

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN
UNIVERSIDAD DE CHILE

<http://prisma.dcc.uchile.cl>

<http://siret.ms.mff.cuni.cz>

Non-Metric Similarity Search Problems in Very Large Collections

Benjamin Bustos, University of Chile
Tomáš Skopal, Charles University in Prague

Outline of the tutorial

- ▶ Benjamin
 - ▶ Introduction
 - ▶ The non-metric case of similarity
 - ▶ Case study 1 – image retrieval
 - ▶ Case study 2 – time series retrieval
- ▶ Tomáš
 - ▶ Case study 3 – protein retrieval
 - ▶ Indexing non-metric spaces
 - ▶ Challenges

also see the survey [Skopal & Bustos, 2011]

Introduction

▶ Similarity search

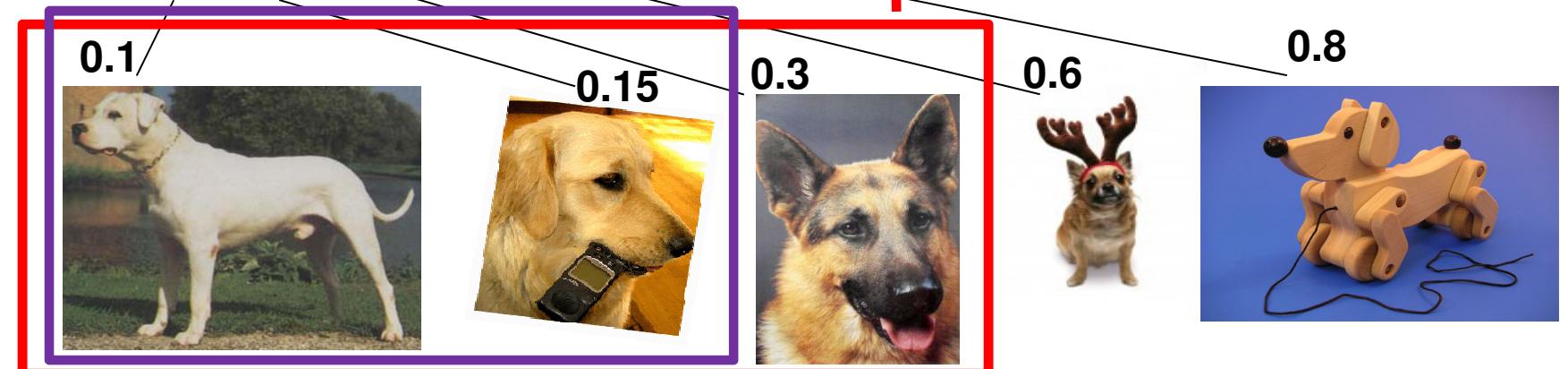
- ▶ Search for “similar objects” (subjective)
- ▶ Content-based similarity search: query by example:

range query

(give me the very similar ones – over 80%)

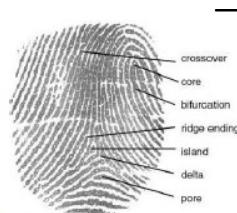
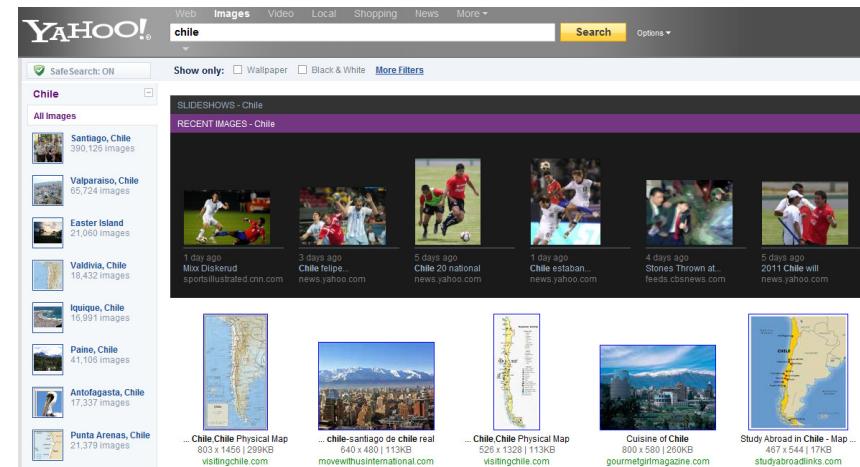
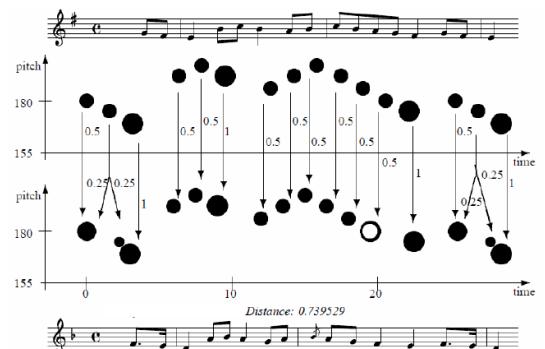
k nearest neighbors query

(give me the 3 most similar)



Introduction

- ▶ Application examples of similarity search
 - ▶ Multimedia retrieval
 - ▶ Scientific databases
 - ▶ Biometry
 - ▶ Pattern recognition
 - ▶ Manufacturing industry
 - ▶ Cultural heritage
 - ▶ Etc.



Introduction

- ▶ Metric similarity
 - ▶ Dissimilarity function δ (the distance), universe \mathbf{U} , database $\mathbf{S} \subset \mathbf{U}$, objects $x, y, z \in \mathbf{U}$
 - ▶ The higher $\delta(x, y)$, the more dissimilar objects x, y are
- ▶ Topological properties

$$\begin{array}{ll} \delta(x, y) = 0 \Leftrightarrow x = y & \text{identity} \\ \delta(x, y) \geq 0 & \text{non-negativity} \\ \delta(x, y) = \delta(y, x) & \text{symmetry} \\ \delta(x, y) + \delta(y, z) \geq \delta(x, z) & \text{triangle inequality} \end{array}$$

- ▶ Pros of metric approach
 - ▶ Well-studied in mathematics (many known metrics)
 - ▶ Postulates support common assumptions on similarity
 - ▶ Allows efficient indexing and search (metric indexing)

Introduction

- ▶ Cons of metric approach:
 - ▶ It may not correctly model the “human” notion of similarity



- ▶ Reflexivity and non-negativity:
 - single object could be viewed as self-dissimilar
 - two distinct object could be viewed as identical
- ▶ Symmetry – comparison direction could be important
- ▶ Triangle inequality – similarity is not transitive

The non-metric case of similarity

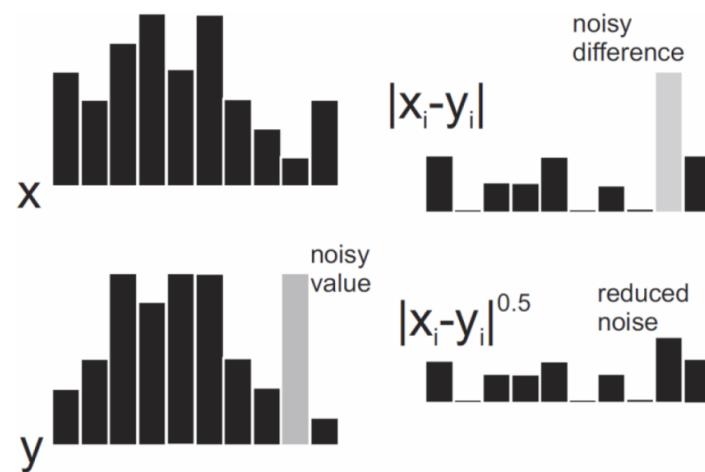
- ▶ What is non-metric?
 - ▶ Generally: a distance function that does not satisfy some (or all) properties of a metric
- ▶ This could include:
 - ▶ Context-dependent similarity functions
 - ▶ Dynamic similarity functions
- ▶ For this tutorial: similarity functions that are “context-free and static”
 - ▶ Similarity between two objects is constant whatever the context is, i.e., regardless of time, user, query, other objects in database, etc.

The non-metric case of similarity

- ▶ Motivation

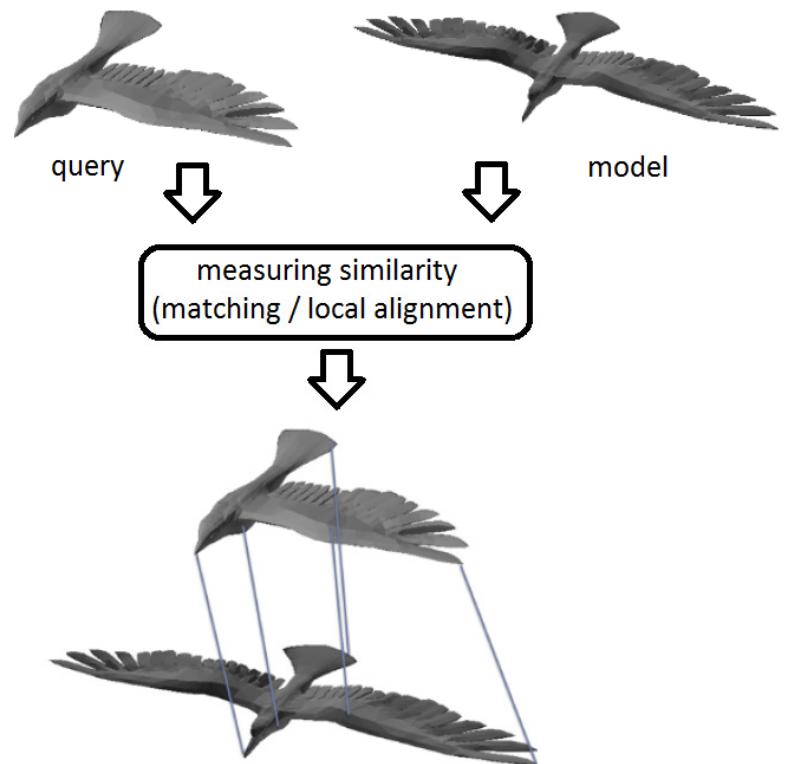
- ▶ Robustness

- ▶ A robust function is resistant to outliers (noise or deformed objects), that would otherwise distort the similarity distribution within a given set of objects
 - ▶ Having objects x and y and a robust function δ , an extreme change in a small part of x 's descriptor should not imply an extreme change of $\delta(x,y)$.



The non-metric case of similarity

- ▶ Motivation
 - ▶ Locality
 - ▶ A locally sensitive function is able to ignore some portions of the compared objects
 - ▶ The locality is usually used to privilege similarity before dissimilarity, hence, we rather search for similar parts in two objects than for dissimilar parts



The non-metric case of similarity

▶ Motivation

- ▶ Comfort/freedom of modeling
 - ▶ The task of similarity search should serve just as a computer based tool in various professions
 - ▶ Domain experts should not be bothered by some “artificial” constraints (metric postulates)
 - Enforcement of metric may represent an unpleasant obstacle
- ▶ Freedom of modeling
 - Complex heuristic algorithms
 - Black-box similarity

The non-metric case of similarity

► Examples of general non-metric functions

- Fractional L_p distances ($p < 1$)
- Sequence alignment distance

$$L_p(x, y) = \left(\sum_{i=1}^d |x_i - y_i|^p \right)^{1/p}$$

$$\delta_{SAD}(x, y, i, j) = \min \begin{cases} c(x_i, y_j) + \delta_{SAD}(x, y, i+1, j+1) \\ c(-, y_j) + \delta_{SAD}(x, y, i, j+1) \\ c(x_i, -) + \delta_{SAD}(x, y, i+1, j) \end{cases}$$

► Cosine similarity

$$s_{\cos}(x, y) = \frac{\sum_{i=1}^d x_i y_i}{\sqrt{\sum_{i=1}^d x_i^2 \cdot \sum_{i=1}^d y_i^2}}$$

► Earth Mover's distance

$$\delta_{EMD}(x, y) = \min \left\{ \sum_{i=1}^d \sum_{j=1}^d c_{ij} f_{ij} \right\}$$

subject to

$$f_{ij} \geq 0$$

$$\sum_{i=1}^d f_{ij} = y_j \quad \forall j = 1, \dots, d$$

$$\sum_{j=1}^d f_{ij} = x_i \quad \forall i = 1, \dots, d$$

Case study 1 – image retrieval

- ▶ The problem: find similar images to a given one

Image Search

Image **Title:** Plumeria cv 'Loretta...' **Description:** Loretta Plumeria **Tags:** plumeria frangipani **Comments:** This one is really b... [flickr](#)

Text [clear](#)

SEARCH

Search time: 3.208 segs.

 d=0.00000 [similar images](#)
 d=0.07716 [similar images](#)
 d=0.09082 [similar images](#)
 d=0.09150 [similar images](#)

 d=0.09321 [similar images](#)
 d=0.09423 [similar images](#)
 d=0.09935 [similar images](#)
 d=0.10242 [similar images](#)

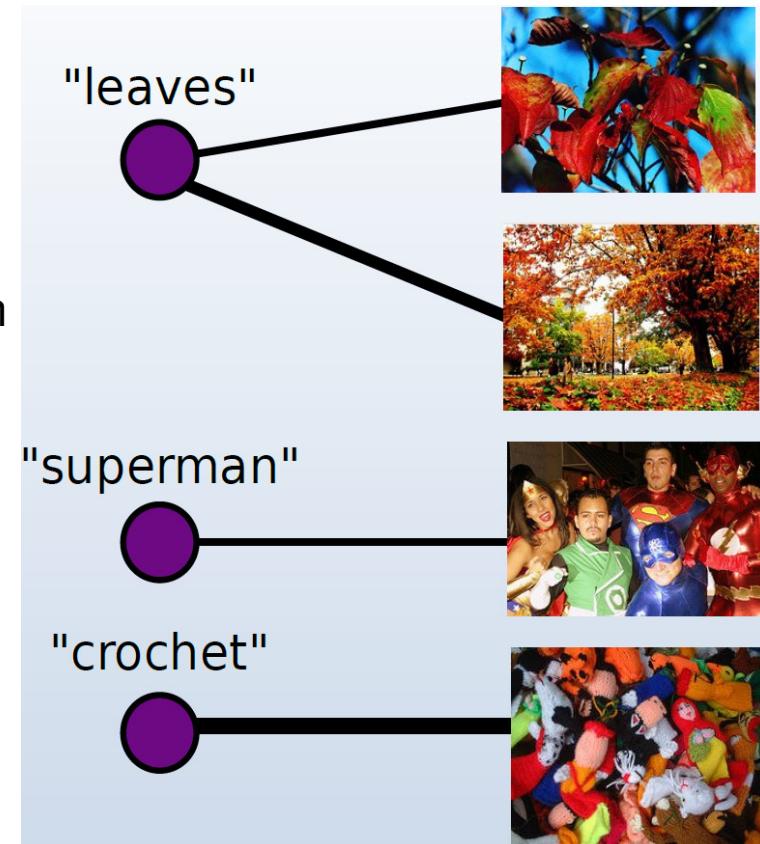
- ▶ Query specification: Text (metadata), Content-based, Sketch-based, combination

PRISMA Image Search:
<http://prisma.dcc.uchile.cl/ImageSearch/>

Case study 1 – image retrieval

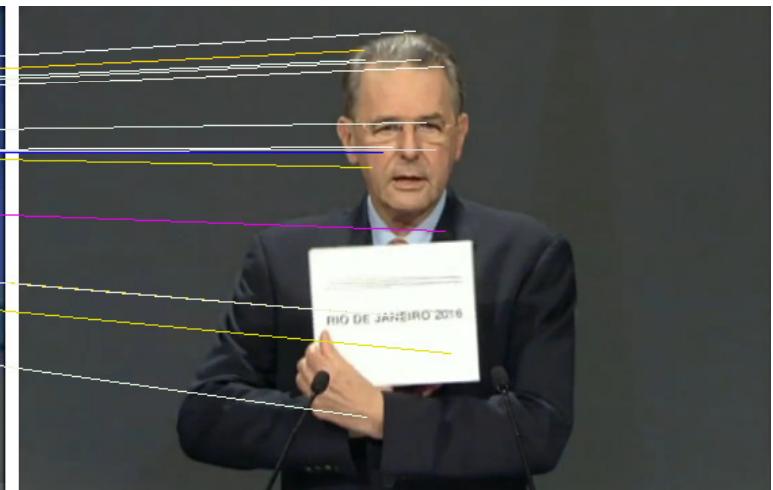
- ▶ Image descriptors
 - ▶ High-level features: concepts
 - ▶ Metadata
 - Title, tags, etc.
 - ▶ Click information
 - Web-logs
 - Also carries semantic information

Title: She is a Lady
Description: Prissy, sun-lit.
Tags: coker spaniel coker ...
Comments: Prissy is beautiful....
[flickr](#)



Case study 1 – image retrieval

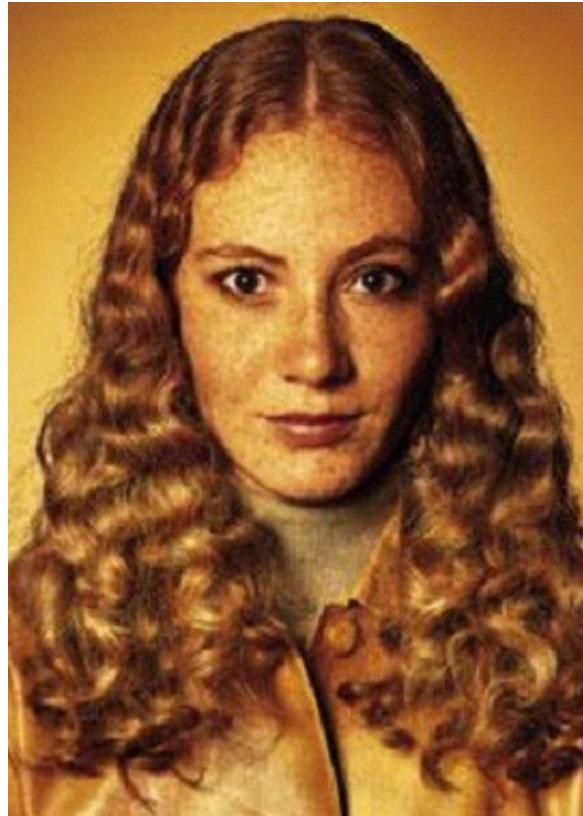
- ▶ Image descriptors
 - ▶ Low-level features: visual attributes
 - ▶ Color, texture, shape, edges
 - ▶ Global vs. local descriptors



ICDE 2011, Hannover, Germany

Case study 1 – image retrieval

- ▶ Big problem: semantic gap
- ▶ Bridge between high and low features



(credit: Google)

ICDE 2011, Hannover, Germany

Case study 1 – image retrieval

- ▶ Non-metric functions for image retrieval
 - ▶ χ^2 , Kullback-Leibler (KLD), Jeffrey divergence (JD)

$$\delta_{\chi^2}(x, y) = \sum_{i=1}^d \frac{x_i - m(i)}{m(i)} \quad m(i) = \frac{x_i + y_i}{2}$$

$$\delta_{KLD}(x, y) = \sum_{i=1}^d x_i \cdot \log \left(\frac{x_i}{y_i} \right)$$

$$\delta_{JD}(x, y) = \sum_{i=1}^d x_i \cdot \log \left(\frac{x_i}{\frac{x_i + y_i}{2}} \right) + y_i \cdot \log \left(\frac{y_i}{\frac{x_i + y_i}{2}} \right)$$

- ▶ Better suited for image retrieval and classification than metric distances

Case study 1 – image retrieval

- ▶ Non-metric functions for image retrieval
 - ▶ Dynamic Partial Function [Goh et al., 2002]

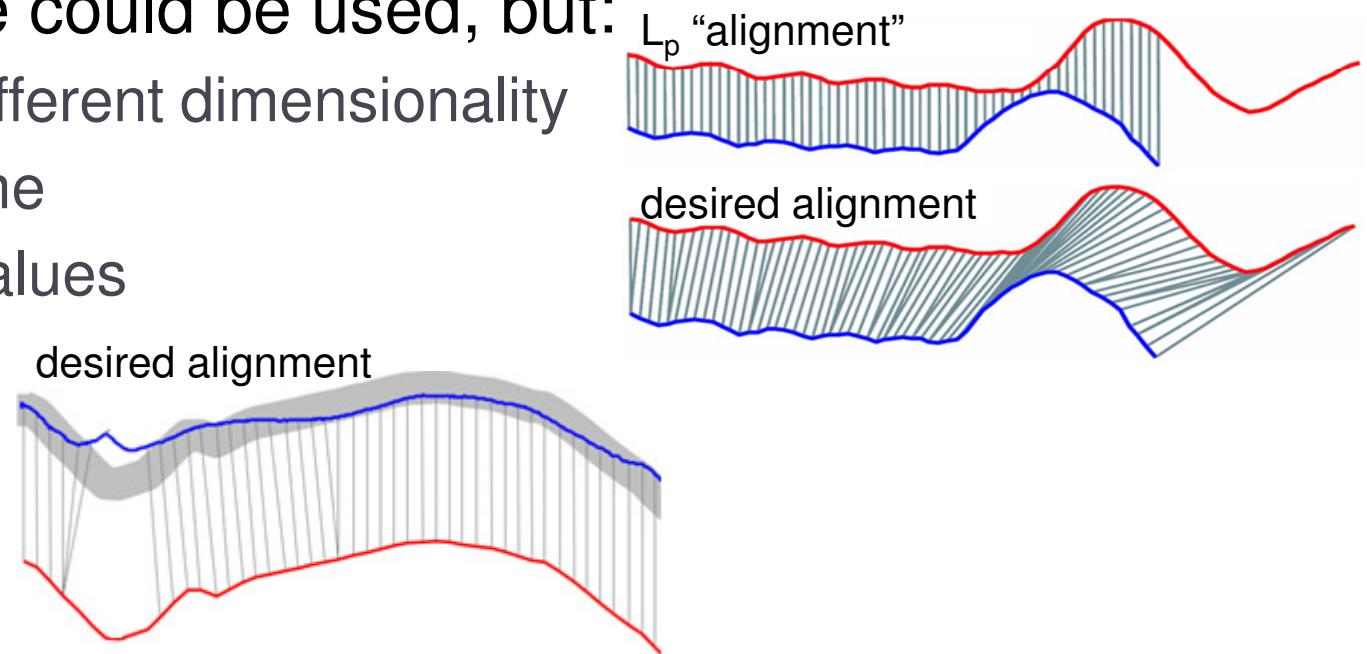
$$\delta_{DPF}(x, y) = \left(\sum_{c_i \in \Delta_m} |x_i - y_i|^p \right)^{1/p}, \quad p \geq 1$$

- ▶ Δ_m : set of m smallest coordinate differences
 - ▶ Better for image classification than Euclidean distance
- ▶ Fractional L p distances
 - ▶ Robust for image matching and retrieval
- ▶ Jeffrey divergence
 - ▶ Better than Euclidean distance for retrieval of tomographies

Case study 2 – time series retrieval

► The problem

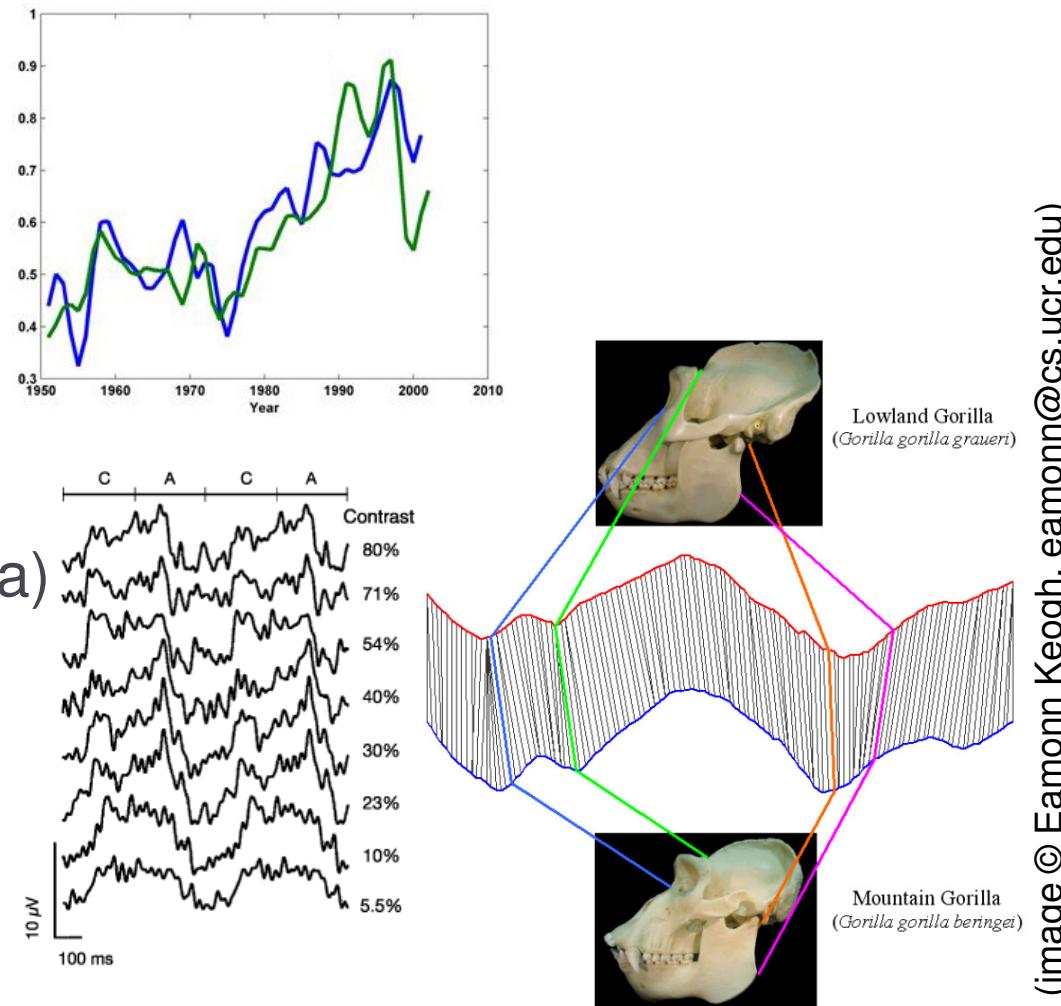
- Time series = ordered set of values
- Given a set of time series, find similar ones
 - Find the optimal alignment
- L_p distance could be used, but:
 - Scaling/different dimensionality
 - Shift in time
 - Missing values
 - Outliers
 - Locality



Case study 2 – time series retrieval

► Applications

- Financial analysis (e.g., stock prices)
- Medicine (e.g., ECG, EEG)
- Scientific data (e.g., seismological analysis, climate data)
- Shape retrieval
- Many others...

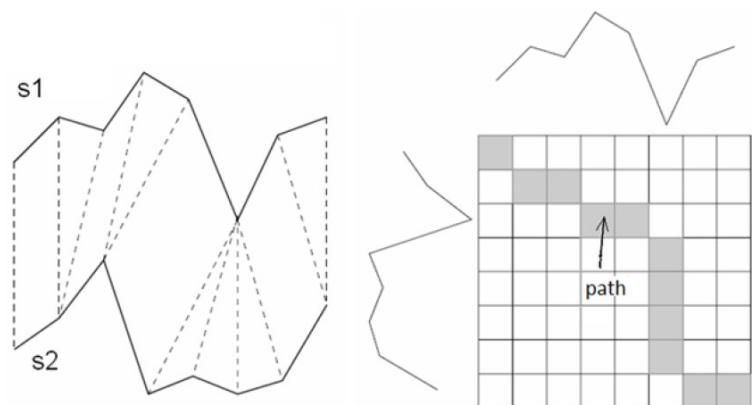


Case study 2 – time series retrieval

▶ Dynamic Time Warping (DTW) [Berndt and Clifford, 1994]

- ▶ Sequences s_1, s_2
- ▶ $m \times n$ matrix M , where $m = |s_1|$, $n = |s_2|$
- ▶ Matrix cell $M_{i,j}$ is partial distance $d(s_{1i}, s_{2j})$
- ▶ Warping path $W = \{w_1, \dots, w_t\}$, $\max\{m, n\} \leq t \leq m + n - 1$, is a set of cells from M that are contiguous
 - ▶ $w_1 = M_{1,1}$, $w_t = M_{m,n}$ (*boundary condition*)
 - ▶ if $w_k = M_{a,b}$ and $w_{k-1} = M_{a',b'}$, then
 - $a - a' \leq 1$ $b - b' \leq 1$ (*continuity*)
 - $a - a' \geq 0$ $b - b' \geq 0$ (*monotonicity*)
- ▶ DTW = L_2 distance on optimally aligned sequences (optimal warping path)
- ▶ non-metric distance

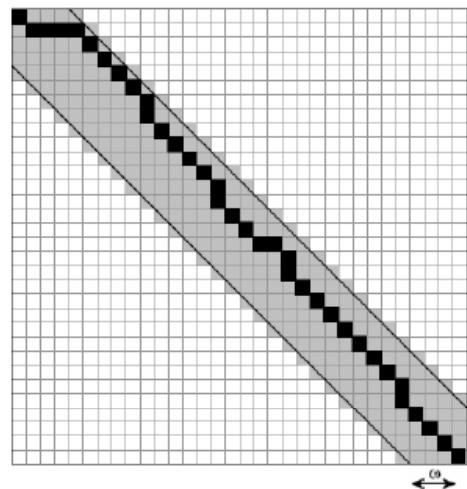
$$\delta_{DTW}(x, y) = \min_W \left\{ \sqrt{\sum_{k=1}^t w_k} \right\}$$



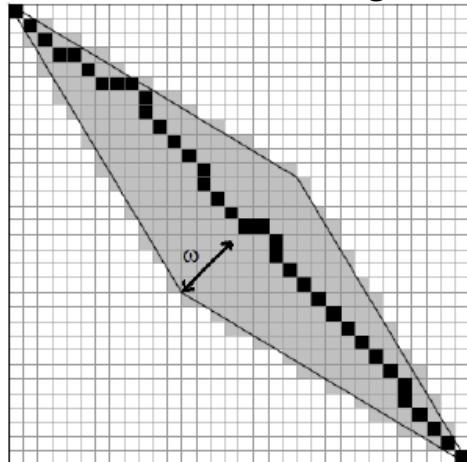
Case study 2 – time series retrieval

- ▶ Dynamic Time Warping (DTW)
 - ▶ Exponentially many warping paths, but can be computed in $O(mn) * O(\text{ground distance})$ time by dynamic programming
 - ▶ Constrained versions of DTW
 - ▶ Avoiding pathological paths
 - A range parameter ω
 - By $\omega = 0$, $m=n$, $d(x,y) = |x-y|$ we get the Euclidean distance (just the diagonal warping path allowed)
 - ▶ DTW reduced complexity to $O((m+n)\omega)$
 - ▶ Sakoe-Chiba band – warping paths are only allowed near the diagonal
 - ▶ Itakura Parallelogram – “time warping” in the middle of sequences is allowed, but not at the ends

Sakoe-Chiba band



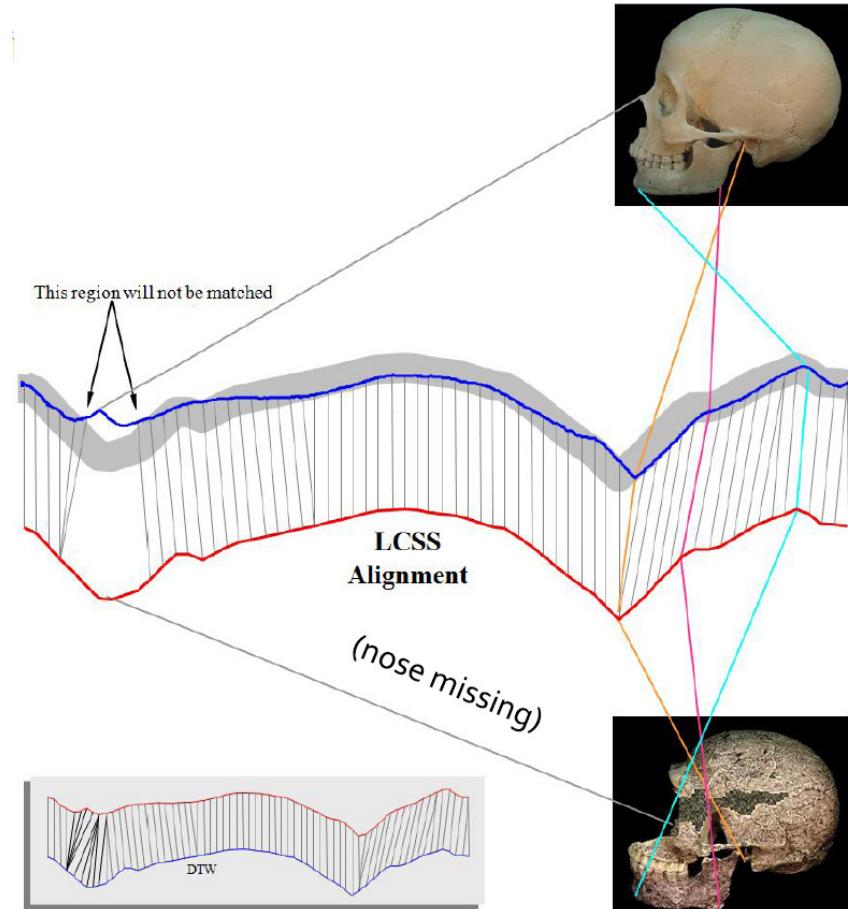
Itakura Parallelogram



Case study 2 – time series retrieval

- ▶ Longest Common Subsequence (LCS)

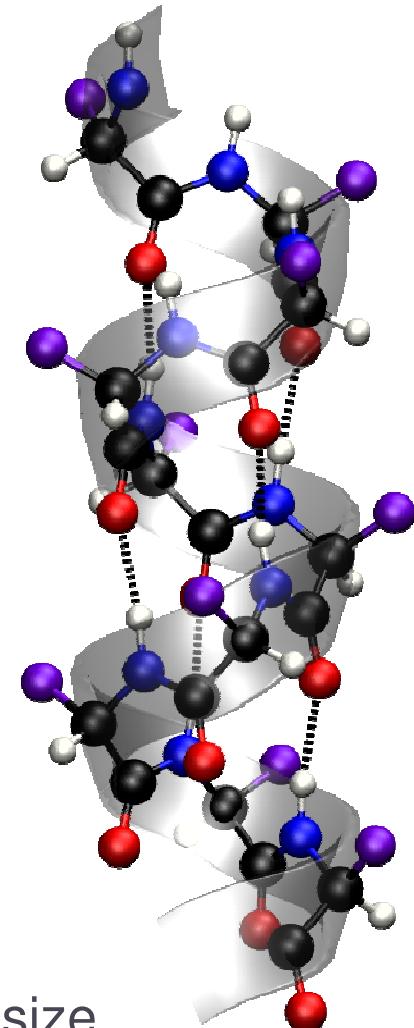
- ▶ x is subsequence of y if there is a strictly increasing sequence of indices such that there is a match between symbols in x and y (not necessarily adjacent)
- ▶ z is a common subsequence of x and y if it is a subsequence of both x and y
- ▶ The longest common subsequence (LCS) is the maximum length common subsequence of x and y
- ▶ non-metric (also similarity)



(image © Eamonn Keogh, eamonn@cs.ucr.edu)

Case study 3 – protein retrieval

- ▶ Similar proteins → similar biological function
 - ▶ Many applications, like protein function/structure prediction (leading to, e.g., drug discovery)
- ▶ Protein sequences (primary structure)
 - ▶ Strings over 20-letter alphabet, i.e., symbolic chains of amino acids (AA)
 - ▶ Biologically augmented **string similarity**
 - ▶ Well-established model
- ▶ Protein structures (tertiary structure)
 - ▶ 3D geometry (polyline + local chemical properties)
 - ▶ Biologically augmented **shape similarity**
 - ▶ Closer to function than sequence, harder to synthesize



Case study 3 – protein retrieval

- ▶ Protein sequences
- ▶ String similarity (like edit distance) enhanced by scoring matrices (e.g., PAM, BLOSUM)
 - ▶ Score between two letters models the probability of mutating one amino acid into the other
- ▶ Needleman-Wunch (NW)
 - ▶ Global alignment – a nonmetric measure if scoring matrix is nonmetric and/or sequences are of different lengths
 - ▶ Usually used for solving subtasks (e.g., when sequences are split into q-grams which are then indexed/searched)
- ▶ Smith-Waterman (SW)
 - ▶ Local alignment (nonmetric), more applicable than global alignment
 - ▶ BLAST – approximate SW + an access method in one algorithm
 - ▶ Used for, e.g., function discovery, phylogenetic analysis, etc.

Case study 3 – protein retrieval

- ▶ Example
 - ▶ Global alignment (Needleman-Wunch)

N	P	H	G	I	I	M	G	L	A	E	→ -16
-7	-7	+8	+6	-7	-7	+2	+6	+4	-7	-7	
-	-	H	G	-	-	L	G	L	-	-	

- ▶ Local alignment (Smith-Waterman)

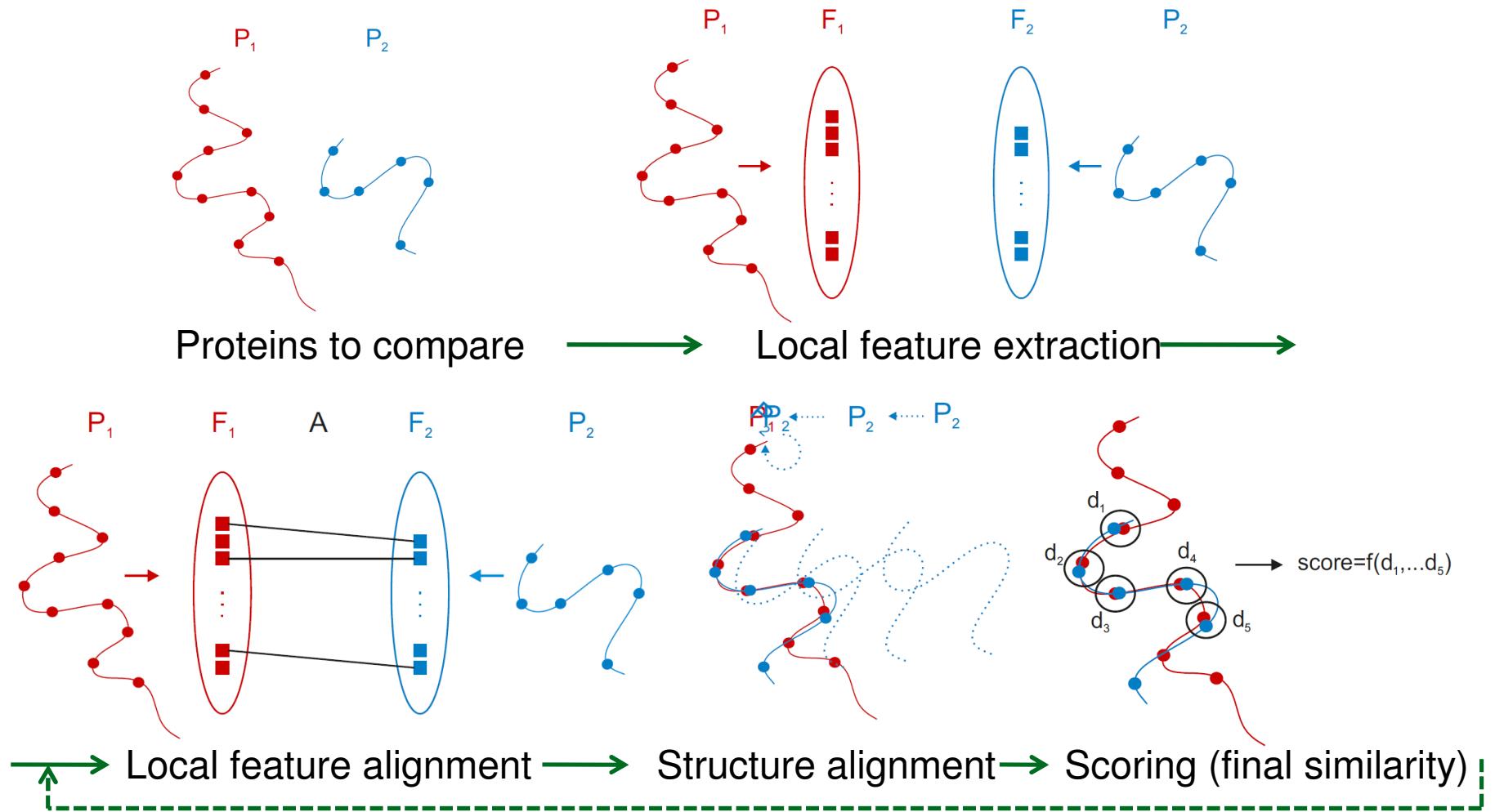
N	P	H	G	I	I	M	G	L	A	E	→ 16
		+8	+6	+2							
		H	G	L							

Case study 3 – protein retrieval

- ▶ Protein structure
 - ▶ Structure is more correlated to biological function than sequence (but harder to obtain)
- ▶ Similarity – two-step optimization process
 - 1) Alignment of structures based on local properties/features
 - ▶ Shape properties (torsion angles between AAs, density of AAs, curvature, surface area)
 - ▶ Physico-chemical properties (hydrophobicity, AA volume)
 - 2) Aggregation measure on top of the alignment
 - RMSD, TM-score
- ▶ Existing top algorithms for function assessment
 - ▶ DDPIn+iTM, PPM, Vorometric, TM-align, CE

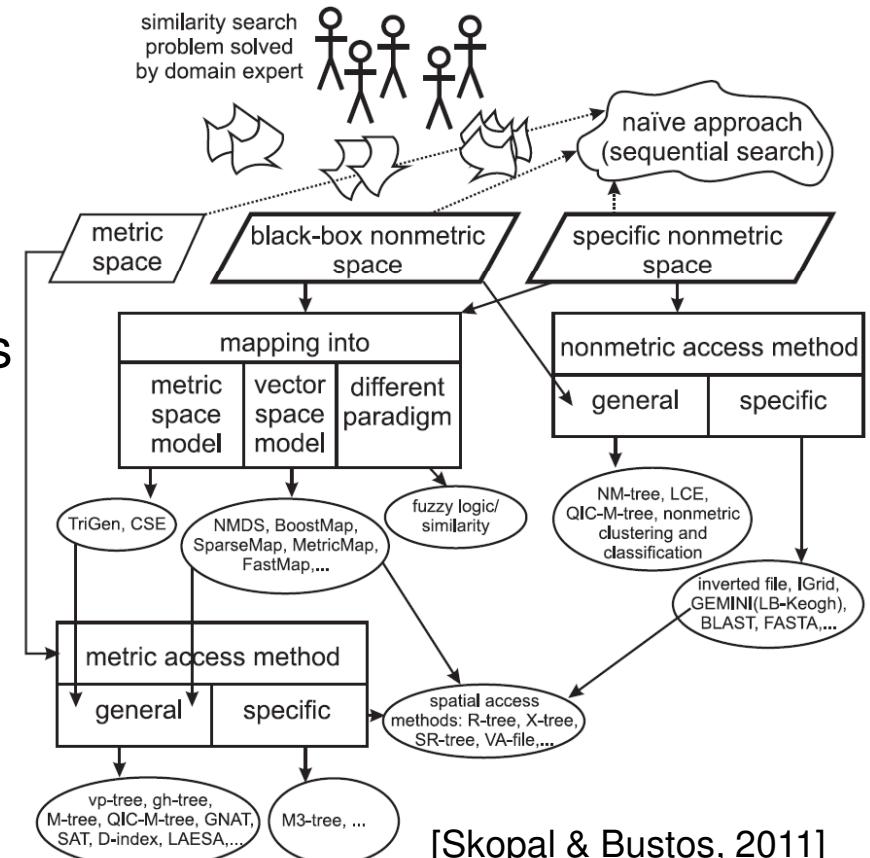
[Hoksza & Galgonek, 2010]

Case study 3 – protein retrieval



Indexing non-metric spaces – framework

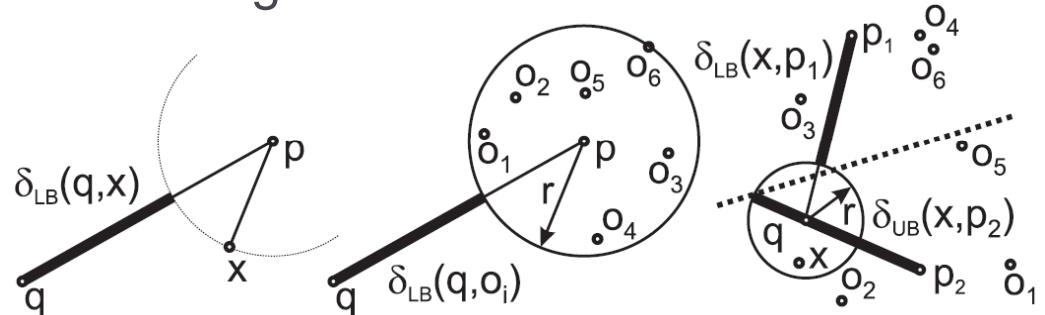
- ▶ Need to **search efficiently** (fast query processing)
 - ▶ Access methods / indexes for similarity search
- ▶ Framework
 - ▶ Metric case similarity
 - ▶ MAM (metric access methods)
 - ▶ Useful for mapping approaches
 - ▶ General non-metric similarity
 - ▶ General NAM (nonmetric AM)
 - ▶ Black-box distance only
 - ▶ Specific non-metric similarity
 - ▶ Specific NAM
 - ▶ Additional knowledge needed



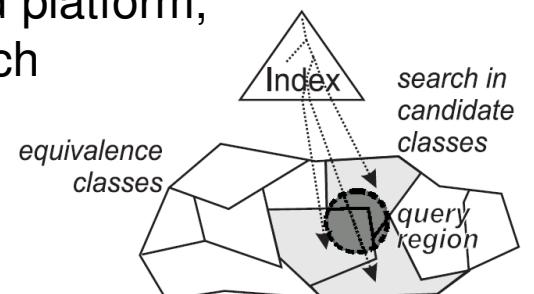
[Skopal & Bustos, 2011]

Indexing non-metric spaces – MAM

- ▶ The metric case (for completeness & mapping approaches)
 - ▶ Black-box metric distance δ needed
- ▶ Metric access methods (MAM), or metric indexes
 - ▶ Idea: pivot-based lower-bounding



- ▶ Different implementations/designs [Zezula et al, 2005]
 - ▶ Dynamic/static database, serial/parallel/distributed platform, main/secondary memory, exact/approximate search
 - ▶ Index = set/hierarchy of metric regions, filtering
 - ▶ Examples: M-tree family, pivot tables, vp-tree, GNAT, SAT, M-index, D-file, etc.



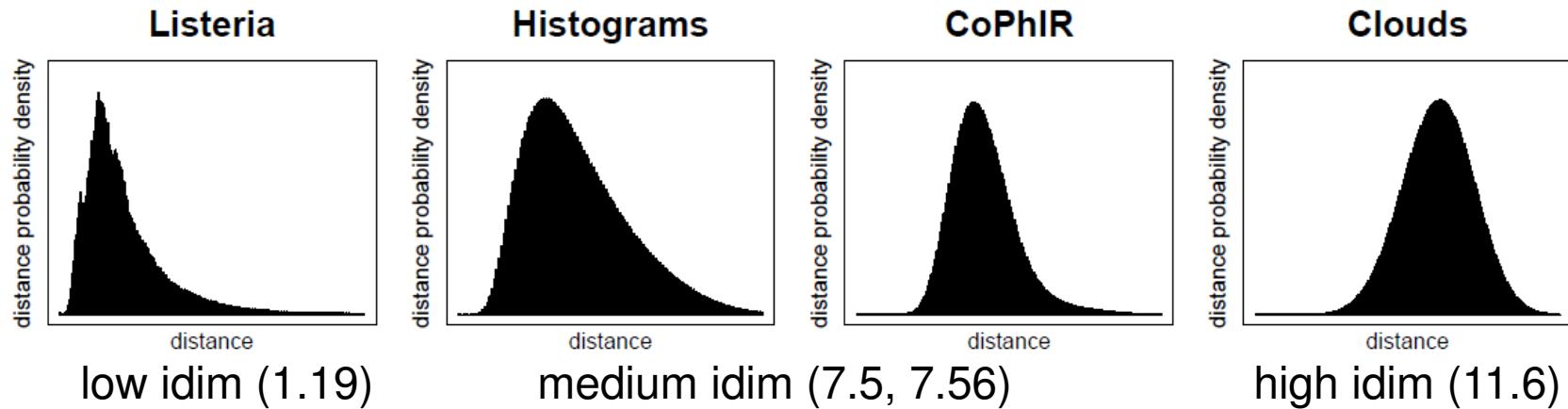
Indexing non-metric spaces

– MAM & intrinsic dimensionality

- ▶ The metric postulates alone are **not a guarantee** of efficient indexing
- ▶ The structure of distance distribution indicates the **indexability** of the database
 - ▶ Intrinsic dimensionality $\rho(\mathbf{S}, \delta)$ (idim) – an indexability indicator [Chávez et al., 2001]

$$\rho(\mathbf{S}, \delta) = \frac{\mu^2}{2\sigma^2}$$

(μ and σ^2 are the mean and the variance of the distance distribution in \mathbf{S} under δ)

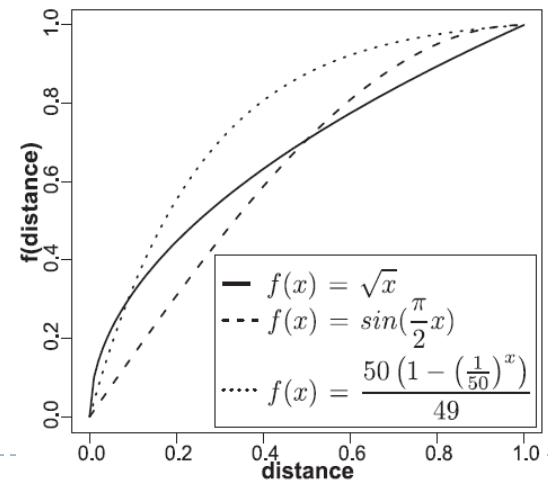


Indexing non-metric spaces – mapping

- ▶ How to **index non-metric spaces**?
- ▶ Let's simplify the problem, turn them into metric ones!
- ▶ Mapping into an L_p space
 - ▶ **Pros:**
“Easy” target space (cheap L_p distance, mostly Euclidean)
 - ▶ **Cons:**
Approximate, static, computationally expensive mapping
- ▶ Variants of mappings into vector spaces
 - ▶ Assuming metric distance
 - ▶ FastMap, MetricMap, SparseMap, BoostMap
 - ▶ Allowing also nonmetric distance
 - ▶ Non-metric multidimensional scaling (NMDS) concept
 - ▶ Query-sensitive embedding (non-metric extension of BoostMap)

Indexing non-metric spaces – mapping

- ▶ Alternative mapping concept:
 - ▶ Do not transform whole space (the database $\mathbf{S} + \delta$), but only the distance function δ , leaving \mathbf{S} unchanged
 - ▶ Suppose semimetric distance δ (metric not satisfying triangle ineq.)
- ▶ How to turn semimetric δ into a metric?
 - ▶ Consider increasing function f , such that $f(0)=0$, and modification $f(\delta)$
 - ▶ i.e., f preserves the similarity ordering wrt any query
 - ▶ **Concave f increases the amount of triangle inequality in δ**
 - ▶ However, concave f also increases the intrinsic dimensionality of $(\mathbf{S}, f(\delta))$, when compared to (\mathbf{S}, δ)
- ▶ Hence, let's find a function f that is:
 - ▶ Concave enough to turn δ into metric,
 - ▶ yet keeping idim as low as possible

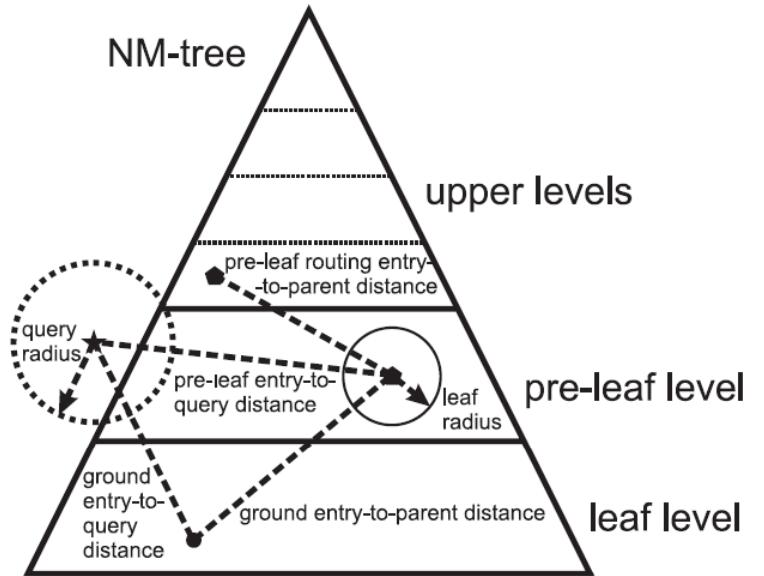


Indexing non-metric spaces – mapping

- ▶ TriGen algorithm [Skopal, 2007]
 - ▶ “Metrization” of δ into $f(\delta)$
 - ▶ Uses T-bases – set of modifying functions f , additionally parameterizable by a concavity/convexity weight w
 - ▶ Uses T-error – the proportion of non-triangle triplets
 - ▶ Distance triplets sampled on S using $f(\delta)$
 - ▶ Given a set of T-bases, δ and a sample of the database S , the algorithm finds the optimal f (T-base with w)
 - ▶ f is a candidate if T-error is below a user-defined threshold θ
 - ▶ Among the candidates the one is chosen for which $idim$ is minimal

Indexing non-metric spaces – general NAM

- ▶ NM-tree – nonmetric M-tree
 - ▶ M-tree combined with TriGen algorithm
 - ▶ **Allows to set the retrieval error vs. performance trade-off at query time**
- ▶ The NM-tree idea [Skopal & Lokoč, 2008]
 - ▶ Using TriGen, find modifiers f_i for several T-error thresholds (including zero T-error)
 - ▶ Build M-tree using the zero T-error modified distance (i.e., full metric)
 - ▶ At query time, the T-error tolerance is a parameter
 - ▶ Each required distance value stored in M-tree is **inversely modified** from the metric one back to the original semimetric distance,
 - ▶ then it is **re-modified** using a different modifier (appropriate to the query parameter)
 - ▶ Additional requirement on T-bases – inverse symmetry, i.e., $f(f(x,w), -w) = x$



Indexing non-metric spaces – specific NAM

- ▶ The general techniques do not use any specific information
 - ▶ just black-box distance and a sample of the database is provided
- ▶ It is always better to use a specific solution (if developed), based on an internal knowledge, as:
 - ▶ Structure of the universe **U** (vector, string, set?)
 - ▶ The formula of δ (closed form available?)
 - ▶ Cardinality of the distance domain (discrete/continuous?)
 - ▶ Data/distance distribution in **S** (uniform/skewed?)
 - ▶ Typical query (e.g., sparse/dense vector?)
- ▶ Typically not reusable in other domains
 - ▶ Hence, hard to find a NAM specific to our setup

Indexing non-metric spaces – specific NAM

▶ Example – LB_Keogh for constrained DTW

[Keogh et al, 2006]

Lower-bounding distance, metric and cheap to compute $O(n)$

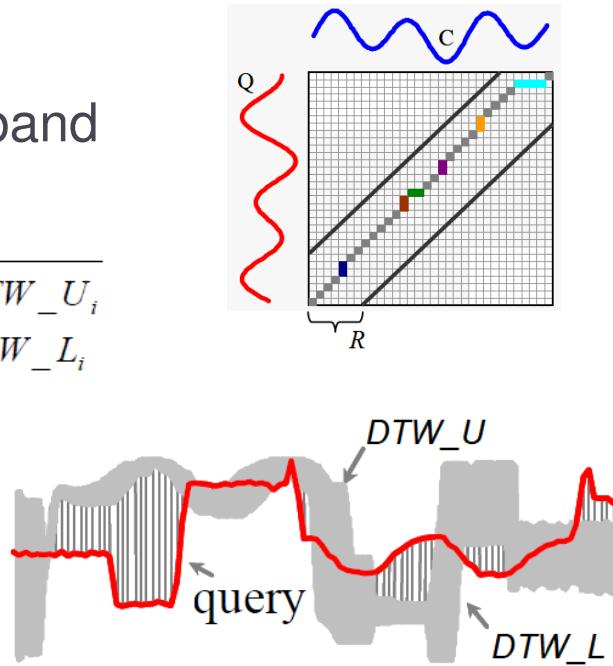
▶ Envelope $W=(DTW_U, DTW_L)$ created for a time series S

$$DTW_U_i = \max(S_{i-R} : S_{i+R}),$$

$$DTW_L_i = \min(S_{i-R} : S_{i+R}),$$

R is the thickness of Sakoe-Chiba band

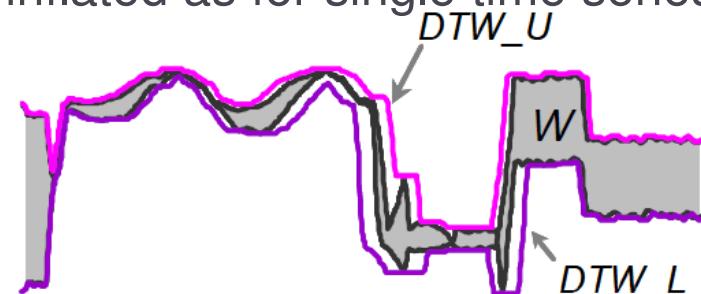
$$LB_{Keogh_{DTW}}(Q, W) = \sqrt{\sum_{i=1}^n \begin{cases} (q_i - DTW_U_i)^2 & \text{if } q_i > DTW_U_i \\ (q_i - DTW_L_i)^2 & \text{if } q_i < DTW_L_i \\ 0 & \text{otherwise} \end{cases}}$$



(images © Eamonn Keogh,
eamonn@cs.ucr.edu)

Indexing non-metric spaces – specific NAM

- ▶ Example – LB_Keogh for constrained DTW
- ▶ Basic approach – filter & refine search
 - 1) Sequential search under LB_Keogh
 - 2) Check remaining candidates by DTW
- ▶ Extended approach – wedges
= descriptors of multiple series
 - ▶ Wedge $W = (U, L)$, $U_i = \max(C_{1i}, \dots, C_{ki})$, $L_i = \min(C_{1i}, \dots, C_{ki})$
 - ▶ W = k-dimensional rectangle, let's index it by, e.g., R-tree
 - ▶ For constrained DTW, W must be inflated as for single time series, i.e.,
$$DTW_U_i = \max(W_{i-R} : W_{i+R}),$$
$$DTW_L_i = \min(W_{i-R} : W_{i+R})$$



(image © Eamonn Keogh,
eamonn@cs.ucr.edu)

Indexing non-metric spaces – specific NAM

- ▶ Example – inverted file and cosine similarity

- ▶ Used as an implementation of range query in vector model of information retrieval

- ▶ documents d_i , terms t_j
- ▶ term-by-document matrix – weights of terms in documents

- ▶ Only efficient for **cosine similarity** (or inner product) and **sparse query vector**

- ▶ CosSim = (normed) sum of weight multiplications

d_1	0.6	0	...	0.2
d_2	0	0	...	0.1
:	:	:		:
:	:	:		:
d_n	0.2	0.5	...	0.3

$$\text{CosSim}(d_j, q) = \frac{\vec{d}_j \cdot \vec{q}}{|\vec{d}_j| \cdot |\vec{q}|} = \frac{\sum_{i=1}^t (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^t w_{ij}^2} \cdot \sqrt{\sum_{i=1}^t w_{iq}^2}}$$

Indexing non-metric spaces – specific NAM

- ▶ Example – inverted file and cosine similarity
- ▶ Efficient query processing
 - ▶ Visit only lists of terms having **nonzero weights** in query
 - ▶ Early termination provided when lists sorted wrt the weights

	mountain	forest	...	nature
d_1	0.6	0	...	0.2
d_2	0	0	...	0.1
:	:	:		:
:	:	:		:
d_n	0.2	0.5	...	0.3

Query: $\langle 0, 0.5, 0.4 \rangle$, similarity threshold = 0.05,
inner product used

d_i sorted wrt the weights (desc.) →

mountain → $d_1(0.6), d_n(0.2)$
forest → $d_n(0.5)$
...
nature → $d_n(0.3), d_1(0.2), d_2(0.1)$

Answer:
 $d_n(0.37)$,
 $d_1(0.08)$

- ▶ Cannot apply to Euclidean distance (!)
 - ▶ zero + nonzero weight = nonzero (all lists must be visited)

Indexing non-metric spaces

- ▶ Overview of methods for efficient non-metric search
- ▶ References to the sections of [Skopal & Bustos, 2011]

Method	specialized/ general	approximate/ exact search	static/dynamic database	main-memory/ persistent	other characteristics	details in section
Sequential scan	Gen.	Exact	Dynamic	Both	Requires no index	n/a
CSE	Gen.	Exact	Static	Main-mem.	Requires $O(n^2)$ space	4.5.2
TriGen	Gen.	Approx.	Static	Main-mem.	Simplifies the problem to metric case	4.5.3
Embeddings into vector spaces	Gen.	Approx.	Static	Main-mem.	Simplifies the problem to L_p space	4.5.4
Fuzzy logic	Gen.	Approx.	Static	Main-mem.	Provides transitive inequality, not implemented yet	4.5.5
NM-tree	Gen.	Approx.	Dynamic	Persistent	Based on M-tree, uses TriGen	4.6.1
QIC-M-Tree	Gen.	Exact	Dynamic	Persistent	Based on M-tree, requires user-defined metric lower bound distance	4.6.2
LCE	Gen.	Approx.	Static	Main-mem.	Exact only for database objects	4.6.3
Classification	Gen.	Approx.	Static	Main-mem.	Requires cluster analysis, limited scalability	4.6.4
Combinatorial approach	Gen.	Approx.	Static	Main-mem.	No implementation yet, only for NN search. Exact for large enough D .	4.6.5
Inverted file	Spec.	Exact	Dynamic	Persistent	Cosine measure	4.7.2
IGrid	Spec.	Exact	Static	Main-mem.	Specific L_p -like distance	4.7.3
GEMINI(LB-Keogh)	Spec.	Exact	Both	Main-mem.	Uses lower bound distances	4.7.4
FASTA/BLAST	Spec.	Approx.	Dynamic	Main-mem.	Approximate alignment	4.7.5

Challenges to the future

- ▶ **scalability**
 - ▶ mostly sequential scan nowadays, but the databases grow and get more complex, hence, indexing would be necessary
- ▶ **indexability**
 - ▶ how to measure indexability of nonmetric spaces?
- ▶ **implementation specificity**
 - ▶ specific vs. general NAMs
- ▶ **efficiency vs. effectiveness**
 - ▶ slower exact vs. faster approximate search
- ▶ **extensibility**
 - ▶ there exist other related aggregation/scoring (non-metric) concepts, to which non-metric indexing could contribute

Thank you for your attention!

... questions?

References

- ▶ **T. Skopal, B. Bustos, On Nonmetric Similarity Search Problems in Complex Domains, to appear in ACM Computing Surveys, 2011**
<http://siret.ms.mff.cuni.cz/skopal/pub/nmsurvey.pdf>
- ▶ D. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. AAAI Workshop On Knowledge Discovery in Databases, 1994
- ▶ E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in metric spaces, ACM Computing Surveys, 33(3), 2001
- ▶ K.-S. Goh, B. Li, and E. Chang. DynDex: A dynamic and non-metric space indexer. 10th ACM International Conference on Multimedia, 2002
- ▶ D. Hoksza, J. Galgonek, Alignment-Based Extension to DDPI Feature Extraction, International Journal of Computational Bioscience, Acta Press, 2010
- ▶ E. Keogh, L. Wei, X. Xi, S. Lee and M. Vlachos (2006) LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures. VLDB 2006
- ▶ T. Skopal, Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces, ACM Transactions on Database Systems, 32(4), 2007
- ▶ T. Skopal, J. Lokoč, NM-tree: Flexible Approximate Similarity Search in Metric and Non-metric Spaces, DEXA 2008, LNCS 5181, Springer
- ▶ P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric Space Approach, volume 32 of Advances in Database Systems. Springer, 2005

