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Example of a simple combination of two dif-
ferent metrics.
Each metric alone retrieves some relevant
objects but also some . By using a

, the similarity search
retrieves only relevant objects.

false hits
combined metric

Better improvements in the effectiveness of the similarity
search are achievable by using more metrics and different
weights for each one (fixed weights with low (0), medium (1) or
high (2) values). By testing all possible weight sets, it is possible
to find the optimal one. The precision vs. recall diagram shows
that the best improves consider-
ably the effectiveness of the search compared with the best sin-
gle metric [1].

However, static combinations have some disadvantages:
The best weight set is highly dependent, it is expen-
sive to compute (testing all possibilities), and we observed that
depending on the query object the best set of weights to use
was different. Thus, we proposed a method to compute

depending on the [2], which
leads to the concept of multi-metric space.

fix-weighted combination

dynamic weights query object

database-

I. Perform k-NN in
training dataset

II. Entropy impurity

III. Weights

Three objects belong to the blue
class and two objects belong to
the red class.

The entropy impurity of metric is
equal to 0 if all objects belong to the
same class, and has a maximum
value (log( )) if each object belongs to
a different class.
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The weight is 0 if the metric has
maximum entropy impurity,
and is 1 if the metric has
entropy impurity equal to 0.

R-precision values

Computing the weights

Adapted M-tree:
The 1-weighed combination is used a

. Since the weights
are maximal, the distance is an upper-
bound to any query distance for which
the weights

s
the index distance

(
are lower than 1).

No structural changes to M-tree are
needed [3].

Single index is sufficient to use query-
weighted distances.

The indexing upper-bound distance is
not very tight with respect to small
weights. In such cases the querying per-
formance deteriorates.

Advantage:

Disadvantage:

M -tree:
3

The adapted M-tree is further extended
such that partial distances or radii are
stored separately. To achieve compact rep-
resentation, the distance/radii components
are stored as signatures.Due to partial dis-
tances we are able to establish much
tighter upper bounds to the query dis-
tances. Moreover, the tightness of the
upper bound is no more weight-dependent.
The construction is not modified, we must
just adjust the M-tree insertion and splitting
routines to keep the partial components
up-to-date.

Modified query is presented
(proceedings).

algorithm

M -tree: index structure for fast retrieval
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Linear multi-metric:

Query processing
The query algorithms use upper/lower bounds to the actual query
distance. The filtering makes use of overlap check whether the
“overscaled” region radii intersect the query ball. The second filter-
ing method makes use of the to-parent distances.

The tightened upper/lower bounds are utilized in all the original fil-
tering checks, i.e. in the basic filtering as well as the parent filter-
ing.

The main improvements are observed by using the (almost pre-
cise) to-parent distances. The usage is radii components is bene-
ficial as well, however, due to “region nesting” the upper bound
radius could not be as tight as the to-parent distances.
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