# Foundations of RDF Databases (Overview)

#### Claudio Gutierrez

Department of Computer Science
Universidad de Chile

UPM - Madrid - Enero 2009

#### Joint Work With

- Renzo Angles
- Marcelo Arenas
- Carlos Hurtado
- Sergio Muñoz
- Jorge Pérez

Inspired by...

To the memory of Alberto Mendelzon, database theoretician and Web enthusiast

#### Agenda

- 1. RDF and Databases
- 2. RDF and Database models
- 3. RDF Query Language
  - Requirements and Domains
  - Manifold Views
- 4. SPARQL
  - Syntax and Semantics
  - Complexity
  - Expressive Power

#### Agenda

- 1. RDF and Databases
- 2. RDF and Database models
- 3. RDF Query Language
  - Requirements and Domains
  - Manifold Views
- 4. SPARQL

#### Disclaimer

# A particular view on the subject



#### The base of the Semantic Web is RDF

"The **Semantic Web** is the representation of data on the World Wide Web. It is a collaborative effort led by W3C with participation from a large number of researchers and industrial partners. It is based on the **Resource Description Framework** (RDF)"

http://www.w3.org/2001/sw/

#### RDF Recommendation (1999)

W3C

WD-rdf-syntax-19980216

### Resource Description Framework Language for representing (RDF) Model and Syntax

W3C Working Draft 16 Feb 1998

This Version:

http://www.w3.org/TR/1998/WD-rdf-syntax-19980216

http://www.w3.org/TR/WD-rdf-syntax

information about

resources in the Web

(swick@w3.org>, World Wide Web Consortium

W3C (MIT, INRIA, Keio), All Rights Reserved, W3C liability, trademark, document use and software licensing rules apply.

#### Status of This Document

This draft specification is a work in progress representing the current consensus of the W3C RDF Model and Syntax Working Group. This is a W3C Working Draft for review by W3C members and other interested parties. Publication as a working draft does not imply In the same of the W3C memory substantial changes, we still caution that further comments substantial changes, we still caution that further comments software that can be easily field-upgraded be implemented to this speciment.

Will not allow early implementation to constrain their ability to make the hanges to this speciment.

document and may be updated, replaced or obsoleted by other documents of the strain strain the strain work in progress.

The latest version ways point to the most careful to th

Ill not allow early imprementation of the comments of the comments of the comment and may be updated, replaced or observed other than "work in progress".

Note: As working drafts are subject to frequent change, you are at the comments of Which this information needs to be processed by applications, rather than only displayed to people"

- 1. Introduction
- 2. RDF Data Model

- Appendix A: Brief Explanation of XML Namespaces
- Appendix B: Notes about Usage
- Appendix C: Open Issues
- 11. Appendix D. References

Particularly nebus 1997

#### Layers of the Semantic Web



#### A Data Processing perspective



#### The Database Approach

- Manage huge volumes of data with logical precision
- Separate modeling from implementation levels



#### The Database Approach

- Manage huge volumes of data with logical precision
- Separate modeling from implementation levels

As opposed to AI: DB primary concern is scalability. Then expressive power



#### The Database Approach

- Manage huge volumes of data with logical precision
- Separate modeling from implementation levels

As opposed to AI: DB primary concern is scalability. Then expressive power As opposed to IR: DB primary concern is precision. Then scalability (recall).



#### RDF Database Technology



#### This Course: Database Modeling Level



#### This Course: Database Modeling Level

# Hence leaving out:

- Visualization, APIs, Services, etc.
- Indexing, storing, transactions, etc.

#### This Course: Database Modeling Level

# Hence leaving out:

- Visualization, APIs, Services, etc.
- Indexing, storing, transactions, etc.

# But also leaving out: Updating / Constraints / Temporality / Optimization / Aggregation / Flexibility / etc. / etc.

#### Agenda

- 1. RDF and Databases
- 2. RDF and Database models
- 3. RDF Query Language
  - Requirements and Domains
  - Manifold Views
- 4. SPARQL

#### Database Models: Codd's definition

Query Language

Integrity constraints

Data structures

#### Database Models: Codd's definition

Query Language

Data structures

#### **Evolution of Database Models**



#### **Evolution of Database Models**



#### RDF Data Structure: three main blocks



#### RDF Data Structure: the core



#### RDF Data Structure: the core



#### RDF Data Structure: the core



#### RDF Data Structure: Relational Tables (Triple) view

- Triples as tuples
- Set of triples as Tables

| Subject | Predicate | Object |  |  |
|---------|-----------|--------|--|--|
|         |           |        |  |  |
|         |           |        |  |  |
|         |           |        |  |  |
|         |           |        |  |  |
|         |           |        |  |  |



#### RDF Data Structure: Relational Tables (Triple) view

- Triples as tuples
- Tables of triples

| Subject | Predicate | Object |  |  |
|---------|-----------|--------|--|--|
|         |           |        |  |  |
|         |           |        |  |  |
|         |           |        |  |  |
|         |           |        |  |  |
|         |           |        |  |  |

#### **Advantages:**

- + Well studied and well understood
- + Reuse relational technologies



# RDF Data Structure: Relational Tables (Triple) view

Triples as tuples

Subject **Predicate** Object

Tables of triples

- Advantage
  + Well studie
  well uno

  Problems (Questions):
   Why yet another syntax for
  the relational model? well und - Was this the intended
  - + Reuse relation objective of RDF? technolog - Expressive power limitations



#### RDF Data Structure: Graph Database Model view

#### Graph Database Models:

- Data and/or schema are represented by graphs
- Query language able to capture main graph operations and properties
- Studied by DB community, but still not well understood



# RDF Data Structure: Graph Database Model view



## RDF Data Structure: Graph query languages

| PROPERTY                   | Y            | Neighbo<br>rhoods | Adjacent<br>Edges | Degree of a Node | Path | Fixed-<br>length path | Distance | Diameter |
|----------------------------|--------------|-------------------|-------------------|------------------|------|-----------------------|----------|----------|
|                            |              |                   |                   |                  |      |                       |          |          |
| Graph<br>Query<br>Language | G            |                   |                   |                  |      |                       |          |          |
|                            | G+           |                   |                   |                  |      |                       |          |          |
|                            | Graph<br>Log | X                 | X                 | X                | X    |                       |          |          |
|                            | Gram         |                   |                   |                  |      |                       |          |          |
|                            | Graph<br>DB  |                   |                   |                  |      |                       |          |          |
|                            | Lorel        |                   |                   |                  |      |                       |          |          |
|                            | F-G          |                   |                   |                  |      |                       |          |          |

#### RDF Data Structure: Graph query languages



Green light for graph features.

#### RDF Data Structure: Triple structure + Blank nodes



#### RDF Data Structure: Triple structure + Blank nodes

#### Complexity / Semantics issues:

- Deciding entailment becomes NP-complete.
- Deciding core is DP-complete
- Semantics of querying not simple



#### RDF Data Structure: Ground fragment





#### More good news:

 Vocabulary can be reduced to { type, domain, range, subClassOf, subPropertyOf }



#### More good news:

- Vocabulary can be reduced to { type, domain, range, subClassOf, subPropertyOf }
- Complex semantic rules and axioms can be avoided



#### More good news:

- Vocabulary can be reduced to { type, domain, range, subClassOf, subPropertyOf }
- Complex semantic rules and axioms can be avoided
- Structural (internal) constraints of the language can be separated from user-features.
  - e.g. (Class, type, Resource)



#### More good news:

- Vocabulary can be reduced to { type, domain, range, subClassOf, subPropertyOf }
- Complex semantic rules and axioms can be avoided
- Structural (internal) constraints of the language can be separated from user-features.
  - e.g. (Class, type, Resource)
- Features which do not add expressive power can be avoided, e.g. reflexivity of subClass and subProperty.



#### RDF Data Structure: A minimal fragment

{subClass, subProperty, type, domain, range}



# RDF Data Structure: A minimal fragment

{subClass, subProperty, type, domain, range}

Theorem: Simple proof system sound and complete for the semantics of RDF in this fragment. That is:

G I= F under RDF semantics iff

G I= F under mRDF semantics

domain
range

Graph (Triple) structure

# RDF Data Structure: A minimal fragment

{subClass, subProperty, type, domain, range}

Theorem: Simple proof system sound and complete for the semantics of RDF in this ?Y ?Z fragment. That is: G I= F under RDF semantics iff Jues G I= F under mRDF semantics domain range Theorem: Let G be a restricted graph in the fragment, and t a ground tuple. Deciding if  $G = t \text{ can be done in time } O(G \times \log(G))$ 

#### Agenda

- 1. RDF and Databases
- 2. RDF and Database models
- 3. RDF Query Language
  - Requirements and Domains
    - Manifold Views
- 4. SPARQL

## RDF Query language: Social Networks domain

| Chapter title                   | Use Case (local)                                                                                                                 |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Looking for Social<br>Structure | + Directed to undirected binary relations<br>+ Remove relations                                                                  |
| Attributes and<br>Relations     | + Extract a subnetwork based on attributes + Group actors based on attributes + Selective grouping of actors based on attributes |
| Cohesive Subgroups              | + Extract the subnetwork induced by cliques of size n + Build a hierarchy of cliques                                             |
| Frienship                       | + Extract subnetwork by time                                                                                                     |
| Affiliations                    | + Two-mode network to one-mode network                                                                                           |
| Center and Periphery            | + Group multiple binary relations                                                                                                |
| Brokers and Bridges             | + Extract egonetwork of an actor + Remove relations between groups                                                               |
| Diffusion                       | + Selective counting of neighbors + Operations between attributes + Change relation direction based on attributes                |
| Prestige                        | + Discretize an attribute                                                                                                        |
| Ranking                         | + Find triads by type                                                                                                            |
| Genealogies and Citations       | + Loop removal                                                                                                                   |

| Subgraph family                                       | Use Case (Global)                                                 |
|-------------------------------------------------------|-------------------------------------------------------------------|
| Paths and Cycles                                      | + Geodesics                                                       |
| Groups (k-neighbors, k-core, n-cliques, k-plex, etc.) | + Detect cohesive<br>subgroups<br>+ Egonetworks<br>+ Input Domain |
| Connected components                                  | + Connected components + Clustering + Bicomponents and brockers   |



## RDF Query Language: Biology domain

| Use Case                                                        | Graph Query                           |  |
|-----------------------------------------------------------------|---------------------------------------|--|
| Chemical structure associated with a node                       | Node matching                         |  |
| Find the difference in metabolisms between two microbes         | Graph intersection, union, difference |  |
| To combine multiple protein interaction graphs                  | Majority graph query                  |  |
| To construct pathways from individual reactions                 | Graph composition                     |  |
| To connect pathways, metabolism of co-<br>existing organisms    | Graph composition                     |  |
| Identify "important" paths from nutrients to chemical outputs   | Shortest path queries                 |  |
| Find all products ultimately derived from a particular reaction | Transitive Closure                    |  |
| Observe multiple products are co-<br>regulated                  | Least common ancestor                 |  |
| To find biopathways graph motifs                                | Frequent subgraph recognition         |  |
| Chemical info retrieval                                         | Subgraph isomorphism                  |  |
| Kinaze enzyme                                                   | Subgraph homomorphism                 |  |
| Enzyme taxonomies                                               | Subsumption testing                   |  |
| To find biopathways graph motifs                                | Frequent subgraph recognition         |  |



#### RDF Query Language: Web domain

| Use Case                                                  | Graph Query      |
|-----------------------------------------------------------|------------------|
| What is/are the most cited paper/s?                       | Degree of a node |
| What is the influence of article D?                       | Paths            |
| What is the Erdös distance between authos X and author Y? | Distance         |
| Are suspects A and B related?                             | Paths            |
| All relatives of degree one of Alice                      | Adjacency        |

#### Friend Of A Friend (FOAF)



# RDF Query Language: Tagging domain

#### **Tags**

A tag is simply a word you use to describe a bookmark. Unlike folders, you make up tags when you need them and you can use as many as you like.



#### Minimalist design:

- Tags + Bundles (classes)
- No inheritance, no intersection, etc.
- Renaming

#### RDF Query Language: Standardization's view

 SQL: Great for finding data from tabular representations, can get complex when many tables are involved in a given query

#### RDF Query Language: Standardization's view

- SQL: Great for finding data from tabular representations, can get complex when many tables are involved in a given query
- XQuery: Great for finding data in tree representations, can get complex when many relationships have to be traversed

#### Standardization's view (Jim Melton, Oracle, 2006)

- SQL: Great for finding data from tabular representations, can get complex when many tables are involved in a given query
- XQuery: Great for finding data in tree representations, can get complex when many relationships have to be traversed
- **SPARQL**: Good pattern matching paradigm, especially when relationships have to be used to answer a query

#### Standardization's view (Jim Melton, Oracle, 2006)

- SQL: Great for finding data from tabular representations, can get complex when many tables are involved in a given query
- XQuery: Great for finding data in tree representations, can get complex when many relationships have to be traversed
- SPARQL: Good pattern methy Queen? igm, especially when relationable = Sympathy used to answer a query SPARQL = Sympathy used to answer a query

#### RDF Query Language: Logician's view

- RDF is the first level of a logical tower
- Emphasis in logic features of RDF model
- Keep an eye in extensions to more expressive logics
- Bad news: complexity issues



#### RDF Query Language: Developer's view

- How do we answer the most common queries?
- How do we cope with APIs and store developments?
- Design usually influenced by current programming and system tools.
- Not always concerned with scalability and long term.



#### RDF Query Language: Database theoretician's view

#### RDF as a graph data model?



RDF as a relational model?

#### RDF Query Language: Database theoretician's view

**Theorem (Gaifman).** A property of graphs is expressible by a closed first order formula iff it is equivalent to a combination of properties of the form

$$\exists v_1, \dots, v_s \Big[ \bigwedge_{1 \le i \le s} P(N(v_i, r)) \land \bigwedge_{1 \le i < j \le s} d(v_i, v_j) > 2r \Big]$$

where  $v_1, ..., v_s$  denote vertices and d(x,y) denotes distance



# RDF Query Language: Database theoretician's view

Theorem (Gaifman). A property of graphs is expressible by a closed first order formula iff it is equivalent to a combination of properties of the form

$$\exists v_1, \dots, v_s \Big[ \bigwedge_{1 \le i \le s} P(N(v_i, r)) \land \bigwedge_{1 \le i < j \le s} d(v_i, v_j) > 2r \Big]$$



#### W3C Working Group's view

# SPARQL (W3C Recommendation, 2008)

- Relational view of querying
- RDF = triples + blanks
- Pattern matching



#### W3C Working Group's view

## SPARQL (W3C Recommendation, 2008)

- Retional view of querying Good News: there is a standard! Graph (Triple) structure

## SPARQL Query (General Structure)

