanin's algorithm, a general procedure to decide if a
word equation has a solution. The upper bound time-
complexity of Makanin’soriginal decision procedure (1977)
was quadruple exponential in the length of the equation, as
shown by Jaffar. In 1990 Koscielski and Pacholski reduced
it to triple exponential, and conjectured that it could be
brought down to double exponential. The present paper
proves this conjecture. In fact we prove the stronger fact
that its space-complexity is single exponential .

Introduction

Solving equations in equationally defined free algebras
(Unification) is a widely used technique in Computer Sci-
ence, see eg. [3]. In particular, solving equations in free
semigroups, i.e. word equations, is of great interest in e.g.
associative rewriting and completion, string unification in
PROLOG-3, extensions of string rewrite systems, unifica
tion in some theories with associative non-commutative op-
erators, and in symbolic mathematical packages.

The problem of solving word equations was considered
at least since the late fifties by A. Markov (see [8]). Par-
tia solutions were known long ago: in the late sixties
HmelevskiT [8] solved the problem for equations in three
variables, Matiyasevich [13] solve it for the case in which
each variable occurs at most twice, and in the seventies
Lentin [11], Plotkin [15], and Siekmann [17] gave semi-
decision procedures.

In 1977 Makanin [12] solved the probleminitscomplete
generality giving us an algorithm to decide if arbitrary sys-
tems of word equations have solutions (the case of systems
of equations reduces easily to the case of only one equa

tion). This decision procedure was later extended by Jaffar
[9] to give al possible solutionsto an equation as well. In
the meantime, there has been some work simplifying vari-
ousaspects of thea gorithmand even someimplementations
[14],[1],[29],[18]. Also, Schulz[19] generalized theresult
for the case of variables with regular constraints.

Jaffar in [9] calculated an upper bound for the running
time of Makanin's agorithm which was four times expo-
nentia in the length of the equation. Later Koscielski and
Pachol ski [10] improved it to non-deterministictriple expo-
nentia time. But amoredetailed analysis, see[7], [6], shows
an upper bound of doubleexponential space-complexity (i.e.
no more than than triple exponential time-complexity).

In the present paper we prove that Makanin's Algo-
rithm has a space-complexity upper bound which is sin-
gle exponentia in the length of the word equation. This
result improves the known upper bound complexity from
2-EXPSPACE to EXPSPACE, and proves as a corollary
K o&cie ski-Pacholski’'s conjecture in [10] about improving
the upper bound, using the ideas present in Makanin [12],
to double exponential.

Makanin’salgorithmis essentially a search for solutions
in atree whose nodes are generalized equations (a datatype
that generalizes word equations). The generation of thetree
isnot difficult. Theproblemisto restrict thesearch toafinite
subtree. Thisisobtained by using two non trivia results:
(1) For every word equation £ there is a constant p(&),
depending solely on &, such that if £ has asolution, then it
also hasasolutioninwhich each subword of theform w™ (w
repeated n times) satisfiesn < p(€). Thisistheplacewhere
Ko&cidski and Pacholski reduced the time-complexity by
one exponential.

(2) If anode has a big “size”, then any solution of it must
contain a subword w" with large n. Thisis the point on
which we concentrate in this paper. In fact, we prove that
if a node has a solution, then that solution must contain a
subword w™ with n at least polynomia inthe“size’ of that



