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Abstract— Nowadays applications require efficient
and fast techniques due to the growing volume of
data and its increasing complexity. Recent studies
promote the use of Access Methods (AMs) with
Self-Organizing Maps (SOMs) for a faster similarity
information retrieval. This paper proposes a new con-
structive SOM based on density, which is also useful
for clustering. Our algorithm creates new units based
on density of data, producing a better representation
of the data space with a less computational cost for
a comparable accuracy. It also uses AMs to reduce
considerably the Number of Distance Calculations
during the training process, outperforming existing
constructive SOMs by as much as 89%.

I. INTRODUCTION

The volume of data that needs to be managed is
growing every day and increasing in complexity, involv-
ing DNA sequences, video and multimedia information.
Applications require even more efficient and faster tech-
niques, over several computer fields, such as information
retrieval, video compression, bioinformatics and data
mining.

Database and Information Retrieval communities use
Access Methods due to their ability to build data struc-
tures that easily manage and organize large datasets in
an efficient way even in high dimensions.

On the other hand, SOMs [1] have been widely used
to solve clustering problems due to their unsupervised
classification capacity. Within the SOM networks, Grow-
ing Neural Gas (GNG) [2] stands out because of its in-
cremental clustering algorithm. Recent investigations of
GNG networks such as Incremental Growing Neural Gas
(IGNG) [3] and TreeGNG [4] improve the performance of
the incremental algorithm but the dependency on initial
parameters is still critical. Some problems with the SOM
networks are the difficulty in supporting specific queries
such as k-nearest neighbor or range queries for large
datasets. Another drawback is the expensive training
process due to the sequential approach; although parallel
architectures can be used, a sequential search is still
applied.

Working with high dimensional data, the learning
process could be expensive because a large number of
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distances need to be calculated for each data point
during the training process. Besides the computational
complexity, factors such as database size, dimensionality
of data and even the distance function could lead to a
high computational cost [5], [6].

Evaluation of similarity in SOMs could represent a
high cost compared with CPU time and I/O time, con-
sequently, the challenge is to minimize the Number of
Distance Calculations (NDC) [7]. For this reason our
experiments will be based on the NDC as a measure of
efficiency.

Recent studies such as Hybrid SAM-SOM and MAM-
SOM [5] incorporate Access Methods into a SOM net-
work to accelerate the building process. SAM-SOM*
and MAM-SOM* [6] techniques, in addition to a faster
building process, support similarity queries and show
interesting properties. However, these techniques for clus-
tering generation lack specificity.

This paper proposes a new incremental clustering al-
gorithm, taking advantage of the strengths of the Hy-
brid SAMSOM, MAMSOM* and IGNG, technique that
besides working faster than previous approaches, this
algorithm enables faster similarity queries.

The paper is organized as follows: Section II presents
a review of previous work. Section III describes the
proposed technique. Section IV shows the experimental
results. Finally, Section V presents the conclusions of the

paper.

II. PrEVIOUS WORK

A drawback of Kohonen’s SOM is the static topology of
the network, besides the high training cost. Incremental
and hierarchical models try to solve this problem by
creating dynamic topologies (as GNG [2]) or by reducing
the training time needed through the use of hierarchical
approaches (as TreeGNG [4]). Growing Neural Gas is a
worthy representative of incremental networks, but the
training time and the resulting network both depend on
the parameter A (the number of patterns that must be
presented in order to insert a new unit into the network).
The total NDC needed to build a network of n units is
determined by Equation 1. If A is set with a high value
the construction of the network tends to be slow; on the
other hand, a small value of A would lead to the network
deformation [6].
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Improvements of the GNG algorithm such as IGNG [3]
eliminate the dependency on A, accelerating the building
process of the network. IGNG establishes a parameter o
which defines a search radius to create a new unit. As
it happens to A in GNG, if ¢ is set with a high value,
IGNG will create a small number of clusters and the
topology of the data will not be represented correctly;
if o is set too low, many units could be created and the
algorithm would not have enough time to adapt to the
input space. Algorithm 1 shows the general construction
of an Incremental Growing Neural Gas (IGNG) network

[3].

Algorithm 1: IGNG Algorithm
1: For each input pattern &

o Find the closest unit cq;

o If the distance d(&, ¢;) > o then create a new
unit with w = ¢&;

o Else, find the second closest unit cs;

— If the distance d(&, cz) > o then create a new

unit with w = £ and connect it with cy;

— Else, update weights for ¢; and its neighbors,

and increase the age of its connections;

New techniques incorporate Access Method (AM) into
SOMs, accelerating the training process of the network
due to the reduction of the number of distance calcu-
lations and giving the network capacity to perform to
similarity queries [7].

A. Metric and Spacial Access Methods

Metric Access Methods (MAM) index data objects
in a metric space based on similarity criteria. Metric
spaces are defined as a set of objects and a metric
distance function that measures the dissimilarity among
these objects and satisfies properties such as positiveness,
symmetry, reflexivity and triangular inequality. Some
classic MAMs are described in [8]. For our experiments
the following MAMs are considered:

o Slim-Tree [9]. Slim-Tree is an evolution of the M-
Tree [10], which is the first dynamic MAM that
allows the construction of a tree without knowing
the entire dataset a priori. Slim-Tree divides the
space in regions that store subtrees which in turn
contain more subtrees. Subtrees may be overlapped,
partitioning the metric space in not necessarily dis-
joint regions. This MAM grows bottom-up storing
the objects into leaf nodes as in BT-Tree [11] and
R-Tree [12]. With an algorithm to split nodes based
on the Minimal Spanning Tree (MST'), Slim-Tree has
less computational cost without sacrificing search
performance. It also introduces an overlapping mea-
sure and the algorithm Slim-Down [9] to reduce the
overlap between nodes.

« DBM-Tree [13]. One of the latest MAM, the DBM-
Tree, operates in a similar way to a Slim-Tree. It

was the first Access Method which proposed to
relax the height of the tree in regions with high
density of data in order to minimize the overlap of
nodes. This approach reduces the number of distance
computations without affecting the number of disk
access. Figures 1(a) and 1(b) show an example of
this structure for two dimensional data.
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Fig. 1. DBM-Tree Representations

In the case of Spatial Access Methods (SAM) the
input data is described by feature vectors such as
(z1,22,...,2,). Some classic SAM are explained in [14],
[15]. In this article we use R-Tree to speed up the network
training process. This SAM is briefly explained below.

o R-Tree [12]. This is the first non point-based SAM,
able to index not only vectors but also geometrical
objects. R-Tree could be considered a generalization
of B-Trees [11] to index multidimensional data. In
this SAM the information is stored in the leaves
and each upper level has the information about the
Minimum Bounding Rectangle (MBR) necessary to
contain all its children nodes. Before the tree is built,
it is necessary to define the maximum number of
objects that each node can contain. Figures 2 and 3
show a R-tree with 3 maximum objects per node.

Legend:
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Fig. 2. MBRs represented by a R-Tree [5]
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III. DENSITY BASED GROWING NEURAL GAS

The proposed algorithm of Density Based Growing
Neural Gas (DB-GNG) uses a radius parameter for
training the network and for the insertion of units as in
IGNG [3].

Additionally DB-GNG considers the existence of a
dense data region as new criterion to create units. Our
algorithm uses an Access Method (AM) to determine if
a new pattern £ presented to the network is located in a
region with more than ¢ patterns within a o radius from
£.

When this radius parameter is smaller, units are cre-
ated where data is more concentrated, identifying only
the more dense regions of the space, in contrast with
IGNG that would insert units indiscriminately.

Algorithm 2 shows the process of construction of the
DB-GNG network: here AM; is the Access Method used
to index the neurons weight vector and to find the two
Best Matching Units (BMUs), and AMj; is the Access
Method where all the input patterns are organized during
training. On each epoch input patterns are inserted again
into AM> in order to improve the density criterion. This
additional insertions reduce the training process and
improve the classification capacity of the network as it
will be observed in the experiments.

Density Based Growing Neural Gas (DB-GNG) does
not create units in regions less populated because before
inserting, the algorithm verifies if the new unit is located
in a dense region of the space, thus obtaining a better
representation of the data distribution.

The use of AMs to find the winning neuron dramat-
ically accelerates the training process of the network,
as demonstrated in [5]. Furthermore, in order to give
support to specific queries such as nearest neighbors,
DB-GNG has a second Access Method AM; to organize
patterns as they are presented. AM, is also used to detect
dense regions.

Similarity queries in DB-GNG are more efficient than
using single AMs. The most common technique that
Access Methods use to solve nearest neighbor queries
combines the algorithm of range query (which retrieves
the elements within a radius) and the branch and bound
technique [16].

Lthe stop criterion could be the number of iterations, number of
epochs, maximum number of units, etc.

Algorithm 2: Density Based Growing Neural Gas
training algorithm

1: while a stop criterion is not met! do

2:  Insert the next input pattern £ into the AM, ;

3 Find the two closest units ¢; and ¢y using AMq;

4:  if distance d(§,c2) < o then

5: Increment the age of all edges of cq;

6: we, + = ep(§ — we, ); {weight update}

7 wp+ = e, (§ —wy,); {Vn € neighbors of ¢}

8 Update the subtree in AM; affected with the
weight update;

9: Remove edges with an age bigger than a,,q.
and remove neurons with no edges;

10: else

11: S = RangeQuery(&, o) using AMo;

12: if |S| > ¢ {detect if the region is dense} then

13: Create a new t unit with wy; = &;

14: Connect t with ¢; and c¢o;

15: if d(c1, c2) > maz(d(cy,t),d(ce,t)) then

16: Remove the connection between ¢; and co;

17: end if

18: end if

19:  end if

20: end while

To retrieve the k nearest neighbors, AMs are initialized
with an infinite radius and this radius is reduced gradu-
ally by using the branch and bound technique until the
k required elements are covered.

In order to reduce the cost of the query, DB-GNG
establishes the initial radius in kNN queries through the
codevectors generated during the training process, as it
can be observed in Algorithm 3. This reduces the cost
and time of queries.

Algorithm 3: DB-GNG kNN algorithm
1: Find the two closest units to &, ¢; and ¢y using
AM;;
2: Define a radius 7 = d(£, ca) x v¥; {v modifies the
radius for queries where k > ¢.}
3: Solve the query using AM, with initial radius 7;

IV. EXPERIMENTS

Based on this idea, four groups of experiments are
presented using the AMs Slim-Tree [9], DBM-Tree [13]
and R-Tree [12]. In the first group of experiments the
building process of our approach is compared to another
constructive network, each technique measured in terms
of Number of Distance Calculations (NDC). The second
group of experiments compares the proposed network to
Access Methods in terms of the NDC performed in simi-
larity queries. The third group compares our approach



to another two constructive networks for a classifica-

tion problem. The last group of experiments compares

visually the resulting networks of three incremental al-

gorithms for a clustering problem. All experiments were

implemented using Microsoft Visual C++ 6.0 on a PC

2.0 GHz 512 RAM running Microsoft Windows XP.
Five datasets were used for our experiments:

o COVERT: This dataset contains a sample set of
50000 vectors from the original dataset of 581012
vectors in 54-d of as Forest Covertype data. The file
was obtained from UCI-Irvine repository of machine
learning databases and domain theories®;

e« DIGITS: This dataset was created for the pen-
based recognition of handwritten digits of 44 writers;
it contains 10992 16-d vectors. The file was ob-
tained from UCI-Irvine repository of machine learn-
ing databases and domain theories?;

o« NURSERY: This dataset contains 12960 8-d vectors
derived from a hierarchical decision model developed
in order to rank applications for nursery schools.
The file was obtained from UCI-Irvine repository of
machine learning databases and domain theories®;

o OPTIDIGITS: This dataset contains 5620 64-d vec-
tors obtained from the optical recognition of hand-
written digits from a total of 43 writers. The file
was obtained from UCI-Irvine repository of machine
learning databases and domain theories®;

e 2D SYNTHETIC: This dataset contains 1000 2-d
synthetic points between (0,0)...(5,5).

The Access Method used to find the winning neurons
AM; in DB-GNG techniques was R-Tree [12]. For all the
experiments o was set with a value close to the standard
deviation of the dataset, and v was set to g.

The techniques compared in the first group of experi-
ments are: IGNG [3], DB-GNG using Slim-Tree [9] and
DB-GNG using DBM-Tree [13], applied in the COVERT,
DIGITS and NURSERY datasets.

Figures 4, 5 and 6 illustrate the first group of experi-
ments in terms of the accumulated Number of Distance
Calculations (NDC).

Table I shows the results for the COVERT dataset. For
both IGNG and DB-GNG, the parameter ¢ was set to
497.536, and for DB-GNG ¢ was set to 5.

Table II shows the results for the DIGITS dataset. For
both IGNG and DB-GNG, the parameter o was set to
35.24, and for DB-GNG ¢ was set to 7.

Table III shows the results for the NURSERY dataset.
For both IGNG and DB-GNG, the parameter o was set
to 1.054, and for DB-GNG ¢ was set to 7.

3ftp://ftp.ics.uci.edu/pub/machine-learning-databases
/covtype/

4ftp://ftp.ics.uci.edu/pub/machine-learning-databases
/pendigits/

5ftp://ftp.ics.uci.edu/pub/machine-learning-databases
/nursery/

Sftp://ftp.ics.uci.edu/pub/machine-learning-databases
/optdigits/
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TABLE 1
REesuLTs FOR THE COVERT (54 — d) DATASET

Technique # of units NDC Y%gained
IGNG 558 54745299
DB-GNG Slim-Tree 6 13087814 76.1%
DB-GNG DBM-Tree 6 10579868 80.7%
TABLE II

RESULTS FOR THE PENDIGITS (16 — d) DATASET

Technique # of units NDC %gained
IGNG 2890 20084976
DB-GNG Slim-Tree 96 2206760 89.0%
DB-GNG DBM-Tree 96 2126153 89.4%
TABLE III

REsuLTs FOR THE NURSERY (8 — d) DATASET

Technique # of units NDC %gained
IGNG 6490 42095871
DB-GNG Slim-Tree 1405 12710986 69.8%
DB-GNG DBM-Tree 1405 7958717 81.1%

As it can be observed in the first group of experiments,
DB-GNG reduces by up to 89% the NDC in comparison
to IGNG. This difference is due to because the use of AMs
and the small number of units that DB-GNG creates
as a result of its density criterion, which considers the
existence of a dense data region to create new units.

It must be noted that DB-GNG also accumulates the
distance calculations needed by the Access Methods AM;
(R-Tree) and AM, (Slim-Tree or DBM-Tree) during
their construction, as well as the distance calculations
performed while verifying the regions’s density.

Results for the second group of experiments are pre-
sented in Figures 7 and 8. These experiments compare
the average Number of Distance Calculations (NDC)
when performing kNN queries. The techniques compared
are: DB-GNG using Slim-Tree, DB-GNG using DBM-
Tree and Access Methods Slim-Tree [9] and DBM-Tree
[13]. The parameters for each dataset (COVERT and
DIGITS) were the same as in the first group of exper-
iments.

In these experiments it can be seen that DB-GNG
networks need less distance calculations to perform kNN
queries than their counterparts using only Access Meth-
ods DBM-Tree and Slim-Tree.

For the fourth group of experiments incremental net-
works GNG, IGNG and DB-GNG using Slim-Tree are
compared in a classification problem using the OP-
TIDIGITS (64 — d) dataset. A subset of 3823 samples
were used for training and a subset of 1797 samples for
testing. For GNG A was set to 600, e, to 0.01 and e, to
0.002. For IGNG and DB-GNG o was set to 30.04, ¢
to 0.001 and e, to 0.00002. Additionally for DB-GNG ¢
was set to 3.

Table IV shows that DB-GNG creates a faster network,
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Fig. 8. Average NDC performing kNN queries using the DIGITS
(16 — d) dataset.

TABLE IV
RECOGNITION RATE FOR THE OPTIDIGITS (64 — d) DATASET

Technique | Epochs | Units | Recognition NDC
GNG 30 193 95.05% 12206650
IGNG 6 431 95.05% 11614569

DB-GNG 3 385 95.60% 5210035

with less number of epochs and less NDC than GNG and
IGNG networks for a comparable accuracy.

Finally, Figures 9, 10 and 11 show GNG, IGNG
and DB-GNG respectively using the 2D SYNTHETIC
dataset. For the GNG network A was set to 300, for
IGNG and DB-GNG ¢ was set to 0.3, and for DB-GNG
¢ was set to 100. It is possible to compare visually our
proposal DB-GNG with other incremental networks. Due
to its density criterion to create units, DB-GNG produces
a better representation of the input distribution in less
iterations than IGNG and GNG.

V. CONCLUSIONS

The experiments showed that the Density Based Grow-
ing Neural Gas (DB-GNG) can be applied to cluster
large databases. The performance of DB-GNG was up
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Fig. 11. Visualization of DB-GNG o = 0.3, ¢ = 100 using the 2D
SYNTHETIC dataset. 77 units were created after 7 cycles.

to 89% better than the sequential IGNG as a result
of the reduced number of units in its final network.
This difference is also due to Access Methods which
considerably reduce the Number of Distance Calculations
needed during the training process.

Introducing a density criterion to create units, DB-
GNG does not locate units in regions with low density,
obtaining a better representation of the data space.

For classification problems, our approach proved to
be as accurate as other incremental networks, while
performing a faster training process.

For information retrieval, DB-GNG was demonstrated
to be more efficient than single Access Methods, due to
the use of codevectors to estimate selectivity for nearest
neighbors queries.
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