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Abstract. The bisection method is the consecutive bisection of a trian-
gle by the median of the longest side. This paper introduces a taxonomy
of triangles that precisely captures the behavior of the bisection method.
Our main result is an asymptotic upper bound for the number of sim-
ilarity classes of triangles generated on a mesh obtained by iterative
bisection, which previously was known only to be finite. We also prove
that the number of directions on the plane given by the sides of the
triangles generated is finite. Additionally, we give purely geometric and
intuitive proofs of classical results for the bisection method.

1 Introduction

Longest-side bisection algorithms for the refinement of 2-dimensional triangula-
tions were developed to fill a gap in the design of adaptive software for finite
element applications to analyze physical problems described by partial differen-
tial equations, where the availability of algorithms able to produce automatic
and local refinement of the mesh is crucial. A discussion of the algorithms and
some generalizations can be found in [4,5]. These algorithms were designed to
take advantage of the non-degeneracy properties of the iterative longest-side
bisection (bisection method) of triangles, which essentially guarantee that con-
secutive bisections of the triangles nested in any triangle t0 of smallest angle σ0
produce triangles t (of minimum angle σt) such that σt ≥ σ0/2, and where the
number of non-similar triangles generated is finite.

The systematic study of the bisection method began in a series of papers [2,
7,8,9,1] around two decades ago. First, Rosenberg and Stenger [7] proved that
the method does not degenerate the smallest angle of the triangles generated
by showing that it does not decrease beyond σ/2, where σ is the smallest angle
from the triangle we started.

Then Kearfott [2] proved a bound on the behavior of the diameter (the length
of the longest side of any triangle obtained). In [8] a better bound was presented
for certain triangles. This bound was improved independently by Stynes [9] and
Adler [1] for all triangles. From their proofs they also deduced that the number of
classes of similarity of triangles generated is finite, although they give no bound.

There is very little research so far on complexity aspects of the bisection
method. Although it is known that different types of triangles behave radically
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different under iterative bisection (“good” and “bad” triangles), no systematic
classification of them is known.

This paper attempts to fill these gaps in the analysis of the bisection method.
We present a precise taxonomy that captures the behavior of the bisection
method for different types of triangles. We introduce as main parameter the
smallest angle and prove that in the plane it predicts faithfully the behavior of
the bisection method. We use this framework to prove new results and to give
intuitive proofs of classical results.

The contributions of this paper are as follows:

– A taxonomy of triangles reflecting the behavior of the bisection method. We
consider six classes of triangles, and two main groups.

– An asymptotic bound on the number of non-similar triangles generated. We
prove a super-polynomial upper bound, identify the instances where this
bound is polynomial, and describe worst case instances.

– An analysis of lower bounds on the smallest angle of triangles in the mesh
obtained using the bisection method for each class of triangles defined.

– A proof that there is a finite number of directions in the plane generated by
the corresponding segments (sides) of the triangles generated, and asymp-
totic bounds on this number.

Additionally, we present a unified view of the main known results for the
bisection method from an elementary geometry point of view. This approach
allows intuitive proofs and has the advantage of presenting the geometry inherent
to the method.

2 Notation and Preliminaries

Capital letters denote points on the plane. In order to simplify we will avoid
extra symbols and sometimes overload some notations. AB denotes a segment
as well as the length of this segment usually denoted by AB. An angle ∠ACB
denotes the actual instance as well as the value (measure) of it. A circumference
of center A and radius r is denoted by C(A, r).
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D

Fig. 1. Triangle ABC with AB ≥ BC ≥ CA. D is the midpoint of AB.

A bisection, by the median of the longest side, of triangle ABC with AB ≥
BC ≥ CA, is the figure obtained by tracing the segment CD, where D is the
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midpoint of the longest segment AB. See Figure 1. We will study the properties
obtained by successively bisecting the triangles so obtained.

For a given triangle PQR, denote by σPQR (respectively γPQR) the value
of the smallest (respectively greatest) angle in triangle PQR, and by βPQR the
remaining angle.

We will need a simple and useful technical lemma:
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Fig. 2. BI is bisectriz, BH and CD are medians, G is center of gravity.

Lemma 1. For �ABC with AB ≥ BC ≥ CA, it holds ∠BCD ≥ 1
2∠DBC.

Proof. (See Figure 2.) Let be ABC a triangle with AB ≥ BC ≥ CA, let BI
the bisectriz of ∠ABC), let BH and CD be medians, and let G be its center
of gravity. From AB ≥ BC ≥ CA and elementary geometry it follows that
BG ≥ GC, hence x ≥ z ≥ y/2. Note that x = y/2 if only if AB = AC.

To simplify the study of the bisection method, it is convenient to group two
or three consecutive bisections in triangle ABC, in what we will call a step,
as follows. For this discussion refer to Figure 3. Let E be the middle-point of
segment CB. Note that if CD ≥ CE, then CD, DE and EF are consecutive
bisections by the median of the longest side, and after these bisections we get
exactly three non-similar triangles: ADC, CDE and CDB (all others are sim-
ilar to one of these, see left side of Figure 3). We call these three consecutive
bisections a step of type A. Note that �ADC is the only triangle that possibly
generates new triangles non-similar to already generated ones.
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Fig. 3. Steps: Of type A on the left when CD ≥ CE, and of type B on the right when
CD ≤ CE. Vertices D, E and F are midpoints of the corresponding segments.
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On the other hand, if CD ≤ CE, the longest side in triangle CDE is now CE.
Hence we bisect only twice (CD and DE) and get two new triangles, namely
ADC and CDE (see right side of Figure 3). We call these two consecutive
bisections a step of type B. Note that for type B bisections, triangles ADC and
CDE are the only triangles that could generate new triangles non-similar to
already generated ones.

3 A Classification of Triangles

The behavior of the bisection method depends on the type of triangle to be
bisected. We will partition the set of all triangles in classes that reflect this
behavior by considering some elementary geometrical properties. The starting
point will be a triangle ABC as in Figure 1.
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Fig. 4. Regions



176 C. Gutierrez, F. Gutierrez, and M.-C. Rivara

Region Defining properties Other properties step type
I AD ≤ CD ≤ AC γ ≤ π/2 A
II AD ≤ AC ≤ CD γ ≤ π/2 A
III AC ≤ AD ≤ CD γ ≤ π/2 A
IV AC, CD ≤ AD γ ≥ π/2 A/B
V AD ≤ AC; CD ≤ CE γ > π/2 B

VI CD ≤ AD ≤ AC; CD ≥ CE γ ≥ π/2 A

The analysis is based on the geometrical places where vertex C of triangle
ABC lies, assuming AB ≥ CB ≥ CA. For this discussion, we refer to Figure 4,
where AB represents the longest side of the hypothetical triangle, D the midpoint
of AB, M is the midpoint of AD, N is such that AN = AB/3, MO ⊥ AB
and DP ⊥ AB. The arc C1 belongs to a circumference C(B,AB), arc C2 to
C(D,AD), arc C3 to C(N, AN) and finally arc C4 to C(A,AD).

From the condition AB ≥ BC ≥ CA, it follows that vertex C of a triangle
with base AB must be in the region bounded by arc AP and lines PD and AD.
We partition this region into six subregions, denoted by Roman numerals, with
the property that triangles in the same subregion present similar behavior with
regard to bisection by the median of the longest side, as stated in Lemma 2.
Note that arc C3 is the set of points C for which CD = CE, and is precisely
the geometrical place which separates those triangles for which steps of type A
apply from those triangles for which steps of type B apply. Table in page 5 lists
defining properties of triangles in each region.

Let us consider the process of bisecting iteratively a triangle. In what follows
by a “new triangle” we mean a triangle not similar to one already generated.
We will proceed following steps of type A or B, as follows:

1. Perform a step of the corresponding type (depending on the triangle);
2. Choose nondeterministically one of the new triangles obtained. If there is no

such triangle (i.e. all triangles generated are similar to previous ones), stop;
else goto 1.

Lemma 2. Let ABC be a triangle. For the iterative process described above it
holds:

1. If C is in region I, it generates at most 4 non-similar triangles as shown in
Figure 5, all of them belonging to region I.

2. If C is in region II, new �ADC belongs to region I.
3. If C is in region III, new �ADC belongs either to regions II or III. Moreover,

in no more than �5.7 log( π
6σ )� steps the only new triangle generated belongs

to region II.
4. If C is in region IV or V, after no more than �(γ − π/2)/σ� steps, the only

new triangle has γ ≤ π/2 (i.e. belongs to region I, II or III.)
5. If C is in region VI, new �ADC belongs to region I.

Proof. 1. Follows from the analysis of the relations among sides of the triangles
generated. See definition of region I and Figure 5.
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Fig. 5. After bisections in a triangle in Region I

2. Consider the triangle ABC ′ in region I, where C ′ is the reflex of C on
the line MO. We know that �ADC ′ is in region I. Now observe that triangle
�ADC is congruent to �ADC ′.

3. First, observe that �ADC has γ ≤ π/2, and σADC ≥ 3
2σABC (because

σADC = ∠ADC and Lemma 1). Now, because at each step σ is increased by
3/2, it is enough to find the smallest k such that (3

2 )kσ ≥ π/6, that is, k ≥
log( π

6σ )/ log(3/2). The solution, denoted by k(σ), is k(σ) = �5.7 log( π
6σ )�.

4. After one step, the only new triangles generated, �ADC and �CDE,
decrease their greatest angle by σABC . Hence it is enough to find the smallest
k such that γ − kσ ≤ π/2. The solution depends on two parameters and is
�(γ − π/2)/σ�.

5. Just observe that γADC ≤ π/2 and σADC is the same as ∠CAB of �ABC.

4 Number of Similarity Classes of Triangles

We are ready to prove the main theorem:

Theorem 1. Let ABC a triangle and σ its smallest angle.

1. The number of steps to be executed by the bisection method until no more
non-similar triangles are generated is O(σ−1)

2. If C is above arc C3, then the number of non similar triangles generated by
the bisection method is O(log(σ−1))

3. The number of non similar triangles generated by the bisection method is
O(σlog σ).

Proof. 1. Let us calculate the maximum number of steps to be executed before
arriving to region I in the worst case. This occurs for triangles in regions IV
or V. A rough upper bound in the number of steps is given by the sum 2 +
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�5.7 log( π
6σ )�+�(γ−π/2)/σ� This number is asymptotically linear in σ−1 because

π/3 ≤ γ < π.
2. For a triangle ABC above arc C3, the number N(ABC) of non-similar

triangles is 1 + N(ADC) (the 1 corresponds to �DBC). The statement follows
from Lemma 2, items 1, 2 and 3.

3. The complex case is region IV . (The analysis for region V is similar.) Here
N(ABC) = N(ADC) + N(CDE). First let us prove that σADC ≥ 3

2σABC . If
C is to the left of MO, then σADC is the angle ∠ADC and by Lemma 1 we
are done. Next consider the geometric place of the set of points C such that
βABC = 3

2σABC . This is a line L passing through D with negative slope. If C
lies to the right of L, then �ADC will be in region IV to the left of MO and
we are in the previous case in one step. If C lies in between L and MO, then
σADC = ∠CAD = βABC ≥ 3

2σABC by definition.
Now, using the fact that both triangles ADC and CDE have γ diminished

by σ, the fact already proven that σADC ≥ 3
2σABC , and observing that σDBC ≥

σABC , we have the following recurrence equation for the number N(γ, σ) of
non-similar triangles generated:

N(γ, σ) = N(γ − σ,
3
2
σ) + N(γ − σ, σ),

and Lemma 2.4 gives a bound to the number of necessary steps to take. It is
not difficult to see that this recurrence essentially reduces to one of the type
f(n) = f(n/2) + f(n − 1). This recurrence has no polynomial solution, and
O(nlog n) is an upper bound, from where we get the bound O((σ−1)log(σ−1).

It it interesting to note that not only the number of non-similar triangles
generated by the bisection method is finite, but a stronger result can be proved:

Proposition 1. The bisection method generates a finite number of different di-
rections in the plane. Moreover, in the worst case this number is O(σσ).

Proof. Using Theorem 1, it is enough to show that in each step only finitely many
new directions are added, and similar triangles generated use already generated
directions. But we already know these facts from the analysis of the regions: at
each step only one new direction is added except in regions IV and V where the
number of directions is (possibly) doubled. Hence, a gross upper bound for the
worst case is given by O(σσ).

5 Classical Results Revisited

Using only elementary geometric methods it is possible to re-prove classical
results about the smallest angle and parallel iterative bisection in the bisection
method.

Theorem 2. 1. The bisection method gives µABC ≥ 1
2σABC , where µABC is

the smallest angle in the mesh obtained by iteratively bisecting triangle ABC.
For triangles below arc C2 it holds that µABC = σABC .
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2. For each triangle, no more than 5 bisections (2 steps) are necessary in order
to diminish the longest side (called diameter) by one half. For simultaneous
parallel bisections of all triangles in the mesh, it holds dj ≤ c2−j/2d0 for
a small constant c depending on the regions and dj the diameter after j
(parallel) bisections.

Proof. 1. First, checking case by case it follows that for triangles in regions below
C2 always holds σADC > σABC and σDBC > σABC . Second, for triangles in
region III, the new triangle ADC has σADC ≥ 3

2σABC (because σADC = ∠ADC
and Lemma 1), and clearly σDBC > σABC . For triangles ABC in region II,
observe that σABC ≤ π/6 and σADC = ∠ACD > σABC . Finally, once a triangle
is in region I, we have Figure 5, being the worst case when C = P .

2. The first sentence is an easy observation, the worst case being triangles in
region I.

As for the diameter bound, using formula the area of a triangle A = 1
2bh

and the fact that the area decreases exactly by half after a bisection, one gets
immediately bj = (h0

hj
) b0
2j , where the sub-indexes indicate sides corresponding to

a triangle in the j-th (parallel) bisection.
Now the key point is to observe that: (i) for triangles whose vertex C is

below arcs C2 or C4 the diameter decreases by half after two parallel bisections,
i.e. d2 ≤ d0/2; and (ii) the fact we already know that, as bisection progresses,
triangles go “up” the level of arcs C4 and C2. Hence, hj can be bound (in terms
of bj) because from the fact mentioned above that we can deduce that σj is no
smaller than say π/7. Similarly, h0 has a fixed bound in terms of b0 (the worst
case being

√
3b0/2). Using these formulas we get b2

j ≤ c2b2
02

−j , for some constant
c ≤ √

3 (cf. also [1]). From here, taking square root we get the statement of the
theorem.

6 Conclusion

We presented a taxonomy of triangles in the plane which captures the behavior
of the bisection method. Besides allowing us to prove complexity results for the
bisection method, this classification is useful to refine bounds for each class of
triangles, and to determine more precisely lower bounds on the smallest angle
µABC in the mesh, as well as the number of non-similar triangles generated. The
analysis could be further refined considering regions we did not separate, e.g.
below arc C2, above arc C3 and to the left of MO in Figure 4. Further work
includes use of this theoretical analysis to refine algorithms of bisection (4-edge
partition, simple bisection, etc.) according to the type of triangle found in each
iteration.
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