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Introduction

» Similarity search
Search for “similar objects” (subjective)
Content-based similarity search: query by example:
range query
(give me the very similar ones — over 80%)

k nearest neighbors query
(give me the 3 most similar)
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Introduction

» Application examples of S|m|Iar|ty search
Multimedia retrieval
Scientific databases L

ssssssss

Biometry =

nages

Pattern recognition
Manufacturing industry
Cultural heritage
Etc.
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Introduction

» Metric similarity

Dissimilarity function o (the distance),
universe U, database S c U, objects x,y,z € U

The higher o(x,y), the more dissimilar objects x,y are
» Topological properties

dr,y) =0 =y identity
ox,y) >0 non-negativity
o(x,y) =d(y,x) symmetry
olx,y)+0(y,z) > d(x, 2) triangle inequality

» Pros of metric approach
Well-studied in mathematics (many known metrics)
Postulates support common assumptions on similarity
Allows efficient indexing and search (metric indexing)
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Introduction

» Cons of metric approach:
It may not correctly model the “human” notion of similarity

(c) a(xy)< 5(%3‘-) ) (d)  8(xy)+d(y.x) < 8(x,2)

Reflexivity and non-negativity:
single object could be viewed as self-dissimilar
two distinct object could be viewed as identical

Symmetry — comparison direction could be important
Triangle inequality — similarity is not transitive
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The non-metric case of similarity

» What is non-metric?

Generally: a distance function that does not satisfy some
(or all) properties of a metric

» This could include:
Context-dependent similarity functions
Dynamic similarity functions
» For this tutorial: similarity functions that are “context-
free and static”

Similarity between two objects is constant whatever the
context is, i.e., regardless of time, user, query, other
objects in database, etc.
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The non-metric case of similarity

» Motivation

Robustness

A robust function is resistant to outliers (noise or deformed
objects), that would otherwise distort the similarity distribution
within a given set of objects

Having objects x and y and a robust function o, an extreme
change in a small part of x's descriptor should not imply an

extreme change of d(x,y).
bl

noisy
y

value
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The non-metric case of similarity

» Motivation
Locality
A locally sensitive function & x
is able to ignore some ey .
portions of the compared O b
objects (it
The locality is usually usec Iy

to privilege similarity befort
dissimilarity, hence, we

rather search for similar | \
parts in two objects than \ | & \
for dissimilar parts \
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The non-metric case of similarity

» Motivation

Comfort/freedom of modeling

The task of similarity search
should serve just as a computer
based tool in various professions

Domain experts should not be O
bothered by some “artificial” O
constraints (metric postulates) - o
Enforcement of metric may
represent an unpleasant obstacle ’C:b

Freedom of modeling
Complex heuristic algorithms
Black-box similarity
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The non-metric case of similarity

» Examples of general non-metric functions

Fractional Lp distances (p<1) » Sequence alignment
distance

d / c(xi,y;) +dsap(r,y, i+ 1,5+ 1)
Ly(z,y) = E [z — yil” Osap(@,y,4,j) =minq e y;) +sap(@,y,i,j +1)
C(flfi,_> +5SAD(:E7y7Z+ 17:7)

1=1
Cosine similarity Earth Mover’s distance
p Spmp(T,y) = min{Zle 2?21 cijfij}
Z Ll SU.bjeCt to
Scos (€, )

N z 2 oo =0

=t =t duiciJis =y Vi=1,...,d
Z?:lfij — Iy Vi:L...,d
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Case study 1 — image retrieval

» The problem: find similar images to a given one

Image Search

Image
Title: Plumeria cv 'Laretta..,
Description: Loretta Plumeria
Tags: plumeria frangipani
ﬁprimenl‘s: This one is really b...
I HT

SEARCH

Search time: 3.208 segs.

Papl. &
d=0.09150
5 similarimages

d=0.00000
similar images similarimages

d=0.09423 d=0.09335 d=0.10242
similar images similar images similar images

d=0.093Z21
similar images

» Query specification: Text (metadata), Content-based,

Sketch-based, combination
B, | | g

.

PRISMA Image Search: L E&

http://prisma.dcc.uchile.cl/ImageSearch/ =
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Case study 1 — image retrieval

» Image descriptors

High-level features: concepts

Metadata
Title, tags, etc. "leaves"”

Click information
Web-logs
Also carries semantic information

"superman”

.|| Tags: coker spaniel caker ...
| Comments: Prizsy iz beautiful....

Flickr "crochet"

3 Titde: She iz a Lady
| Descrpton: Prissy, sun-lit,
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Case study 1 — image retrieval

» Image descriptors

Low-level features: visual attributes
Color, texture, shape, edges
Global vs. local descriptors
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Case study 1 — image retrieval

» Big problem: semantic gap
Bridge between high and low features
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Case study 1 — image retrieval

» Non-metric functions for image retrieval
x*, Kullback-Leibler (KLD), Jeffrey divergence (JD)

2

d
L Yi
5JD(£U’ y) - Z Li ]Og (:crH% ) T Yi log ($L+yi )

Better suited for image retrieval and classification than metric
distances
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Case study 1 — image retrieval

» Non-metric functions for image retrieval
Dynamic Partial Function [Goh et al., 2002]

1/p
Oppr(T,Y) = ( > |£Uz'y7:|p) . p=>1

673 c ATTL

A,,: set of m smallest coordinate differences
Better for image classification than Euclidean distance

Fractional Lp distances
Robust for image matching and retrieval

Jeffrey divergence
Better than Euclidean distance for retrieval of tomographies
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Case study 2 - time series retrieval

» The problem
Time series = ordered set of values
Given a set of time series, find similar ones
Find the optimal alignment

» L, distance could be used, but: | _aignment

Scaling/different dimensionality i W‘ﬁﬂﬂmﬂm\/

Shift in time desired alignment

Missing values WIW///// |

Outliers  desired alignment
Locality |

Vi
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Case study 2 — time series retrieval

» Applications |
Financial analysis .
(e.g., stock prices) *

Medicine
(e.q.,ECG, EEQG)

Scientific data
(e.g., seismological
analysis, climate data)

Shape retrieval
Many others...

nnnnnnnnnnnnnnnnnnnnnnnnn



Case study 2 — time series retrieval

» Dynamic Time Warping (DTW) [Berndt and Clifford, 1994]
Sequences st1, Sz

m X n matrix M, where m = |s,|, n = |s,| dprw (z,y) = min
1%

Matrix cell M, is partial distance d(s,, S,)

Warping path W = {wx1, ..., wi}, max{m, n}

<t<m+n-1,is a set of cells from M | e /\\
that are contiguous y v
wi= Mi,1, wi= Mmn (boundary condition) \\ L T | |

if wk= Map and wk1= Map, then

1 a—-a <1b-b’'<1 (continuity)

1 a—a 20b-b’ =0 (monotonicity)
DTW = Ladistance on optimally aligned
sequences (optimal warping path)
non-metric distance
ICDE 2011, Hannover, Germany




Case study 2 — time series retrieval
Sakoe-Chiba band

» Dynamic Time Warping (DTW)

Exponentially many warping paths, but can be
computed in O(mn)*O(ground distance) time by
dynamic programming

Constrained versions of DTW

Avoiding pathological paths

o1 Arange parameter ®

1 By o = 0, m=n, d(x,y) = |x-y| we get the Euclidean
distance (just the diagonal warping path allowed) BS

ltakura Parallelogram

s

DTW reduced complexity to O((m+n)w) -

Sakoe-Chiba band — warping paths are only allowed \ 5
near the diagonal \g \

ltakura Parallelogram — “time warping” in the middle
of sequences is allowed, but not at the ends Ba
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Case study 2 - time series retrieval

» Longest Common Subsequence (LCS)

X is subsequence of y if there
IS a strictly increasing

sequence of indices such that
there is a match between
symbols in x and y regspilsatemons

(not necessarily adjacent) /\ |

z is a common subsequence | W
of xandyifitis a [/miiitl ";I""I‘. I |

LCSS

subsequence of both x and y sl
The longest common R

. Ty SN
subsequence (LCS) is the . Msing,
maximum length common B,

subsequence of x and y
non-metric (also similarity)
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Case study 3 — protein retrieval

» Similar proteins — similar biological function

Many applications, like protein function/structure
prediction (leading to, e.g., drug discovery)

» Protein sequences (primary structure)

Strings over 20-letter alphabet, i.e.,
symbolic chains of amino acids (AA)

Biologically augmented string similarity
Well-established model

» Protein structures (tertiary structure)
3D geometry (polyline + local chemical properties)
Biologically augmented shape similarity

Closer to function than sequence, harder to synthesize
ICDE 2011, Hannover, Germany




Case study 3 — protein retrieval

» Protein sequences
» String similarity (like edit distance) enhanced
by scoring matrices (e.g., PAM, BLOSUM)

Score between two letters models the probability
of mutating one amino acid into the other

» Needleman-Wunch (NW)

Global alignment — a nonmetric measure if scoring matrix
IS nonmetric and/or sequences are of different lengths

Usually used for solving subtasks (e.g., when sequences
are split into g-grams which are then indexed/searched)

» Smith-Waterman (SW)
Local alignment (nonmetric), more applicable than global alignment
BLAST — approximate SW + an access method in one algorithm

Used for, e.g., function discovery, phylogenetic analysis, etc.
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Case study 3 — protein retrieval

» Example
» Global alignment (Needlemann-Wunch)

» Local alignment (Smith-Waterman)
N P I M G L A E

- 16
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Case study 3 — protein retrieval

» Protein structure

Structure is more correlated to biological function than
sequence (but harder to obtain)

» Similarity — two-step optimization process
Alignment of structures based on local properties/features

Shape properties (torsion angles between AAs, density of AAs,
curvature, surface area)

Physico-chemical properties (hydrophobicity, AA volume)
Aggregation measure on top of the alignment
0 RMSD, TM-score

» Existing top algorithms for function assessment

DDPIn+iTM, PPM, Vorometric, TM-align, CE

[Hoksza & Galgonek, 2010]
ICDE 2011, Hannover, Germany



Case study 3 — protein retrieval

o . P, F F, P,

Proteins to compare ———> Local feature extraction———>

P, F, A F, P,

T> Local feature alignment ——> Structure alignment—> Scoring (final similarity)

— score=f(d,,...d)

d,
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Indexing non-metric spaces — framework

» Need to search efficiently (fast query processing)
Access methods / indexes for similarity search

similarity search

» Framework S %%%SK) .............. appmach
s case simila 2 0 )
Metric case similarity "~

. metric black-box nonmetrlc spemﬂc nonmetnc
MAM (metric access methods) 45/ / e // space

USGfUl for mapplng approaCheS mapping into nonmetric access method
. . . . metric ;e:t;_; differgnt K general specific
General non-metric similarity ool | model |

General NAM (nonmetric AM) | Goorosd) e s
Black-box distance only

SpeC”:'C non—metnc Slmllarlty — | metric ac

Y A J o
general specific

Specific NAM 7
Additional knowledge needed ~ Cireiiraay
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Indexing non-metric spaces - MAM

» The metric case (for completeness & mapping approaches)
Black-box metric distance 6 needed

» Metric access methods (MAM), or metric indexes
|dea: pivot-based lower-bounding

Different implementations/designs [Zezula et al, 2005]

Dynamic/static database, serial/parallel/distributed platform,
main/secondary memory, exact/approximate search

Index = set/hierarchy of metric regions, filtering

Examples: M-tree family, pivot tables,
vp-tree, GNAT, SAT, M-index, D-file, etc.

ICDE 2011, Hannover, Germany
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Indexing non-metric spaces
— MAM & intrinsic dimensionality

4

The metric postulates alone are
not a guarantee of efficient indexing

The structure of distance distribution

indicates the indexability of the database

Intrinsic dimensionality p(S,0) (idim) — an indexability indicator
[Chavez et al., 2001]

2
(S, 6) = 1 (uw and o2 are the mean and the variance of
202 the distance distribution in S under )

Listeria Histograms CoPhIR Clouds

distance probability density

distance probability density

distance probability density

distance probability density

distance distance distance distance

low idim (1.19) medium idim (7.5, 7.56) high idim (11.6)
ICDE 2011, Hannover, Germany



Indexing non-metric spaces — mapping

» How to index non-metric spaces?
» Let’s simplify the problem, turn them into metric ones!
» Mapping into an L, space
Pros:
“Easy” target space (cheap L, distance, mostly Euclidean)
Cons:
Approximate, static, computationally expensive mapping
» Variants of mappings into vector spaces
Assuming metric distance
FastMap, MetricMap, SparseMap, BoostMap
Allowing also nonmetric distance

Non-metric multidimensional scaling (NMDS) concept
Query-sensitive embedding (non-metric extension of BoostMap)
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Indexing non-metric spaces — mapping

» Alternative mapping concepit:

Do not transform whole space (the database S + 9),
but only the distance function 9, leaving S unchanged

» Suppose semimetric distance O (metric not satisfying triangle ineq.)
» How to turn semimetric o into a metric?
Consider increasing function f, such that f(0)=0, and modification (o)
l.e., f preserves the similarity ordering wrt any query
Concave f increases the amount of triangle inequality in o

However, concave f also increases )
the intrinsic dimensionality of (S, 1(9)),
when compared to (S, 9)

» Hence, let’s find a function f that is:
Concave enough to turn o into metric,

yet keeping idim as low as possible
ICDE 2011, Hannover, Germany

f(distance)
OI.S OI.B

UI.4

0|.2

e f(z) = m

I T T
04 0.6 0.8 1.0
distance

OI.L'J

T T
0.0 0.2



Indexing non-metric spaces — mapping

g TriGen algorithm [Skopals 2007] Fractional-Power T-base RBQy.y-base
“Metrization” of & into f(§) -

Uses T-bases — set of
modifying functions f,
additionally parameter-
izable by a concavity/ | o=
Convexity We|g ht w 00 02 o".;}stanccie 08 10 00 02 otllidistanc(i:'e 08 10
Uses T-error — the proportion of non-triangle triplets

Distance triplets sampled on S using f(9)

Given a set of T-bases, 0 and a sample of the database S,
the algorithm finds the optimal f (T-base with w)

f is a candidate if T-error is below a user-defined threshold 6
Among the candidates the one is chosen for which idim is minimal

1\'0

0|.8
O‘.S OI.S

f(distance)
0.6
f(distance)

O‘.4
0|.4

0].2

U‘.O 0‘.2
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Indexing non-metric spaces — general NAM

» NM-tree — nonmetric M-tree NM-tree

M-tree combined with TriGen algorithm

upper levels

/ .pre -leaf routing entry

~y lo parent dlstance

Allows to set the retrieval error vs.
performance trade-off at query time

?Q‘STL’L., ——
» The NM-tree idea [Skopal & Loko¢, 2008] * / QLi:ﬁiﬂ;g‘;‘g;‘*‘ expre-leaf level

radius

Using TriGen, find modifiers f; for several Ground’,
) . 332?;10 ‘\ R ground entry-to-parent distance |eaf |eve|
T-error thresholds (including zero T-error)

Build M-tree using the zero T-error modified distance (i.e., full metric)

At query time, the T-error tolerance is a parameter

Each required distance value stored in M-tree is inversely modified
from the metric one back to the original semimetric distance,

then it is re-modified using a different modifier (appropriate to the query parameter)

Additional requirement on T-bases — inverse symmetry, i.e., f(f(x,w),-w) = x
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Indexing non-metric spaces — specific NAM

» The general techniques do not use any specific information
just black-box distance and a sample of the database is provided

» It is always better to use a specific solution (if developed),
based on an internal knowledge, as:

Structure of the universe U (vector, string, set?)

The formula of ¢ (closed form available?)

Cardinality of the distance domain (discrete/continuous?)
Data/distance distribution in S (uniform/skewed?)

Typical query (e.g., sparse/dense vector?)

» Typically not reusable in other domains
Hence, hard to find a NAM specific to our setup
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Indexing non-metric spaces — specific NAM

» Example — LB_Keogh for constrained DTW
[Keogh et al, 2006]
Lower-bounding distance, metric and cheap to compute O(n)

Envelope W=(DTW_U, DTW_L) created for a time series S

D-I-W_UI - maX(Si_R . Si+R)’
DTW_L, = min(Si;: S,.0). o

R is the thickness of Sakoe-Chiba band

=
S
| ’ r e . T T
|| R ((];-'_DIW _Oa’)i VﬂQf}DIH_Df — g =
LB Keoghy (O,W) = |Z (q, —DITW L) ifq,<DITW L, R =R
| 5= O -
: 0 otherwise g S
DTW_U ©
/ w &8
—MNM °8
n C
O C
hS % CE)
query X £5
DTW_L =0
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Indexing non-metric spaces — specific NAM

» Example — LB_Keogh for constrained DTW

» Basic approach — filter & refine search
Sequential search under LB_Keogh
Check remaining candidates by DTW

» Extended approach — wedges
= descriptors of multiple series

Wedge W = (U, L), U; = max(Cy;, ..., Cy), L; = min(Cy;, ..., Cy)
W = k-dimensional rectangle, let’s index it by, e.g., R-tree

For constrained DTW, W must be inflated as for singIDeTH/mUe series,

.e.,

ICDE 2011, Hannover, Germany
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Indexing non-metric spaces — specific NAM

» Example — inverted file and cosine similarity

bt ty
. . /dl 0.6 © 03
» Used as an implementation i o o o1
of range query in vector model .
of information retrieval |
documents d;, terms t; | d 02 05.. 03
term-by-document matrix \_ Y,

— weights of terms in documents

» Only efficient for cosine similarity (or inner product)
and sparse query vector
CosSim(dj, q) =

CosSim = (normed) sum of weight
multiplications dj-q Z Wy wig)

d;||7| \/Z_lwa"z_lwfq‘
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Indexing non-metric spaces — specific NAM

» Example — inverted file and cosine similarity

» Efficient query processing
Visit only lists of terms having nonzero weights in query
Early termination provided when lists sorted wrt the weights

mountai forest
Cd™0%

1

d

2

d;

o

0.6 0 ...
O O ..
0.2 0.5 ...

nature
0.2

0.1

0.3

~

J

Query: <0, 0.5, 0.4>, similarity threshold = 0.05,
inner product used
d; sorted wrt the weights (desc.)
mountain — d (0.6), d (0.2)
forest — d_(0.5)

Answer:
d,(0.37),

nature — d (0.3),d, (0.2), d,(0.1) d(0.08)

» Cannot apply to Euclidean distance (!)
zero + nonzero weight = nonzero (all lists must be visited)
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Indexing non-metric spaces

» Overview
of methods
for efficient
non-metric
search

» References
to the sections
of [Skopal &
Bustos, 2011]

mapping

general NAMs

specific NAMs

~ = s Q
o £ 3 S 3
g g E 8« - -
N R ] o @ =3 e -
S5 | £ S T g 58 = 7 &
g 8 &5 LR & @ 5 8 w2
Method o8 | 5 B £ & 85 < 3
Sequential scan Gen Exact Dynamic Both Requires no index n/a
CSE Gen Exact Static Main-mem. | Requires O(n®) | 4.5.2
space
TriGen Gen. Approx Static Main-mem. Simplifies the prob- 4.5.3
lem to metric case
Embeddings into Gen. Approx Static Main-mem. Simplifies the prob- 4.5.4
vector spaces lem to L, space
Fuzzy logic Gen. Approx Statie Main-mem. Provides transitive | 4.5.5
inequality, not im-
plemented yet
NM-tree Gen. Approx Dynamic Persistent Based on M-tree, 4.6.1
uses TriGen
QIC-M-Tree Gen. Exact Dynamic Persistent Based on M-tree, 4.6.2
requires user-defined
metric lower bound
distance
LCE Gen. Approx. Statie Main-mem. Exact only for | 4.6.3
database objects
Classification Gen. Approx. Statie Main-mem. Requires cluster | 4.6.4
analysis, limited
scalability
Combinatorial Gen. Approx. Static Main-mem. No implementation 4.6.5
approach yvet, only for NN
search. Exact for
large enough D.
Inverted file Spec. Exact Dynamic Persistent Cosine measure 4.7.2
IGrid Spec. Exact Static Main-mem. Specific L,-like dis- 4.7.3
tance
GEMINI(LB-Keogh) Spec. | Exact Both Main-mem. | Uses lower bound | 4.7.4
distances
FASTA/BLAST Spec. Approx. Dynamie Main-mem. Approximate align- 4.7.5

ment
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Challenges to the future

» scalability

mostly sequential scan nowadays, but the databases grow and get
more complex, hence, indexing would be necessary

» indexabllity

how to measure indexability of nonmetric spaces?
» implementation specificity

specific vs. general NAMs
» efficiency vs. effectiveness

slower exact vs. faster approximate search

» extensibility

there exist other related aggregation/scoring (non-metric)
concepts, to which non-metric indexing could contribute

ICDE 2011, Hannover, Germany



Thank you for your attention!

... questions?
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