ABSTRACT

We explore the application of a graph representation to model

similarity relationships that exist among images found on the
Web. The resulting similarity-induced graph allows us to model
In @ unified way different types of content-based similarities, as

well as semantic relationships.

Content-based similarities

include different image descriptors, and semantic similarities
can include relevance user feedback from search engines. The

goal of our representation

IS to provide an experimental

framework for combining apparently unrelated metrics into a
unique graph structure, which allows us to enhance the results
of Web image retrieval. We evaluate our approach by re-ranking

Web image search results.
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content-based descriptors.

1 semantic similarity graph was
computed, using the query log click-
graph.

mostly explicit semantic (or
textual) features are used to
retrieve images, using a textual
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used to retrieve
similar images,
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Union of the visual and semantic similarity graphs. There is an

represents
based similarity relationships
between term-sets and
iImages. The edges In this
graph connect term-sets with

undirected weighted edge between two images if both images
are similar according to the visual similarity graph. There is an
undirected weighted edge between a term-set and an image if
there is a user defined semantic relationship between them.

NDCG results for combination of
the visual-semantic graphs.

Images that have a semantic
relationship with them. Each
edge has a weight associated
to it which iIs a measure of the
relevance of the term-set to
the connected image.
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image retrieval system, as opposed
to a content-based system.
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We have presented a new type of graph that combines visual
and semantic features that are useful for Web image
retrieval. Performing a random walk process over this graph
and using the steady state probability distribution as scores
for image re-ranking, our experiments show that it is possible
to improve over 5% the baseline. We have also shown that
not all combinations of visual features are useful: in this case,
only one is recommended, OMD.
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