SQL :1999, formerly known as SQL 3

Andrew Eisenberg
Sybase, Concord, MA 01742
andrew.ei senberg@sybase.com

Background

For several yeas now, you' ve been heaing and
reading about an emerging standard that everybody
has been cdling SQL3. Intended as a major
enhancement of the aurrent second generation SQL
standard, commonly cdled SQL-92 kecause of the
yea it was published, SQL3 was originally planned
to beiswed in about 1996..but things didn't go as
planned.

Asyou may be aware, SQL3 has been
charaderized as " objed-oriented SQL” and isthe
foundation for several objed-relational database
management systems (including Orade’'s ORACLES,
Informix’ Universal Server, IBM’s DB2 Universal
Database, and Cloudscape’s Cloudscgpe, among
others). Thisiswidely viewed as a“goodthing”, but
it has had a downside, too: it took nealy 7 yeasto
develop, instead of the planned 3 a 4.

Aswe shall show, SQL:1999is much more
than merely SQL-92 dus objed technology. It
involves additional feaures that we consider to fall
into SQL’srelational heritage, as well asatotal
restructuring of the standards documents themselves
with an eye towards more dfedive standards
progresson in the future.

Standards Development
Process

The two de jure organizaions adively involved in
SQL standardization, and thereforein the
development of SQL:1999 are ANSI and 1SO.

More spedficdly, the international
community works through ISO/IEC JTC1 (Joint
Technicd Committeel), a ommitteeformed by the
International Organization for Standardization in
conjunction with the International Eledrotechnicd
Commission. JTC1'sresponsibility isto develop and
maintain standards related to Information
Tednology. Within JTC1, Subcommittee SC32,
titled Data Management and I nterchange, was
recently formed to take over standardization of
several standards related to database and metadata
that had been developed by other organizaions (such
as the now-disbanded SC21). SC32, in turn, formed a

Jim Médton
Sandy, UT 84093
jim.melton@acm.org

number of Working Groupsto adually do the
tedhnicd work—WG3 (Database Languages) is
responsible for the SQL standard, while WG4 is
progressng the SQL/MM (SQL MultiMedia, a suite
of standards that spedfy typelibrariesusing SQL’s
objed-oriented fadlities).

In the United States, IT standards are
handled by the American National Standards
Ingtitute’ s Accredited Standards Development
CommitteeNCITS (National Committeefor
Information Technology Standardization, formerly
known more ssimply as“X3”). NCITS Technicd
CommitteeH2 (formerly “X3H2") isresponsible for
several data management-related standards, including
SQL and SQL/MM.

When the first generation of SQL was
developed (SQL-86 and its minor enhancement SQL -
89), much—perhaps most—of the development work
was done in the USA by X3H2 and ather nations
participated largely in the mode of reviewing and
critiquing the work ANSI proposed. By the time
SQL -89 was published, the international community
was becoming very adive in writing propcsals for the
spedficaion that became SQL-92; that has not
changed while SQL:1999was being devel oped, nor
dowe believeit’'slikely to change in the future—
SQL istruly aninternational collaborative dfort.

A work of explanation isin order about the
informal names we're using for various editi ons of
the SQL standard. The first versions of the standard
are widely known as SQL-86 (or SQL-87, sincethe
I SO version wasn't published until ealy 1987, SQL-
89, and SQL-92, while the version just now being
finalized should beacome known as SQL:1999 Why
the difference...why not “SQL-99"? Well, simply
because we have to start thinking about what the next
generation will be cdled, and “SQL-02" seemed
more likely to be mnfused with “SQL2" (which was
the projed name under which SQL-92 was
developed)...not to mention the fad that “02" isn't
redly greaer than “99". In other words, we don’'t
want even the name of the SQL standard to suffer
from the yea 2000 poblem!

Contents of SQL:1999

With that background under our belts, it’stime to
take asurvey of the adual contents of SQL:1999

While we recognizethat most readers of this column
will not know the predse contents of even SQL-92,
spacelimitations prohibit our presenting the complete
feaure set of SQL:1999 Consequently, we're going
to restrict our overview to just those feduresthat are
new to this most recent generation of the SQL
standard.

The fedures of SQL:1999can be audely
partitioned into its “relational feaures’ and its
“objed-oriented feaures’. We'll cover them in that
sequence for convenience

Relational Features

Although we cdl this category of feaures
“relational”, you'll quickly recognizethat it's more
appropriately caegorized as “feduresthat relate to
SQL’straditional role and data model” ...a somewhat
lesspithy phrase. The feaures here ae not strictly
limited to the relational model, but are dso unrelated
to objed orientation.

These fedures are often divided into about
five groups: new data types, new predicates,
enhanced semantics, additional security, and adive
database. We'll ook at ead in turn.

New Data Types

SQL:1999has four new data types (although
one of them has ©me identifiable variants). The first
of these typesisthe LARGE OBJECT, or LOB, type.
Thisisthe type with variants: CHARACTER
LARGE OBJECT (CLOB) and BINARY LARGE
OBJECT (BLOB). CLOBs behave alot like charader
strings, but have restrictions that disall ow their usein
PRIMARY KEYsor UNIQUE predicaes, in
FOREIGN KEY's, and in comparisons other than
purely equality or inequality tests. BLOBs have
similar restrictions. (By implicaion, LOBs cannot be
used in GROUP BY or ORDER BY clauses, either.)
Applicaions would typicdly nat transfer entire LOB
values to and from the database (after initial storage,
that is), but would manipulate LOB values through a
spedal client-side type cdled a LOB locator. In
SQL:1999 alocaor isaunique binary value that ads
as a sort of surrogate for a value held within the
database; locators can be used in operations (such as
SUBSTRING) without the overhead of transferring
an entire LOB value acossthe dient-server
interface

Another new data type isthe BOOLEAN
type, which allows SQL to dredly record truth
values true, false, and unknown. Complex
combinations of predicaes can aso be expressed in
ways that are somewhat more user-friendly than the
usual sort of restructuring might make them:

WHERE COL1 > COL2 AND
COL3 =COL4 OR
UNIQUE(COLSG) IS NOT FALSE

SQL:19994also has two new composite
types. ARRAY and ROW. The ARRAY type dlows
one to store lledions of values diredly ina wlumn
of adatabase table. For example:

WEEKDAYS VARCHAR(10) ARRAY[7]

would allow one to store the names of all seven
weekdays diredly in asingle row in the database.
Does this mean that SQL:1999all ows databases that
do not satisfy first normal form? Indeed, it does, in
the sense that it all ows “repeaing goups’, which
first normal form prohibits. (However, some have
argued that SQL:1999s ARRAY type merely all ows
storage of information that can be decompased, much
as the SUBSTRING function can decompaose
charader strings—and therefore doesn’t truly violate
the spirit of first normal form.)

The ROW typein SQL:1999is an extension
of the (anonymous) row type that SQL has always
had and depended on having. It gives database
designers the alditional power of storing structured
valuesin single mlumns of the database:

CREATE TABLE employee (
EMP_ID INTEGER,
NAME ROW (
GIVEN VARCHAR(30),
FAMILY VARCHAR(30)),
ADDRESS ROW (
STREET VARCHAR(50),
CITY VARCHAR(30),
STATE CHAR(2))
SALARY REAL)

SELECT E.NAME.FAMILY
FROM employee E

While you might argue that this also violates first
normal form, most observersreaognizeit asjust
another “decmposable” data type.

SQL:1999adds yet another data type-related
fadlity, cdled “distinct types’. Recognizingthat it's
generaly unlikely that an appli cation would want,
say to dredly compare an employe€s doe sizewith
his or her 1Q, the language dl ows programmersto
dedare SHOE_SIZE and 1Q to ead be “based on”
INTEGER, but prohibit direa mixing of those two
typesin expressions. Thus, an expression like:

WHERE MY_SHOE_SIZE > MY_IQ

(where the variable name impli es its data type) would
be recognized as a syntax error. Each of those two
types may be “represented” as an INTEGER, but the
SQL system doesn’t all ow them to be mixed in
expressons—nor for either to be, say, multiplied by
an INTEGER:

SETMY_IQ =MY_IQ *2

Instead, programs have to expli citly expresstheir
deliberate intent when doing such mixing:

WHERE MY_SHOE_SIZE >
CAST (MY_IQ AS SHOE_SIZE)
SETMY_IQ =
MY _1Q * CAST(2 AS IQ)

In additi on to these types, SQL:1999has
also introduced user-defined types, but they fall into
the objed-oriented feaure list.

New Predicates

SQL:1999has threenew predicaes, one of which
we'll consider along with the objed-oriented
feaures. The other two are the SIMILAR predicae
and the DISTINCT predicate.

Sincethe first version of the SQL standard,
charader string seaching has been limited to very
simple mmparisons (like =, >, or <>) and the rather
rudimentary pattern matching capabiliti es of the
LIKE predicae:

WHERE NAME LIKE "%SMIT_'

which matches NAME values that have zeo o more
charaders precaling the four charaders ‘SMIT’ and
exadly one charader after them (such as SMITH or
HAMMERSMITS).

Reaognizing that appli cations often require
more sophisticated capabiliti es that are still short of
full text operations, SQL:1999has introduced the
SIMILAR predicae that gives programs UNIX-like
regular expressions for use in pattern matching. For
example:

WHERE NAME SIMILAR TO
(SQL-(86]89|92|99))(SQL(1]2[3))

(which would match the various names given to the
SQL standard over the yeas). It's dightly
unfortunate that the syntax of the regular expressions
used in the SIMILAR predicate doesn’t quite match
the syntax of UNIX’sregular expressions, but some

of UNIX’s charaders were drealy in use for other
purposesin SQL.

The other new predicae, DISTINCT, isvery
similar in operation to SQL’s ordinary UNIQUE
predicate; the important differenceis that two null
values are mnsidered not equal to one another and
would thus satisfy the UNIQUE predicate, but not all
applications want that to be the cae. The DISTINCT
predicate considerstwo null valuesto be not distinct
from one another (even though they are neither equal
to nor not equal to one aother) and thus those two
null values would cause aDISTINCT predicate not to
be satisfied.

SQL:1999's New Semantics

It's difficult to know exadly whereto draw the line
when talking about new semanticsin SQL:1999 but
we'll give ashort list of what we believe to be the
most important new behavioral aspeds of the
language.

A long-standing demand of application
writersisthe aili ty to update broader classes of
views. Many environments use views heavily as a
searity mechanism and/or as asimplifier of an
appli cations view of the database. However, if most
views are not updatable, then thase gplications often
have to “escgpe” from the view mechanism and rely
on diredly updating the underlying base tables; this
isamost unsatisfactory situation.

SQL:1999has sgnificantly increased the
range of views that can be updated dredly, using
only the faciliti es provided in the standard. It depends
heavily on functional dependencies for determining
what additional views can be updated, and how to
make changes to the underlying base table data to
eff ect those updates.

Another widely-decaied shortcoming of SQL
has been itsinability to perform recursion for
appli cations such as bill -of-material processng. Well,
SQL:1999has provided afadlity cdled reairsive
guery to satisfy just this sort of requirement. Writing
areaursive query involves writing the query
expresson that you want to reaurse and giving it a
name, then using that name in an asociated query
expresson:

WITH RECURSIVE
Q1 AS SELECT...FROM...WHERE...,
Q2 AS SELECT...FROM...WHERE...
SELECT...FROM Q1, Q2 WHERE...

WEe've dready mentioned locaors as a
client-side value that can represent a LOB value
stored on the server side. Locators can be used in the
same way to represent ARRAY values, accepting the

fad that (like LOBs) ARRAY s can often be too large
to conveniently passbetween an application and the
database. Locators can also be used to represent user-
defined type values—discussed later in this
column—which also have the potential to be large
and urwieldy.

Finally, SQL:1999has added the notion of
savepoints, widely implemented in products. A
savepoint is a bit like asubtransadion in that an
applicaion can undo the adions performed after the
beginning of a savepoint without undoing all of the
adions of an entire transadion. SQL:1999all ows
ROLLBACK TO SAVEPOINT and RELEASE
SAVEPOINT, which ads alot like ammmitting the
subtransadion.

Enhanced Security

SQL:1999s new security facility isfound initsrole
cgpability. Privileges can be granted to roles just as
they can be to individual authorization identifiers,
and roles can be granted to authorization identifiers
and to other roles. This nested structure can
enormoudly simplify the often difficult job o
managing security in a database environment.

Roles have been widely implemented by
SQL products for several yeas (though occasionally
under different names); the standard has finally
caught up.

Active Database

SQL:1999remgnizes the notion of adive database,
albeit some yeas after implementations did. This
fadlity is provided through a feaure known as
triggers. A trigger, as many realersknow, isa
fadlity that all ows database designers to instruct the
database system to perform certain operations ead
and every time an applicaion performs pedfied
operations on particular tables.

For example, triggers could be used to log
all operations that change salaries in an employee
table:

CREATE TRIGGER log_salupdate
BEFORE UPDATE OF salary
ON employees
REFERENCING OLD ROW as oldrow
NEW ROW as newrow
FOR EACH ROW
INSERT INTO log_table
VALUES (CURRENT_USER,
oldrow.salary,
newrow.salary)

Triggers can be used for many purpaoses, not just
logging. For example, you can write triggers that

keep a budget balanced by reducing monies %t aside
for capital purchases whenever new employees are
hired...and raising an exception if insufficient money
isavail able to doso.

Object Orientation

In additi on to the more traditional SQL feaures
discussed so far, SQL:1999s development was
focussed largel y—some observers would say too
much—on adding suppart for objed-oriented
concepts to the language.

Some of the feaures that fall i nto this
caegory were first defined in the SQL/PSM standard
published in late 1996—spedficdly, suppart for
functions and procedures invocable from SQL
statements. SQL:1999enhances that capabili ty,
cdled SQL-invoked routines, by adding athird class
of routine known as methods, which we'll get to
shortly. We won't delve into SQL -invoked functions
and proceduresin this column, but refer you to an
ealier isaue of the SIGMOD Reaord [6].

Structured User-Defined Types

The most fundamental facility in SQL:1999that
supparts objed orientation is the structured user-
defined type; the word “structured” distinguishesthis
feaure from distinct types (which are dso “user-
defined” types, but are limited in SQL:1999to being
based on SQL’ s built-in types and thus don't have
structure aociated with them).

Structured types have anumber of
charaderistics, the most important of which are:

— They may be defined to have one or more
attributes, ead of which can be any SQL type,
including built-in types like INTEGER,
colledion typeslike ARRAY , or other structured
types (nested as deeply as desired).

— All aspeds of their behaviors are provided
through methods, functions, and procedures.

— Their attributes are encapsulated through the use
of system-generated observer and mutator
functions (“get” and “set” functions) that provide
the only accessto their values. However, these
system-generated functions cannot be
overloaded; all other functions and methods can
be overloaded.

— Comparisons of their values are done only
through wser-defined functions.

— They may participate in type hierarchies, in
which more spedali zed types (subtypes) have dl
attributes of and use dl routines associate with
the more generali zed types (supertypes), but may
add new attributes and routines.

Let'slook at an example of a structured type
definition:

CREATE TYPE emp_type
UNDER person_type
AS (EMP_ID INTEGER,
SALARY REAL)
INSTANTIABLE
NOT FINAL
REF (EMP_ID)
INSTANCE METHOD
GIVE_RAISE
(ABS_OR_PCT BOOLEAN,
AMOUNT REAL)
RETURNS REAL

This new type is a subtype of another
structured type that might be used to describe persons
in general, including such common attributes as name
and address the new emp_ty pe attributesinclude
things that “plain old persons’ don’t have, like an
employeelD and a salary. We've dedared thistype
to be instantiable and permitted it to have subtypes
defined (NOT FINAL). In addition, we've said that
any references to this type (seethe discusson on REF
types below) are derived from the employeel D
value. Finally, we' ve defined a method (more on this
later) that can be goplied to instances of thistype.

SQL:1999 after an extensive flirtation with
multi ple inheritance (in which subtypes were dl owed
to have more than one immediate supertype), now
provides a type model closely aligned with Java’ s—
single inheritance Type definers are dlowed to
spedfy that a given typeis either instantiable (in
other words, values of that spedfic type can be
creaed) or not instantiable (analogous to abstract
types on other programming languages). And,
naturally, any place—such as a mlumn—where a
value of some structured type is permitted, a value of
any of its subtypes can appea; this provides exadly
the sort of substitutability that objed-oriented
programs depend on.

By the way, some objed-oriented
programming languages, such as C++, alow type
definersto spedfy the degreeto which types are
encgpsulated: an encapsulation level of PUBLIC
applied to an attribute means that any user of the type
can accessthe dtribute, PRIVATE means that no
code other than that used to implement the type's
methods can access the atribute, and PROTECTED
means that only the type’' s methods and methods of
any subtypes of the type @an accessthe atribute.
SQL:1999does not have this mechanism, although
attempts were made to define it; we anticipateit to be
proposed for afuture revision of the standard.

Functions vs Method s

SQL:1999makes an important distinction between

“ordinary” SQL-invoked functions and SQL -invoked

methods. In brief, a method is a function with several

restrictions and enhancements. Let's simmarizethe
diff erences between the two types of routine:

— Methods are tightly bound to a single user-
defined type; functions are not.

— The user-defined type to which amethod is
bound is the data type of a distinguished
argument to the method (the first, undedared
argument); no argument of afunctionis
distinguished in this snse.

— Functions may be polymorphic (overloaded), but
a spedfic function is chosen at compil e time by
examining the dedared types of each argument
of afunction invocation and choosing the “best
match” among candidate functions (having the
same name and number of parameters); methods
may also be palymorphic, but the most spedfic
type of their distinguished argument, determined
at runtime, alows sledion of the exad method
to be invoked to be deferred until execution; al
other arguments are resolved at compil e time
based on the aguments' dedared types.

— Methods must be stored in the same schemain
which the definiti on of their tightly-bound
structured type is gored; functions are not
limited to a spedfic schema.

Both functions and methods can be written
in SQL (using SQL/PSM’ s computationally-complete
statements) or in any of several more traditional
programming languages, including Java.

Functional and Dot Notations

Accessto the dtributes of user-defined types can be
done using either of two notations. In many
situations, appli cations may seem more natural when
they use “dot notation”:

WHERE emp.salary > 10000

whilein other situations, a functional notation may be
more natural:

WHERE salary(emp) > 10000

SQL:1999supparts bath notations; in fact,
they are defined to be syntadic variations of the same
thing—aslong as “emp’ isastorage entity (like a
column or variable) whose dedared type is sme
structured type with an attribute named
“salary "...or there eistsafunction named

“salary " with asingle agument whose datatypeis
the (appropriate) structured type of emp.

Methods are dlightly lessflexible than
functionsin this case: Only dot notation can be used
for method invocations—at least for the purpaoses of
spedfying the distinguished argument. If salary
were amethod whose dosely bound type were, say,
employee , which wasin turn the dedared type of a
column named emp, then that method could be
invoked only using:

emp.salary

A different method, say give_raise , can
combine dot notation and functional notation:

emp.give_raise(amount)

Objects...Finally

Careful readers will have observed that we have
avoided the use of the word “objed” so far in our
description of structured types. That's becaise, in
spite of certain charaderistics like type hierarchies,
encgpsulation, and so forth, instances of SQL:1999s
structured types are simply values, just like instances
of the language’ s buil d-in types. Sure, an employee
value israther more complex (in appeaance, as well
asin behavior) than an instanceof INTEGER but it's
gtill avalue without any identity other than that
provided by its value.

In order to gain the last little bit of
charaderistic that all ows SQL to provide objeds,
there hasto be some sense of identity that can be
referenced in a variety of situations. In SQL:1999
that capability is supplied by all owing database
designersto spedfy that certain tables are defined to
be “typed tables’...that is, their column definitions
are derived from the atributes of a structured type:

CREATE TABLE empls OF employee

Such tables have one mlumn for eat
attribute of the underlying structured type. The
functions, methods, and procedures defined to
operate on instances of the type now operate on rows
of the table! The rows of the table, then, are values
of—or instances of—the type. Each row is given a
unique identity that behavesjust like aOID (objed
identifier) behaves...it isuniquein space(that is,
within the database) and time (the life of the
database).

SQL:1999 povides aspedal type, cdled a
REF type, whose values are those unique identifiers.
A given REF type is always asciated with a
spedfied structured type. For example, if we were to

define atable cntaining a clumn named “manager”
whase values were references to rows in a typed table
of employees, it would look something like this:

manager REF(emp_type)

A value of a REF type ather identifiesarow
in atyped table (of the spedfied structured type, of
course) or it doesn't identify anything at all—which
could mean that it's a“dangling reference” left over
after the row that it onceidentified was deleted.

All REF types are “scoped” so that the table
that they referenceis known at compil ation time.
During the development of SQL:1999 there were
eff orts made to all ow REF typesto be more general
than that (for example, any of several tables could be
in the scope, or any table & all of the gpropriate
structured type would be in the scope even if the
table were aeded after the REF type was creaed);
however, several problems were encountered that
could not be resolved without further delaying
publication of the standard, so thisrestriction was
adopted. One side dfea of the restriction, possibly a
beneficial effeq, isthat REF types now behave very
much like referential integrity, possbly easing the
task of implementing this fadlity in some products!

Using REF Types

Y ou shouldn't be surprised to learn that REF types
can be used in ways alittle more sophisticated than
merely storing and retrieving them.

SQL:1999 povides syntax for “following a
reference” to accessattributes of a structured type
value:

SELECT emps.manager->last_name

The“pointer” notation (->) isappliedto a
value of some REF type and is then “followed” into
the identified value of the associated structured
type—which, of course, isredly arow of the typed
table that is the scope of the REF type. That
structured type is both the type asociated with the
REF type of the manager column inthe emps table
and the type of that other table (whose nameis
neither required nor apparent in this expresson).
However, that structured type must have an attribute
named last_name , and the typed table thus has a
column of that name.

Schedules and Futures

SQL:1999is not yet a standard, athough it'swell on
itsway to becoming one. Last year, what is cdled the
Fina CommitteeDraft (FCD) ball ot was held for

four parts of the SQL spedficaions (seereferences
[1],[2], [4], and [5]). In November, 1998, the final
round of the Editing Meding was held for those
parts. The dhangesto the spedfications have been
applied by the Editor (Jim Melton) and are now being
reviewed by Editing Meding participants. When
those reviews are completed, those four
spedficaions will be submitted for one last ball ot
(cdled aFinal Draft International Standard, or FDIS,
ball ot), the result of which is either “approve ad
publish without change” or “disapprove and go back
to FCD status’. All participants currently anticipate
that the result will beto approve and publish,
resulting in arevised standard sometime in mid-1999

Another part of SQL, SQL/CLI (see
reference[3]), isalso being revised and has just
undergone an FCD ballot. It is expeded that it will be
published later in 1999as arevision of the CLI-95
standard.

It's hard to know what the future will bring,
but baoth the ANSI and 1SO groups are committed to
avoiding the lengthy processthat resulted in
SQL:1999 Weadll believethat 6 yeasis smply too
long, espeaally with the world working in “web
time” more and more. Instead, plans are being
developed that will result in revisions being issued
roughly every threeyeas, even if the technicd
enhancements are somewhat more modest than those
in SQL:1999

In additi on to evolving the principle parts of
the SQL:1999standard, additional parts of SQL are
being developed to address sich issues as temporal
data, the relationship with Java (explored in the
previous isaue of the SIGMOD Reaord), and
management of external data dong with SQL data.

Recognition of Individual
Contributors

There have been many, many peopleinvolved in the

development of SQL:1999 wer the yeasits

development occupied. While we dorit have the

spaceto mention everybody who participated in the

committees during its development, we do think it

appropriate to mention at least the names of people

who wrote significant numbers of change proposals

or simply wrote significant proposals.

— MihneaAndrel (France Sybase)

— Jon Bauer (USA; Digital and Orade)

— David Beed (USA; Orade)

— Ames Carlson (USA; HP and Sybase)

— Stephen Cannan (Netherlands, DCE Nederland
and James Martin Consulti ng)

— Paul Cotton (Canada; IBM)

— HughDarwen (UK; IBM)

— LindadeMichad (USA; IBM)

— Judy Dillman (USA; CA)

— Rudiger Eisdle (Germany; Digital and
independent consultant)

— Andrew Eisenberg (USA; Digital, Orade, and
Sybase)

— ChrisFarrar (USA; Teradata and Compaq)

— Len Gallagher (USA; NIST)

— Luigi Giuri (Italy; Fondaz one ugo Bordoni)

— Keith Hare (USA; JCC)

— BruceHorowitz (USA; Bellcore)

— Bill Kelly (USA; UniSQL)

— BIll Kent (USA; HP)

— KirishnaKulkarni (USA; Tandem, Informix, and
IBM)

— Nelson Mattos (USA; IBM)

— Jim Méelton (USA; Digital and Sybase)

— Frank Pellow (Canada; IBM and USA;
Microsoft)

— BabaPiprani (Canada; independent consultant)

— Peter Pistor (Germany; IBM)

— MikePizzo (USA; Microsoft)

— Jeff Richie (USA; Sybase and IBM)

— Phil Shaw (USA; IBM, Orade, and Sybase)

— Kohji Shibano (Japan; Tokyo International
University and Tokyo University of Foreign
Studies)

— Masashi Tsuchida (Japan; Hitachi)

— MikeUbell (USA; Digitdl, Illustra, and
Informix)

— Murali Venkatrao (USA; Microsoft)

— Fred Zemke (USA; Orade)

Eadch of these people cntributed in some
significant way. Some of them designed major
aspeds of the achitedure of SQL:1999 others
focussed on spedfic technologies like the cal-level
interface(SQL/CLI), whil e others worked on very
focussed issues, such as ®aurity. They are dl—as are
other contributors not mentioned here—to be
congratulated on alarge job well done.

References

[1] 1SO/IEC 90751999, Information technology—
Database languages—SQL—Part 1: Framework
(SQL/Framework), will be published in 1999

[2] 1SO/IEC 90751999, Information technology—
Database languages—SQL—Part 2: Foundation
(SQL/Founddion), will be published in 1999

[3] ISO/IEC 90751999,Information technology—
Database languages—SQL—Part 3: Call-Levd
Interface (SQL/CLI), will be published in 1999

[4] 1SO/IEC 90751999,Information technology—
Database languages—SQL—Part 4: Persistent
Sored Modues (SQL/PSM), will be published in
1999

[5] I1SO/IEC 90751999, Information technology—
Database languages—SQL—Part 5: Host
Language Bindings (SQL/Bindings), will be
published in 1999

[6] New Sandad for Sored Proceduresin SQL,
Andrew Eisenberg, SIGMOD Reoord, Dec1996

The SQL spedficaions will be available in the
United States from:

American National Standards I nstitute
Attn: Customer Service

11 West 42nd Street

New York, NY 10036

USA

Phone: +1.2126424980

It will be avail able internationally from the
designated National Body in each country or from:
International Organization for Standardization
1, rue de Varembé
Case postale 56
CH-1211Geneve 20
Switzerland

Phone: +41.22.749.0111

Web References

American National Standards Institute (ANSI)
http://web.ansi.org

International Organizaion for Standardization (1SO)
http://www.iso.ch

JTC1 SC32 —Data Management and Interchange
http://bwonotess.wdc.pnl.gov/SC32/JT C1SC32.nsf

National Committeefor Information Technology
Standards (NCITS)
http://www.ncits.org

NCITS H2 —Database
http://www.ncits.org/tc_home/h2.htm

