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Mhulti-metric Spaces Computing the weights
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Linear mult-metrc M’-tree: index structure for fast retrieval
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bound to any query distance (for which

the weights are lower than 1).
No structural changes to M-tree are
needed [3].

Advantage:

Single index is sufficient to use query-
weighted distances.

Disadvantage:

The indexing upper-bound distance is
not very tight with respect to small
weights. In such cases the querying per-
formance deteriorates.

tances we are able to establish much
tighter upper bounds to the query dis- R ground entry
tances. Moreover, the tightness of the to-parent distance in M°-tree leaf node
. upper bound is no more weight-dependent. component signature
- The construction is not modified, we must
~ just adjust the M-tree insertion and splitting
routines to keep the partial components
up-to-date.

Modified query algorithm is presented
(proceedings).

Query processing

The query algorithms use upper/lower bounds to the actual query
distance. The filtering makes use of overlap check whether the
“overscaled” region radii intersect the query ball. The second filter-
ing method makes use of the to-parent distances.

The tightened upper/lower bounds are utilized in all the original fil- 9 9
tering checks, i.e. in the basic filtering as well as the parent filter- r. [0l
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The main improvements are observed by using the (almost pre- W=0275 )
cise) to-parent distances. The usage is radii components is bene- - (b)
ficial as well, however, due to “region nesting” the upper bound
radius could not be as tight as the to-parent distances.
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