
6 Conclusions

We proved that the complexity of deciding if a word equa-
tion with constants is solvable is EXPSPACE. On the other
side, the known lower bound is NP-hard. The conjecture in
[16] is that the problem is NP-complete.

It is interesting to note that the improvement in the com-
plexity of the decision problem presented in this paper gives
also an improvement for the upper bound on the length of
minimal solutions of word equations, triple exponential as
shown above. Rytter and Plandowski [16] showed recently,
using compression of solutions, that if the length of a min-
imal solution to a word equation E is L >> jEj, then there
is a non-deterministic algorithm running in time polynomial
in lgL. Unfortunately, due to the current bounds on lengths
of minimal solutions (triple exponential in jEj), this is still
not enough to improve the above Theorem 5.

It is also interesting to note the result mentioned Remark
1 above, and in general the use of different parameters in
the measuring of the complexity of solving equations (the
classical is the length of the equation jEj). In this direction,
we isolated a reasonable subclass of word equations (those
whose number of ocurrences of variables is bounded by a
constant) whose decision problem, we conjecture, can be
proved tractable.

Finally, it is worth noticing that the improvement of the
upper bound presented in this paper works also for the case
of word equations with regular constraints (see [18], and the
proof in forthcoming [6]).
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For the case S̄i � Si+1 the only difference is that now
left(y) � left(x) and hence we get a negative sign:

jU (Si)j � jU (Si+1)j = �jU (left(y); left(x)j:

Fact 7. There are no more than V nV
2

different subbases
S which have a convex chain S; S2; : : : ; Sn landing in x0 of
length n.
Proof. By enumerating the elements in D, let us say
D1; : : : ; DjDj, and grouping identical summands in the
equation in Fact 5, we get:

jU (S)j = �1D1 + � � �+ �jDjDjDj + jU (col (x0))j;

with �1 + � � � + �jDj = n and �j � 0 integers. So the
number jU (S)j can take no more than njDj values. From
Fact 4 we know that Sx is completely determined by x and
jU (S)j. Hence there are no more than V njDj subbases S
with the desired property. Finally just note that jDj � V 2.

Fact 8. The number of different subbases S which have
a convex chain S; S2; : : : ; Sl landing in x0 of length l � n

is less than V nV
2+1.

Proof. For each length l use Fact 7 and calculate
Pl

i=1 V i
V 2

.
Fact 9. Finally, denote by L the length of the longest

chain which lands in x0. From Facts 3 and 8, we have
M�2N

V
� V LV

2+1, so we get L � (M�2N
V 2 )

1
V 2+1 . 2

Proof of Theorem 2. By Theorem 4, for n = (M�2N
V 2 )

1
V 2+1

there is a clean convex chain S1; : : : ; St; : : : ; Sn where St
is the turning point of the chain. Hence S1; : : : ; St or
Sn; : : : ; S̄t is a monotone chain of length k � n=2.

Let U be a strict unifier of GE. By Lemma 4 we have
a domino tower B1C1; : : : ; BkCk of height k associated to
the chain, all of whose words are BjCj = U (col (xij )) 2
fU (col (x)) : x 2 Xg. There are V variable bases, so for
every i, in Si; : : : ; Si+V necessarily appear two subbases of
the same variable. Because all subbases are different (the
chain is clean), jBi+V j = jU (Si+V )j > jU (Si)j = jBij. So
we can apply Proposition1 to this domino tower to conclude
that there is a word BjCj (= U (col (x) for some x 2 X )
of the form P sQ with P non-empty and s + 1 > k

V jXj2 >

n=2
V (V=2)2 = 2

V 3 [
M�2N
V 2 ]

1
V 2+1 .

5 Complexity

Theorem 5 Let jEj denote the length of the word equation
E . The satisfiability problem for word equations is in the
following complexity classes:

DTIME(22O(jEj3)
), i.e., double exponential deterministic

time.
DSPACE(2O(jEj

3)), i.e., exponential deterministic space.

Proof. Let us analyze Makanin. The worst case time-
complexity for Gen is exponential in jEj: the num-
ber of all possible generalized equations which can be
built from E . As for the time-complexity of the Search

procedure, the key point is the bound K(E) which is

4jEj2( jEj
3(p(E)+1)

2 )4jEj2+1 + 4jEj (see proof of Theorem 3.)
On the other side the procedure Transform takes time
bounded by an exponential in the number of boundaries
of its input GE (essentially the number of all possible gen-
eralized equations which can be built from GE. See [7].)
The rest is to calculate how much time does the search take.
A rough estimation is the number of nodes in the subtree
formed by all the generalized equations with jBDj < K(E)
which is exponential in K(E).

As for the space-complexity, using an argument from
[6], the space needed to generate non-deterministically with
Transform a new node from a given GE is roughly the
number of boundaries of GE. But we need to generate only
nodes with less thanK(E) number of boundaries. Hence the
algorithm uses space in NSPACE(K(E)), and consequently,
by Savitch’s Theorem, DSPACE(2O(jEj

3)). 2

Corollary 1 If a word equationE is solvable, then the length
of a minimal solution of E is triple exponential in jEj.

Proof.(Sketch). The path to a solved node in T (E) is no
longer than the number of nodes in the tree, that is, double
exponential. Also, it is not difficult to see that if a node has
a solution of length l, its parent has a solution of length no
more than 2l (see for example the code for Transform in
[7]). Now, because a solution in a solved node has length
exponential in jEj, it follows that the length of a solution of
E , the root of T (E), is no more than triple exponential in
jEj. 2

Remark 1 It is interesting to note (see Theorem 2) that our
bounds depend heavily on V (the number of ocurrences of
variables), as oposed to jEj (the length of the equation).
Moreover, noting that for word equations with V bounded
by a fixed constant v0, their exponent of periodicity is a
function polynomial on the length of the equation (for ex-
ample, check the proof of Lemma 1.3 in Makanin’s paper
[12]), we can conclude the following: Let V be bounded
by a fixed constant v0 which is not part of the input. Then,
the satisfiability problem for word equations where V � v0

is in PSPACE, result that is rather interesting when dealing
with equations with fixed small number of ocurrences of
variables. Moreover, we conjecture that this last problem
is tractable, i.e., there is a deterministic polynomial time
algorithm which solves it.



2. Each subbase Sx has its dual (the corresponding col-
umn in the dual variable), denoted Sx̄ or S̄x. This pair
is called a boundary equation and denoted Sx � S̄x.
Note that ifU is a unifier ofGE, thenU (Sx) = U (S̄x).

Definition 5 Let S1; S2; : : : ; Sn be subbases of GE.

1. S1 � S2 (S1 is a suffix of S2) iff S1 = (b1; i) and S2 =
(b2; i) and b2 � b1. Note that the second boundary in
both subbases is the same.

2. A monotone suffix chain in GE is a sequence
S1; S2; : : :Sn of subbases with S1 � S2 � S̄2 � S3 �
S̄3 � : : : � Sn�1 � S̄n�1 � Sn.

3. A convex suffix chain is a sequence S1; : : : ; St; : : : ; Sn
such that S1; S2; : : : ; St and Sn; Sn�1; : : : ; S̄t are
monotone suffix chains.

Note that when t = 1 or t = n we have chains as in
(2), i.e. convex chains generalize monotone chains.

The next lemma—whose proof is an easy check—shows
the precise relationship between suffix chains and domino
towers.

Lemma 4 Let S1; : : : ; Sk be a suffix monotone chain ofGE
and U a strict unifier of GE. Suppose Sj is a subbase of
xij . Then

1. U (Sj) is a suffix of U (Sj+1) for all j = 1; : : : ; n.

2. Define Bj = U (Sj) and Cj such that U (col (xij )) =
BjCj. Then the sequence of words B1C1; : : : ; BkCk

is a domino tower of height k.

We need two more concepts in order to state the next
results. A convex chain S1; : : : ; Sn is said to land in a
variable base x, if Sn = (b; i)x with i = right(x). A convex
chain will be called clean if each subbase appears just once.

The next proposition has a rather technical proof. It is
sketched in [7]. (Also compare [9], Lemmas 3.1, 3.2, and
[18], Lemma 5.9 and Appendix.)

Proposition 2 For each non-empty subbase S of GE 2
T (E), there is a clean convex chain of non-emtpy subbases
S; S2; : : : ; Sn landing in a variable base x.

We arrived to the key point in our proof. In [9] there
is a similar result with a bound logarithmic in the number
of boundary equations. The main result of this paper is
its improvement to a polynomial bound in the number M
of boundaries. The essence of the idea is to use the ex-
tra information provided by the fact that the domino towers
come from generalized equations, hence the number of pos-
sible different Bj’s (see Definition 3 and Lemma 4) can be
bounded by the square of the number of variable bases.

Theorem 4 Let GE(M;N; V ) be a node of T (E) which
has a strict unifier. Then there is a clean convex chain of
length bigger than (M�2N

V 2 )1=(V 2+1).

Proof. Let U be a strict unifier of GE(M;N; V ).
Fact 1. Each subbase is completely determined by a base

x and a boundary i.
Proof. Just note that a subbase is of the form (b; i)x with
b = left(x).

Fact 2. The number of different non-emtpy subbases of
GE(M;N; V ) is no less than M � 2N .
Proof. From Fact 1 and Lemma 2(3), in the worst case (each
i 2 BD occurs only in one base) there are as many different
non-emtpy subbases as different boundaries, discounting the
left and right boundaries of bases.

Fact 3. There is a variable base x0 such that at least
(M � 2N )=V non-empty different subbases have a convex
chain landing in x0.
Proof. By Proposition 2, each subbase has a convex chain
landing in a variable base x. But there are V variables bases
in GE, hence there is a variable base x0 with the required
property.

Fact 4. Each subbase S is completely determined by its
underlying base and the natural number jU (S)j (the length
of the word U (S)).
Proof. From Fact 1, S = (b; i)x is completely determined
by its base x and the boundary i. Now because U is strict,
i 6= j iff jU (b; i)j 6= jU (b; j)j.

Fact 5. Let S1; : : : ; Sn be a convex chain landing in x0.
Then the length of U (S1) is:

jU (S1)j = (
n�1X

i=1

jU (Si)j � jU (Si+1)j) +

+ (jU (Sn)j � jU (col (x0))j) + jU (col (x0))j:

Proof. Use the telescopic rule.
Fact 6. Each of the summands in the equation in Fact 5

above is in the set

D = f�jU (left(x); left(y))j : left(x) � left(y)

and x; y are variable basesg

Proof. By definition of convex chain, for each i, Si �
S̄i � Si+1 or Si � S̄i � Si+1. First suppose that the latter
case happens, and denote S̄i = (left(x); j)x and Si+1 =
(left(y); j)y . Then left(x) � left(y) and note that the second
boundary j must be the same in both subbases. Now, from
the definition of unifier, U (Si) = U (S̄i), hence

jU (Si)j � jU (Si+1)j = jU (S̄i)j � jU (Si+1)j

= jU (left(x); j)j � jU (left(y); j)j

= jU (left(x); left(y))j:



The next result can be found in [12] and in [9]. The new
bound, exponentially better than Jaffar’s [9] is our contribu-
tion.

Theorem 2 Let GE(M;N; V ) be a node of T (E) which
has a unifier with exponent of periodicity p. Then p + 1 �

2
V 3 (

M�2N
V 2 )

1
V 2+1 .

Before proving it, we use it to prove the following:

Theorem 3 Makanin is correct and terminates.

Proof. Let E be a word equation, and define K(E) =

4jEj2( jEj
3(p(E)+1)

2 )4jEj2+1 + 4jEj where p(E) is as in Theo-
rem 1.

The termination of Makanin(E) reduces to showing that
Search(Gen(E);K(E)) terminates. Observe first that for
fixed parameters M;N there are only finitely many differ-
ent generalized equations GE(M;N ). Second, every non-
visited nodeGE(M;N ) 2 S has a parent with M � K(E)
(line 7 of Search) and N � 2jEj (Lemmas 1(3) and 2(3)).
Finally note that every node has only finitely many children
(definition of Gen and Transform). Hence there is a fixed
finite number (depending solely on jEj) which bounds the
size of S at any stage. Now, because in each loop one more
element of S is visited, Search will eventually stop. (No-
tice that for the union of sets in line 10 of Search we need
to check if two generalized equations are the same: this is
staightforward.)

Makanin is correct. If E has no unifier, then by Lemma 3
there is no solved node in T (E). Hence Search will never
reach line 6. Therefore eventually all nodes will be visited
and Search will output FAILURE.

Now suppose that E has a unifier. Then by Theorem 1,
it has a unifier with exponent of periodicity p(E). From
Lemma 3 it follows that there is a branch in T (E) end-
ing in a node labelled with a solved generalized equation
SGE. By Lemmas 1(1) and 2(1), it follows that each node
GE(M;N; V ) in the branch has a strict unifier with ex-
ponent of periodicity p0 � p(E). Also from Theorem 2 we
have 2

V 3 (
M�2N
V 2 )1=(V 2+1) � p0+1. So we can conclude, us-

ing V � N � 2jEj, thatM � V 2[V
3(p(E)+1)

2 ]V
2+1 +2N �

K(E). Hence all the nodes in the branch eventually will be
in S, so Search will visit SGE and check that it is solved
(line 5) and return SUCCESS. 2

4 Proof of Theorem 2

The proof is essentially the construction of some com-
binatorial objects called domino towers (Definition 3). The
general lines of the proof are as follows:

(1) Long domino towers imply big exponent of period-
icity of some of its constituent words. This is Proposition
1.

(2) Domino towers can be constructed from a solution
to a generalized equation GE 2 T (E). This fact, which
uses the relations generated by the boundary sequences of
the bases, is stated in Lemma 4 and Proposition 2.

(3) A big number of boundaries in GE implies the exis-
tence of long domino towers of those in (2). This is Theorem
4, a counting argument.

Let us begin defining formally the chains of words.

Definition 3 A domino tower is a sequence of words
B1C1; : : : ; BkCk (Bi and Ci non-empty) such that for all
1 � i < k

1. There are (possible empty) words Si such that Bi+1 =
SiBi.

2. There are (possibly empty) words Ri; Ti such that
CiRi = Ci+1Ti.

By condition 2, there are two possible cases for each i:

Si Bi Ci

Bi+1 Ci+1 Ti

or

Si Bi Ci Ri

Bi+1 Ci+1

The length of the sequence is called the height of the
domino tower.

The following result—whose proof can be found in
[19]—establishes a relationship between the length of
domino towers and the exponent of periodicity of some of
its building blocks (the words BiCi’s).

Proposition 1 Let X = fX1; : : : ; XNg be a set of
non-empty words. Suppose the sequence of words
B1C1; : : :BkCk is a domino tower of height k and each
BiCi 2 X . If for all i, jBi+mj > jBij, then some word
BtCt has the form BtCt = P sQ, where P is non-empty
and s+ 1 � k

mN2 .

Our next goal will be to generate—from the data ofGE—
long domino towers whose building blocks (theBiCi’s) are
the variables in X . Then, using the Proposition above, we
shall conclude that one variable will have big exponent of
periodicity. The next definitions give the elements needed
to construct the domino tower (as is shown in Lemma 4
below).

Definition 4 Let GE be a generalized equation, and let x
be a variable base of GE.

1. A subbase of x, Sx, is a column of the form (left(x); i)
with i 2 Ex and i 6= right(x). If i = left(x) the
subbase is called empty.



1. For each pair of duals x = (x; (e1; : : : ; en)) and
x̄ = (x; (ē1; : : : ; ēn)), and for every sub-index s
it holds U (es; es+1) = U (ēs; ēs+1). In particular
U (col (x)) = U (col (x̄)).

2. For each constant base bs of label c,
U (col (bs)) = c.

U is strict if U (i; i+ 1) 6= � for every i 2 BD. The index of
U is the number jU (b1; bM)j, where b1 is the first and bM the
last element of BD. The exponent of periodicity of U is the
maximal exponent of periodicity of the words U (col (x)),
where x is variable base.

2 The Algorithm

Makanin’s Algorithm consists of the generation of a tree
in which all the solutions of E (if any) can be found. This
is acomplished by two main procedures, Gen, whose in-
put is a word equation, and output a finite set of general-
ized equations, and Transform, whose input is a non-solved
generalized equation, and output a finite set of generalized
equations. Lemmas 1 and 2 below review their properties.
Unfortunately we do not have enough space here to give
a thorough description of them (The detailed code and the
proofs of Lemmas 1, 2 and 3 which state their properties can
be found in [7]).

For a word equation E , define its associated Makanin’s
tree, T (E), recursively as follows:

� The root of T (E) is E .

� The children of E are gen(E).

� For each node GE 6= root, the set of its children is
Transform(GE).

Lemma 1 (Properties of Gen) (Compare Lemma 2.3 in
[18], Generalization Theorem in [9]). Let E be a word
equation. The following assertions hold:

1. If E has a unifier with exponent of periodicity p then
some GE 2 gen(E) has a strict unifier with exponent
of periodicity p. Conversely, if some GE 2 Gen(E)
has a unifier, then E has a unifier.

2. For each GE 2 gen(E), every boundary is the right or
left boundary of a base. Also, every boundary sequence
consists precisely of these two boundaries.

3. For GE 2 gen(E), the number of bases of GE does
not exceed 2jEj.

Lemma 2 (Properties of Transform) (Compare Theorems
4.7, 4.8 in [18], procedure REDUCE in [9]). Let GE be
a non-solved generalized equation (node) of T (E). The
following assertions hold:

1. If GE has a strict unifier U with index I and exponent
of periodicity p, then Transform(GE) has an element
GE0 that has a strict unifier U 0 with index I0 < I
and exponent of periodicity p0 � p. Conversely, if an
element of Transform(GE) has a unifier, thenGE has
a unifier.

2. For each GE0 2 Transform(GE), each boundary of
GE0 occurs in the boundary sequence of some base.

3. For GE0 2 Transform(GE), the number of bases of
GE0 does not exceed the number of those in GE.

Lemma 3 (Properties of T (E)) (Compare Corollary 4.9
in [18]). Let E be a word equation. Then E has a uni-
fier if and only if T (E) has a node labelled with a solved
generalized equation (i.e. with all variables bases empty.)

Lemma 3 immediately gives a semi-decision procedure
because it is easy to decide if a base is empty or not. But
in general, the tree could be infinite. Makanin showed that
there exists a constantK(E) which depends only on E which
allows to restrict the search to a finite subtree of T (E). For
a current bound on K(E) see the proof of Theorem 3 below.

Makanin(E)

1. K  K(E) > bound of the search
2. S  Gen(E)
3. Search(S;K)

Search(S;K)

1. if all elements of S are visited then
2. return FAILURE
3. else
4. pick a non-visitedGE(M;N ) 2 S
5. if GE is solved then
6. return SUCCESS
7. else if M > K then
8. mark GE as visited; Search(S;K)
9. else
10. S  S [ Transform(GE)
11. mark GE as visited; Search(S;K)

3 Correctness and Termination

The cornerstones of Makanin’s algorithm are the next
two theorems. The first is based on a deep result in word
combinatorics, stated by Bulitko in 1970, whose bound was
improved by Kościelski and Pacholski [10].

Theorem 1 Let E be a word equation which has a unifier.
Denote by p(E) the minimum among the exponent of peri-
odicity of all unifiers of E . Then p(E) � 3jEj21:07jEj.



p(E)c for some constant c � jEj2, But we know that there
are only a finite number of nodes with M bounded by that
constant. Hence the search is finite.

Summarizing, the complexity of Makanin’s Algorithm
has three main points: (1) the bound of the exponent of pe-
riodicity of word equations, (Theorem 1, which is optimal),
(2) the relationship between the number of boundaries of a
generalized equation and its exponent of periodicity (The-
orem 2, whose bound we improved exponentially in this
paper), and (3) possible ways of doing the search. Currently
there is no known better way of doing it than by doing a
complete search of the subtree of those nodes with number
of boundaries M � p(E)c, which amounts to a complex-
ity exponential in p(E). This gives a time-complexity for
Makanin’s Algorithm double exponential in jEj. Also by
noticing, as pointed out by Diekert in [6], that the tree can
be non-deterministically generated in the space used by the
biggest node (hence in our case exponential in jEj), it fol-
lows that the satisfiability problem for word equations is in
NEXPSPACE, and using Savitch’s Theorem, conclude that
it is in EXPSPACE.

Many of the arguments in this paper are implicit in
Makanin’s work and that of his followers. We give an
overview of the whole algorithm (along the lines of [7]) in
order to make the paper as self-contained as possible. The
essential arguments are in Section 4, especially Theorem 4.

1 Basic Concepts and Definitions

Let C = fa1; : : : ; arg be a finite set of constants, and
V = fv1; v2; : : :g be an infinite set of variables. A word w
over C [V is a (possibly empty) finite sequence of elements
of C [ V. The length of w, denoted jwj, is the length of the
sequence. The exponent of periodicity of a word w is the
maximal number p such that w can be written as uvpz for
some words u; v; z with v non-empty.

A word equation E is a pair (w1; w2) of words over C[V,
usually written as w1 = w2. The number jEj = jw1j+ jw2j
is the length of the equation E . Note that in an equation
E only a finite number of variables occur, let us say X =
fx1; : : : ; xng � V. A unifier of E is a sequence U =
(U1; : : : ; Un) of words over C[V such that both sides of the
equation become graphically identical when we replace all
ocurrences of xi byUi, for each i = 1; : : : ; n. The exponent
of periodicity of the unifier U is the maximal exponent of
periodicity of the words Ui. Usually a unifier U with every
Ui 2 C

� is called a solution.
The key concept in Makanin’s algorithm is that of gen-

eralized equation. The version presented here follows [7]
(compare also [12], [9], [18].)

Definition 1 (Generalized Equation) A generalized equa-
tion GE consists of

1. Two finite disjoint sets C and X , the labels.

2. A finite linear orderd set (BD;�), the boundaries.

3. A finite set BS of bases. A base bs is a label together
with an ordered sequence of boundaries, i.e. bs =
(t; (e1; : : : ; en)), where n � 2, t 2 C [ V, ei 2 BD
and ei � ei+1. The bases are subject to the following
conditions:1

(a) For each variable x 2 X , there are exactly two
bases with label x, called duals (abusing notation
denoted by x and x̄ respectively). Also, their re-
spective boundary sequences must have the same
length.

(b) For each base bs with t 2 C, its boundary se-
quence has exactly two elements and they are
consecutives in the order �.

Example 1 The generalized equation (1) of the introduction
is formally: C = fa; bg, X = fx; yg, BD = f1; : : : ; 6g
and BS = f(a; (2; 3)) , (a; (24; 5)), (b; (3; 4)), (x; (1; 2)),
(x; (5; 6)), (y; (1; 3)), (y; (4; 6)).

Some definitions and conventions to easy the notation:
The boundary sequence of a base bs is denoted by Ebs. A
base bs = (t; Ebs) is called constant if t 2 C, and variable if
t 2 X . The first element inEbs is called the left boundary of
the base, denoted left(bs), and the last, the right boundary,
right(bs).

Letters x; y; z will be used as metavariables for vari-
able bases. Also letters i; j; : : : will denote boundaries. A
pair (i; j) of boundaries with i � j is called a column
of GE. The column of a base x is defined as col (x) =
(left(x); right(x)). A base is empty if left(x) = right(x).
A generalized equation is solved if all its variable bases are
empty.

By GE(M;N; V ) we will denote the generalized equa-
tion with parameters M = jBDj, N = jBSj and V = 2jX j
(the number of boundaries, of bases, and of variables bases
respectively.)

Definition 2 (Unifier) Let U be a function that assigns to
each column (i; i + 1) of GE a word over C [ V. Note
that U can be extended by concatenation to all columns by
U (i; j) = U (i; k)U (k; j) if i � k � j and U (i; i) = �, the
empty word. U is called a unifier of GE if the following
properties are satisfied:

1These are the normalizing conditions: (a) says that we have exactly
two ocurrences of each variable. It is necessary also to record all known
information about identical subwords in these two ocurrences. This is
the role of the boundary sequence, which intuitively is coding: “the word
between boundaries ei and ej is equal to that between ēi and ēj”. (b) says
that constants have length 1.



node (the previous bound was logarithmic).

Using (1) and (2) it can be shown that we have to search
for solutions only in those nodes of the tree which are
“small”, and because there is a finite number of them, the
procedure succeds.

Finally, let us mention that the only known lower bound
for this problem is NP-hard, see e.g. [4]. Alternatively, it
follows from the fact that integer programming problemso
(with non-negative solutions) can be coded as systems of
word equations in an alphabet of one letter.

Outline of the Algorithm

Given a word equation E , Makanin’s algorithm can be
thought of as the generation of a possibly infinite tree T (E)
whose root is E , and whose nodes are generalized equations
which approximate the solutions of E . The tree T (E) has
the property that the word equation E has a solution if and
only if there is a node in the tree which is solved (i.e. as an
equation it has no variables, hence it is easily detectable).
The idea of a tree in which the nodes are aproximations to
the solutions was essentially contained in [11], [15].

Makanin’s achievement is having devised a way to restrict
the search to a finite part of that tree. To this end, he used the
two key results mentioned above. In order to implement this
aparently simple idea, a better datatype for word equations
was needed.

Makanin introduced the concept of generalized equation:
a graphic representation of approximations to a solution.
Consider the equation xaby = ybax. The variables x; y
represent unknown words. Graphically xaby is represented

as j
x
���jaj

b
��j y jwhere the length of the horizontal line in the

case of the variables is unknown. The vertical lines are called
boundaries. An approximation to a solution is essentially
to make some decision about how both sides of the equation
overlap. See for example two possible overlappings for the
equation xaby = ybax in the diagrams below. In general,
there may be many such overlappings.

After this initial setup, the algorithm proceeds by replac-
ing equals by equals (elimination of variables) from left to
right. For example, in diagram (1), you can replace y = xa
(the first two columns) into the y in between boundaries 4
and 6 (note that a new overlapping must be guessed), and so
on. Each step will be one new node in the tree. This process
in principle increases the number of boundaries. (The num-
ber of variables is kept bounded by the trick of replacing
the equation by an equivalent system which has exactly two
ocurrences of each variable.)

x b
a y

y a
b x

1 2 3 4 5 6

(1)

x b
a y

y a
b x

1 2 3 4 5 6 7 8

(2)

Hence a generalized equation consists of: (1) A finite
set of boundaries, (2) A finite set of generalized variables
and constants (called bases). A base is defined by a label
and a list of relevant boundaries, starting from its left end
to its right end, subject to some technical normalization
conditions. Standard concepts like solution, exponent of
periodicity, etc. for word equations have their counterparts
in generalized equations. Note that a generalized equation
is a finite object with two parameters: the number M of
boundaries and the number N of bases.

It can be proved that all nodes (generalized equations) in
T (E) have a number of bases bounded by 2jEj (due to the
fact of having only two ocurrences of each variable). Hence,
the “size” of a node (generalized equation) of T (E) is es-
sentially determined by its number of boundaries M . Also,
note that for a given fixed number of bases and boundaries,
there are only finitely many different generalized equations.

As we pointed out, the two key results in proving the
termination of Makanin’s algorithm involve what is called
the exponent of periodicity of a solution, i.e. the maximal
n for which the solution contains a subword of the form
wn. Rephrased in this new language, the results are: (1)
There is a constant p(E) with the property that if E has a
solution, it has also a solution with exponent of periodicity
p(E) (Kościelski and Pacholski [10] proved that p(E) 2
2Θ(jEj)), and (2) Any solution to a node with large number
of boundaries must have big exponent of periodicity. Our
main contribution is the exponential improvement of this
last dependence, i.e. the proof that if a node of T (E) has M
boundaries, then the exponent of periodicity of any solution
to that node must be larger than Ω(M 1=c), for c � jEj2 for
M big enough (The old bound was of the order of lgM , see
e.g. [7], [9].)

So the algorithm works as follows: If E has a solution, it
has a solution with exponent of periodicity n � p(E). But
that solution must show up in a node of T (E) for whose
number of boundaries, M , holds M 1=c � n, that is M �
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Abstract

In this paper we study solvability of equations over
free semigroups, known as word equations, particularly
Makanin’s algorithm, a general procedure to decide if a
word equation has a solution. The upper bound time-
complexity of Makanin’s original decision procedure (1977)
was quadruple exponential in the length of the equation, as
shown by Jaffar. In 1990 Kościelski and Pacholski reduced
it to triple exponential, and conjectured that it could be
brought down to double exponential. The present paper
proves this conjecture. In fact we prove the stronger fact
that its space-complexity is single exponential.

Introduction

Solving equations in equationally defined free algebras
(Unification) is a widely used technique in Computer Sci-
ence, see e.g. [3]. In particular, solving equations in free
semigroups, i.e. word equations, is of great interest in e.g.
associative rewriting and completion, string unification in
PROLOG-3, extensions of string rewrite systems, unifica-
tion in some theories with associative non-commutative op-
erators, and in symbolic mathematical packages.

The problem of solving word equations was considered
at least since the late fifties by A. Markov (see [8]). Par-
tial solutions were known long ago: in the late sixties
Hmelevskiı̆ [8] solved the problem for equations in three
variables, Matiyasevich [13] solve it for the case in which
each variable occurs at most twice, and in the seventies
Lentin [11], Plotkin [15], and Siekmann [17] gave semi-
decision procedures.

In 1977 Makanin [12] solved the problem in its complete
generality giving us an algorithm to decide if arbitrary sys-
tems of word equations have solutions (the case of systems
of equations reduces easily to the case of only one equa-

tion). This decision procedure was later extended by Jaffar
[9] to give all possible solutions to an equation as well. In
the meantime, there has been some work simplifying vari-
ous aspects of the algorithm and even some implementations
[14], [1], [19], [18]. Also, Schulz [19] generalized the result
for the case of variables with regular constraints.

Jaffar in [9] calculated an upper bound for the running
time of Makanin’s algorithm which was four times expo-
nential in the length of the equation. Later Kościelski and
Pacholski [10] improved it to non-deterministic triple expo-
nential time. But a more detailed analysis, see [7], [6], shows
an upper bound of double exponential space-complexity (i.e.
no more than than triple exponential time-complexity).

In the present paper we prove that Makanin’s Algo-
rithm has a space-complexity upper bound which is sin-
gle exponential in the length of the word equation. This
result improves the known upper bound complexity from
2-EXPSPACE to EXPSPACE, and proves as a corollary
Kościelski-Pacholski’s conjecture in [10] about improving
the upper bound, using the ideas present in Makanin [12],
to double exponential.

Makanin’s algorithm is essentially a search for solutions
in a tree whose nodes are generalized equations (a datatype
that generalizes word equations). The generation of the tree
is not difficult. The problem is to restrict the search to a finite
subtree. This is obtained by using two non trivial results:
(1) For every word equation E there is a constant p(E),
depending solely on E , such that if E has a solution, then it
also has a solution in which each subword of the formwn (w
repeated n times) satisfies n � p(E). This is the place where
Kościelski and Pacholski reduced the time-complexity by
one exponential.
(2) If a node has a big “size”, then any solution of it must
contain a subword wn with large n. This is the point on
which we concentrate in this paper. In fact, we prove that
if a node has a solution, then that solution must contain a
subword wn with n at least polynomial in the “size” of that


