
Canonicalisation of Monotone SPARQL Queries
(Extended Version)

Jaime Salas and Aidan Hogan

IMFD Chile & Department of Computer Science, University of Chile

Abstract. Caching in the context of expressive query languages such as
SPARQL is complicated by the difficulty of detecting equivalent queries:
deciding if two conjunctive queries are equivalent is NP-complete, where
adding further query features makes the problem undecidable. Despite
this complexity, in this paper we propose an algorithm that performs syn-
tactic canonicalisation of SPARQL queries such that the answers for the
canonicalised query will not change versus the original. We can guar-
antee that the canonicalisation of two queries within a core fragment
of SPARQL (monotone queries with select, project, join and union) is
equal if and only if the two queries are equivalent; we also support other
SPARQL features but with a weaker soundness guarantee: that the (par-
tially) canonicalised query is equivalent to the input query. Despite the
fact that canonicalisation must be harder than the equivalence problem,
we show the algorithm to be practical for real-world queries taken from
SPARQL endpoint logs, and further show that it detects more equiv-
alent queries than when compared with purely syntactic methods. We
also present the results of experiments over synthetic queries designed to
stress-test the canonicalisation method, highlighting difficult cases.

1 Introduction

SPARQL endpoints often encounter performance problems in practice: in a sur-
vey of hundreds of public SPARQL endpoints, Buil-Aranda et al. [2] found
that many such services have mixed reliability and performance, often return-
ing errors, timeouts or partial results. This is not surprising: SPARQL is an
expressive query language that encapsulates and extends the relational algebra,
where even the simplified decision problem of verifying if a given solution is con-
tained in the answers of a given SPARQL query for a given database is known
to be PSpace-complete [18] (combined complexity). Furthermore, evaluating
SPARQL queries may involve an exponential number of (intermediate) results.
Hence, rather than aiming to efficiently support all queries over all database
instances for all users, the goal is rather to continuously improve performance:
to increase the throughput of the most common types of queries answered.

An obvious means by which to increase throughput of query processing is to
re-use work done for previous queries when answering future queries by caching
results. In the context of caching for SPARQL, however, there are some signif-
icant complications. While many engines may apply low-level caches to avoid,

2

e.g., repeated index accesses, generating answers from such data can still require
a lot of higher-level query processing. On the other hand, caching at the level
of queries or subqueries is greatly complicated by the fact that a given abstract
query can be expressed in myriad equivalent ways in SPARQL.

Addressing the latter challenge, in this paper we propose a method by which
SPARQL queries can be canonicalised, where the canonicalised version of two
queries Q1 and Q2 will be (syntactically) identical if Q1 and Q2 are equivalent :
having the same results for any dataset. Furthermore, we say that two queries Q1

and Q2 are congruent if and only if they are equivalent modulo variable names,
meaning we can rewrite the variables of Q2 in a one-to-one manner to generate a
query equivalent to Q1; our proposed canonicalisation method then aims to give
the same output for queries Q1 and Q2 if and only if they are congruent, which
will allow us to find additional queries useful for applications such as caching.

Example 1. Consider two queries QA and QB asking for names of aunts:

SELECT DISTINCT ?z WHERE {
?x :sister ?y . ?y :name ?z .
{ ?w :mother ?x . }
UNION { ?w :father ?x. } }

SELECT DISTINCT ?n WHERE {
{ ?a :name ?n . ?c :mother ?p . ?p :sister ?a . }
UNION
{ ?a :name ?n . ?c :father ?p . ?p :sister ?a . } }

Both queries are congruent: if we rewrite the variable ?n to ?z in QB , then both
queries are equivalent and will return the same results for any RDF dataset.
Canonicalisation aims to rewrite both queries to the same syntactic form. ut

Our main use-case for canonicalisation is to improve caching for SPARQL
endpoints: by capturing knowledge about query congruence, canonicalisation can
increase the hit rate for a cache of (sub-)queries [17]. Furthermore, canonicali-
sation may be useful for analysis of SPARQL logs: finding repeated/congruent
queries without pair-wise equivalence checks; query processing : where optimisa-
tions can be applied over canonical/normal forms; and so forth.

A fundamental challenge for canonicalising SPARQL queries is the high com-
putational complexity that it entails. More specifically, the query equivalence
problem takes two queries Q1 and Q2 and returns true if and only if they return
the same answers for any database instance. In the case of SPARQL, this prob-
lem is NP-complete even when simply permitting joins (conjunctive queries).
Even worse, the problem becomes undecidable when features such as projection
and optional matches are combined [19]. Canonicalisation is then at least as
hard as the equivalence problem, meaning it will likewise be intractable for even
simple fragments and undecidable when considering the full SPARQL language.

We thus propose a canonicalisation procedure that does not change the se-
mantics of an input query (i.e., is correct) but may miss congruent queries (i.e.,
is incomplete) for certain features. We deem such guarantees to be sufficient
for use-cases where completeness is not a strong requirement, as in the case
of caching where missing a congruent query will require re-executing the query
(which would have to be done in any case). For monotone queries [20] in a core
SPARQL fragment, we provide both correctness and completeness guarantees.

The procedure we propose is based on first converting SPARQL queries to a
graph-based (RDF) algebraic representation. We then initially apply canonical

3

labelling to the graph to consistently name variables, thereafter converting the
graph back to a SPARQL query following a fixed syntactic ordering. The result-
ing query then represents the output of a baseline canonicalisation procedure for
SPARQL. To support further SPARQL features such as UNION, we extend this
procedure by applying normal forms and minimisation over the intermediate al-
gebraic graph prior to its canonicalisation. Currently we focus on canonicalising
SELECT queries from SPARQL 1.0. However, our canonicalisation techniques can
be extended to other types of queries (ASK, CONSTRUCT, DESCRIBE) as well as the
extended features of SPARQL 1.1 (including aggregation, property paths, etc.)
while maintaining correctness guarantees; this is left to future work.

Extended version: This extended version provides additional definitions, proofs
and results in the Appendix.

2 Preliminaries

RDF: We first introduce the RDF data model, as well as notions of isomorphism
and equivalence relevant to the canonicalisation procedure discussed later.

Terms and Graphs RDF assumes three pairwise disjoint sets of terms: IRIs: I,
literals L and blank nodes B. An RDF triple (s, p, o) is composed of three terms
– called subject, predicate and object – where s ∈ IB, p ∈ I and o ∈ ILB.1 A
finite set of RDF triples is called an RDF graph G ⊆ IB× I× IBL.

Isomorphism Blank nodes are defined as existential variables [11] where two
RDF graphs differing only in blank node labels are thus considered isomor-
phic [8]. Formally, let µ : IBL→ IBL denote a mapping of RDF terms to RDF
terms such that µ is the identity on IL (µ(x) = x for all x ∈ IL); we call µ
a blank node mapping ; if µ maps blank nodes to blank nodes in a one-to-one
manner, we call it a blank node bijection. Let µ(G) denote the image of an RDF
graph G under µ (applying µ to each term in G). Two RDF graphs G1 and G2

are defined as isomorphic – denoted G1
∼= G2 – if and only if there exists a blank

node bijection µ such that µ(G1) = G2. Given two RDF graphs, the problem of
determining if they are isomorphic is GI-complete [12], meaning the problem is
in the same complexity class as the standard graph isomorphism problem.

Equivalence The equivalence relation captures the idea that two RDF graphs
entail each other [11]. Two RDF graphs G1 and G2 are equivalent – denoted
G1 ≡ G2 – if and only if there exists two blank node mappings µ1 and µ2

such that µ1(G1) ⊆ G2 and µ2(G2) ⊆ G1 [9]. A graph may be equivalent to
a smaller graph (due to redundancy). We thus say that an RDF graph G is
lean if it does not have a proper subset G′ ⊂ G such that G ≡ G′; otherwise
we can say that it is non-lean. Furthermore, we can define the core of a graph
G as a lean graph G′ such that G ≡ G′; the core of a graph is known to be
unique modulo isomorphism [9]. Determining equivalence between RDF graphs
is known to be NP-complete [9]. Determining if a graph G is lean is known to

1 We use, e.g., IBL as a shortcut for I ∪B ∪ L.

4

be coNP-complete [9]. Finally, determining if a graph G′ is the core of a second
graph G is known to be DP-complete [9].

Graph canonicalisation Our method for canonicalising SPARQL queries in-
volves representing the query as an RDF graph, applying canonicalisation tech-
niques over that graph, and mapping the canonical graph back to a SPARQL
query. As such, our query canonicalisation method relies on an existing graph
canonicalisation framework for RDF graphs called Blabel [13]; this framework
offers a sound and complete method to canonicalise graphs with respect to iso-
morphism (iCan(G)) or equivalence (eCan(G)). Both methods have exponential
worst-case behaviour; as discussed, the underlying problems are intractable.

SPARQL: We now provide preliminaries for the SPARQL query language [10].
For brevity, our definitions focus on SPARQL monotone queries (mqs) [20] –
permitting selection (=,∧,∨)2, join, union and projection – for which we can
offer sound and complete canonicalisation.

Syntax Let V denote a set of query variables disjoint with IBL. We define the
abstract syntax of a SPARQL mq as follows:

1. A triple pattern t is a member of the set VIB×VI×VIBL (i.e., an RDF
triple allowing variables in any position). A triple pattern is a query pattern.

2. If both Q1 and Q2 are query patterns, then [Q1 andQ2], and [Q1 unionQ2]
are also query patterns.

3. If Q is a query pattern and V is a set of variables such that for all v ∈ V , v
appears in some triple pattern contained in Q, then selectV (Q) is a query.3

Blank nodes in SPARQL queries are considered to be non-distinguished query
variables where we will assume they have been replaced with fresh query vari-
ables. Per the final definition, we currently do not support subqueries and as-
sume, w.l.o.g., that all queries have a projection selectV (Q).

Algebra We will now define an algebra for such queries. A solution µ is a partial
mapping from variables in V appearing in the query to constants from IBL
appearing in the data. Let dom(µ) denote the variables for which µ is defined.
We say that two mappings µ1 and µ2 are compatible, denoted µ1 ∼ µ2, when
µ1(v) = µ2(v) for every v ∈ dom(µ1)∩ dom(µ2). Letting M , M1 and M2 denote
sets of solutions, we define the algebra as follows:

M1 ./ M2 := {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2, µ1 ∼ µ2}
M1 ∪M2 := {µ | µ ∈M1 or µ ∈M2}
πV (M) := {µ′ | ∃µ ∈M : µ′ ⊆ µ,dom(µ′) = V ∩ dom(µ)}

Union is defined here in the SPARQL fashion as a union of mappings, rather
than relational algebra union: the former can be applied over solution mappings
with different domains, while the latter does not allow this.

2 This is expressed by placing constants in triple patterns.
3 Note that SELECT * is equivalent to returning all variables (or omitting the feature).

5

Semantics Letting Q denote an mq pattern in the abstract syntax, we denote
the evaluation of Q over an RDF graph G as Q(G). Before defining Q(G), first let
t denote a triple pattern; then by V(t) we denote the set of variables appearing
in t and by µ(t) we denote the image of t under a solution µ. Finally, we can
define Q(G) recursively as follows:

t(G) := {µ | µ(t) ∈ G,dom(µ) = V(t)}
[Q1 andQ2](G) :=Q1(G) ./ Q2(G)

[Q1 unionQ2](G) :=Q1(G) ∪Q2(G)

selectV (Q)(G) :=πV (Q(G))

Set vs. Bag The previous definitions assume a set semantics for query answer-
ing, meaning that no duplicate mappings are returned as solutions [18]. However,
the SPARQL standard, by default, considers a bag (aka. multiset) semantics for
query answering [10], where the cardinality of a solution in the results captures
information about how many times the query pattern matched the underlying
dataset [1]. We thus use the extended syntax select∆V (Q), where ∆ = true
indicates set semantics and ∆ = false indicates bag semantics.

Containment and Equivalence Query containment asks: given two queries Q1

and Q2, does it hold that Q1(G) ⊆ Q2(G) for all possible RDF graphs G? If so,
we say that Q2 contains Q1, which we denote by the relation Q1 v Q2. On the
other hand, query equivalence asks, given two queries Q1 and Q2, does it hold
that Q1(G) = Q2(G) for all possible RDF graphs G? In other words, Q1 and Q2

are equivalent if and only if Q1 and Q2 contain each other. If so, we say that
Q1 ≡ Q2. In this paper, we relax the equivalence notion to ignore labelling of
variables; more formally, let ν : V → V be a one-to-one mapping of variables
and, slightly abusing notation, let ν(Q) denote the image of Q under ν (rewriting
variables in Q wrt. ν); we say that Q1 and Q2 are congruent (denoted Q1

∼= Q2)
if and only if there exists ν such that Q1 ≡ ν(Q2). An example of such query
congruence was provided in Example 1.

The complexity of query containment and equivalence vary from NP-complete
when just and is allowed (with triple patterns), upwards to undecidable once,
e.g., projection and optional matches are added [19]. For mqs, containment and
equivalence are NP-complete for the related query class of Unions of Conjunc-
tive Queries (ucqs) [20], which allow the same features as mqs but disallow joins
over unions. Interestingly, though mqs and ucqs are equivalent query classes –
i.e., for any ucq there is an equivalent mq and vice-versa – containment and
equivalence for mqs jumps to ΠP

2 -complete [20]. Intuitively this is because mqs
are more succinct than ucqs; for example, to find a path of length n where each
node is of type A or B, we can create an mq of size O(n), but it requires a ucq of
size O(2n). We consider mqs since real-world SPARQL queries may arbitrarily
nest joins and unions (canonicalisation will rewrite them to ucqs).

Most of the above results have been developed under set semantics. In terms
of bag semantics, we can consider an analogous containment problem: that the
answers of Q1 are a subbag of the answers of Q2, meaning that the multiplicity of

6

an answer in Q1 is always less-than-or-equals the multiplicity of the same answer
in Q2. In fact, the decidability of this problem remains an open question [5]; on
the other hand, the equivalence problem is GI-complete [5], and thus in fact
probably easier than the case for set semantics (assuming GI 6= NP): under bag
semantics, conjunctive queries cannot have redundancy, so intuitively speaking
we can test a form of isomorphism between the two queries.

3 Related Work

Various works have presented complexity results for query containment and
equivalence of SPARQL [25,24,6,15,19,14]. With respect to implementations,
only one dedicated library has been released to check whether or not two SPARQL
queries are equivalent: SPARQL Algebra [15]. The problem of determining equiv-
alence of SPARQL queries can, however, be solved by reductions to related
problems, where Chekol et al. [7] have used a µ-calculus solver and an XPath-
equivalence checker to implement SPARQL equivalence checks. Recently Saleem
et al. [23] compared these SPARQL query containment methods using a bench-
mark based on real-world query logs; we use these same logs in our evaluation.
These works do not deal with canonicalisation; using an equivalence checker
would require quadratic pairwise checks to determine all equivalences in a set or
stream of queries; hence they are impractical for a use-case such as caching.

To the best of our knowledge, little work has been done specifically on canon-
icalisation of SPARQL queries. In analyses of logs, some authors [3,22] have
proposed some syntactic canonicalisation methods – such as normalising whites-
pace or using a SPARQL library to format the query – that do manage to detect
some duplicates, but not more complex cases such as per Example 1. Rather
the most similar work to ours (to the best of our knowledge) is the SPARQL
caching system proposed by Papailiou et al. [17], which uses a canonical labelling
algorithm (specifically Bliss) to assign consistent labels to variables, allowing to
recall isomorphic graph patterns from the cache for SPARQL queries. However,
their work does not consider factoring out redundancy caused by query oper-
ators (aka. minimisation), and hence they would not capture equivalences as
in the case of Example 1. In general, our work focuses on canonicalisation of
queries whereas the work of Papailiou et al. [17] is rather focused on caching;
compared to them we capture a much broader notion of query equivalence than
their approach based solely on canonical labelling of query variables. It is worth
noting that we are not aware of similar methods for canonicalising SQL queries.

4 Query Canonicalisation

Our approach for canonicalising SPARQL mqs involves representing the query
as an RDF graph, performing a canonicalisation of the RDF graph (including
the application of algebraic rewritings, minimisation and canonical labelling),
ultimately mapping the resulting graph back to a final canonical SPARQL ucq.

7

4.1 Representational Graph for UCQs

The mq class is closed under join and union (see QA, Example 1). As the
first query normalisation step, we will convert mq queries to ucqs of the form
select∆V (union({and({Q1

1, . . . Q
1
m}), . . . , and({Qk1 , . . . Qkn})})) following a standard

DNF-style expansion (we refer to Appendix A for more details). The output
ucq may be exponential in size. Thereafter, given such a ucq, we define its
representational graph (or r-graph for short) as follows.

Definition 1. Let β() denote a function that returns a fresh blank node and β(x)
a function that returns a blank node unique to x. Let ι(·) denote an id function
such that if x ∈ IL, then ι(x) = x; otherwise if x ∈ VB, then ι(x) = β(x).
Finally, let Q be a ucq; we define r(Q), the r-graph of Q, as follows:

– If Q is a triple pattern (s, p, o), then ι(Q) is set as β() and
r(Q) = {(ι(Q), :s, ι(s)), (ι(Q), :p, ι(p)), (ι(Q), :o, ι(o)), (ι(Q), a, :TP)}

– If Q is and({Q1, . . . , Qn}), then ι(Q) is set as β() and
r(Q) = {(ι(Q), :arg, ι(Q1)), . . . , (ι(Q), :arg, ι(Qn)), (ι(Q), a, :And)}

∪r(Q1) ∪ ... ∪ r(Qn)
– If Q is union({Q1, . . . , Qn}), then ι(Q) is set as β() and

r(Q) = {(ι(Q), :arg, ι(Q1)), . . . , (ι(Q), :arg, ι(Qn)), (ι(Q), a, :Union)}
∪r(Q1) ∪ ... ∪ r(Qn)

– If Q is select∆V (Q1), then ι(Q) is set as β() and
r(Q) = {(ι(Q), :arg, ι(Q1)), (ι(Q), :distinct, ∆), (ι(Q), a, :Select)}

∪ {(ι(Q), :var, ι(v)) | v ∈ V } ∪ r(Q1)

where “a” abbreviates rdf:type and ∆ is a boolean datatype literal. ut

Example 2. Here we provide an example of the r-graph for query QA and QB in
Example 1: the r-graph has the same structure for both queries assuming that
a ucq normal form is applied beforehand (to QA in particular). For clarity, we
embed the types of nodes into the nodes themselves; e.g., the uppermost node
expands to :u1 :Unionrdf:type .

:t1

:TP
:mother:p

:vw
:s

:vx
:o

:t2

:TP

:s

:o

:father :p

:t3

:TP

:s

:sister:p

:vy
:o

:t5

:TP

:s

:p

:o

:t4

:TP

:s

:name:p

:vz
:o

:a1

:And

:arg

:arg

:arg

:t6

:TP

:s

:o

:p

:a2

:And

:arg

:arg

:arg

:u1

:Union

:arg :arg

:s

:Select

:arg

:var

true

:distinct

8

Due to the application of ucq normal forms, we have a projection, over a union,
over a set of joins, where each join involves one or more triple patterns. ut

We also define the inverse r−(r(Q)), mapping an r-graph back to a ucq
query, such that r−(r(Q)) is congruent to the Q (see Appendix B).

4.2 Projection with union

Unlike the relational algebra, SPARQL mqs allow unions of query patterns whose
sets of variables are not equal. This may give rise to existential variables, which
in turn can lead to further equivalences that must be considered [20].

Example 3. Returning to Example 1, consider a queryQC ≡ QB , a minor variant
of QB using different non-projected variables in the union:

SELECT DISTINCT ?n WHERE { { ?a :name ?n . ?c :mother ?m . ?m :sister ?a . }
UNION { ?a :name ?n . ?c :father ?f . ?f :sister ?a . } }

Such unions are permitted in SPARQL. Likewise we could rename both occur-
rences of ?a on the left of the union in QC without changing the solutions since
?a is not projected. Any correspondences between non-projected variables across
a union are thus syntactic and do not affect the semantics of the query. ut

We thus distinguish the blank node representing every non-projected variable
in each cq of the r-graph produced previously. Letting G denote r(Q), we define
the cq roots of G as cq(G) = {y | (y, a, :And) ∈ G}. Given a term r and a
graph G, we define G[r] as the sub-graph of G rooted in r, defined recursively
as G[r]0 = {(s, p, o) ∈ G | s = r}, G[r]i = {(s, p, o) ∈ G | ∃x, y : (x, y, s) ∈
G[r]i−1} ∪G[r]i−1, with G[r] = G[r]n such that G[r]n = G[r]n+1 (the fixpoint).

We denote the blank nodes representing variables in G by var(G) = {v ∈ B |
∃(s, p) : (s, p, v) ∈ G∧p ∈ {:s, :p, :o}}, and we denote the blank nodes represent-
ing unprojected variables in G by uvar(G) = {v ∈ var(G) |6 ∃s : (s, :var, v) ∈ G}.
Finally we denote the blank nodes representing projected variables in G by
pvar(G) = var(G) \ uvar(G). We can now define how variables are distinguished.

Definition 2. Let G denote r(Q) for a ucq Q. We define the variable distin-
guishing function d(G) as follows. If there does not exist a blank node x such
that (x, a, :Union) ∈ G, then d(G) = G. Otherwise if such a blank node exists,
we define d(G) = {(s, p, δ(o)) | (s, p, o) ∈ G}, where δ(o) = o if o 6∈ uvar(G);
otherwise δ(o) = β(r, o) such that r ∈ cq(G) and (s, p, o) ∈ G[r]. ut

In other words, d(G) creates a fresh blank node for each non-projected vari-
able appearing in the representation of a cq in G as previously motivated.

4.3 Minimisation

Under set semantics, ucqs may contain redundancy whereby, for the purposes
of canonicalisation, we will apply minimisation to remove redundant triple pat-
terns while maintaining query equivalence. After applying ucq normalisation,

9

the r-graph now represents a ucq of the form (Q,V) := (Q1∪ . . .∪Qn, V), with
each Q1, . . . , Qn being a cq and V being the set of projected variables. Under set
semantics, we then first remove intra-cq redundancy from the individual cqs;
thereafter we remove inter-cq redundancy from the overall ucq.

Bag semantics We briefly note that if projection with bag semantics is selected,
the ucq can only contain one (syntactic) form of redundancy: exact duplicate
triple patterns in the same cq. Any other form of redundancy mentioned pre-
viously – be it intra-cq or inter-cq redundancy – will affect the multiplicity of
results [5]. Hence if bag semantics is selected, we do not apply any redundancy
elimination other than removing duplicate triple patterns in cqs.

Set-semantics/CQs We now minimise the individual cqs of the r-graph by
computing the core of the sub-graph induced by each cq independently. But
before computing the core, we must ground projected variables to avoid their re-
moval during minimisation. Along these lines, letG denote an r-graph d(r(Q)) of
Q. We define the grounding of projected variables as follows: L(G) = {(s, p, λ(o)) |
(s, p, o) ∈ G}, where if o denotes a projected variable, λ(o) = :o for :o a fresh
IRI computed for o; otherwise λ(o) = o. We assume for brevity that variable IRIs
created by λ can be distinguished from other IRIs. Finally, let core(G) denote
the core of G. We can then minimise each cq as follows.

Definition 3. Let G denote d(r(Q)). We define the cq-minimisation of G as
c(G) = {core(L(G[x])) | x ∈ cq(G)}. We call C ∈ c(G) a CQ core. ut

Example 4. Consider the following query, QD:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x. ?x :sister ?y . }

UNION { ?c :mother ?d . ?d :sister ?y . }
?d ?p ?e . ?e :name ?f . ?x :sister ?y . ?y :name ?z }

This query is congruent to the previous queries QA, QB , QC . After applying
ucq normal forms, we end up with the following r-graph for QD:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?d1 ?p1 ?e1 . ?e1 :name ?f1 .

?x1 :sister ?y1 . ?y1 :name ?z . }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 . ?d2 ?p2 ?e2 .
?e2 :name ?f2 . ?x2 :sister ?y2 . ?y2 :name ?z . }

UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?d3 ?p3 ?e3 .
?e3 :name ?f3 . ?x3 :sister ?y3 . ?y3 :name ?z . } }

We then replace the blank node for the projected variable ?z with a fresh IRI,
and compute the core of the sub-graph for each cq (the graph induced by the
cq node with type :And and any node reachable from that node in the directed
r-graph). Figure 1 depicts the sub-r-graph representing the third cq (omitting
the :And-typed root node for clarity since it will not affect computing the core).
The dashed sub-graph will be removed from the core per the map: { :vx3/ :vd3,
:t35/ :t32, :t33/ :t32, :vp3/:sister, :ve3/ :vy3, :t34/ :t36, :vf3/:vz,
. . .}, with the other nodes mapped to themselves. Observe that the projected
variable :vz is now an IRI, and hence it cannot be removed from the graph.

10

:t31

:TP
:mother :p

:vc3
:s

:vd3
:o

:t32

:TP

:s

:sister :p

:vy3
:o

:t36

:TP

:s

:name :p

:vz
:o

:t35

:TP
:o

:p

:vx3
:s

:t33

:TP

:s

:vp3:p

:ve3
:o

:t34

:TP

:s

:p

:vf3
:o

Fig. 1. r-graph of a cq showing minimisation by leaning

If we consider applying this core computation over all three conjunctive
queries, we would end up with an r-graph corresponding to the following query:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?y3 :name ?z . } }

We see that the projected variable is preserved in all cqs. However, we are still
left with (inter-cq) redundancy between the first and third cqs. ut

Set semantics/UCQs After minimising individual cqs, we may still be left with
a union containing redundant cqs as highlighted by Example 4. Hence we must
now apply a higher-level minimisation of redundant cqs. While it may be tempt-
ing to simply compute the core of the entire r-graph – as would work for Ex-
ample 4 and, indeed, as would also work for unions in the relational algebra –
unfortunately SPARQL union again raises some non-trivial complications [20].

Example 5. Consider the following (unusual) query:

SELECT DISTINCT ?n WHERE { { ?m :cousin ?n . } UNION { ?x ?y ?n . } }

If we were to compute the core over the r-graph for the entire ucq, we would
remove the second cq as follows:

:t11

:TP
:cousin:p

:vm1
:s

:vn
:o

:t21

:TP

:o

:vy2 :p

:vx2
:s

:u1

:Union

:arg :arg

:s

:Select
:var

true

:distinct

This would leave us with the following query:

SELECT DISTINCT ?n WHERE { ?m :cousin ?n . }

11

But this has changed the query semantics where we lose non-cousin values. ut

Instead, we must check containment between pairs of cqs [20]. Let (Q,V) :=
(Q1 ∪ . . . ∪Qn, V) denote the ucq under analysis. We need to remove from Q:

1. all Qi (1 ≤ i ≤ n) such that there exists Qj (1 ≤ j < i ≤ n) such that
selectV (Qi) ≡ selectV (Qj); and

2. all Qi (1 ≤ i ≤ n) where there exists Qj (1 ≤ j ≤ n) such that selectV (Qi) @
selectV (Qj) (i.e., proper containment where selectV (Qi) 6≡ selectV (Qj));

The former condition removes all but one cq from each group of equivalent
cqs while the latter condition removes all cqs that are properly contained in
another cq. With respect to SPARQL union, note that these definitions apply
to cases where cqs have different variables. More explicitly, let V1, . . . , Vn de-
note the projected variables appearing in Q1, . . . , Qn, respectively. Observe that
selectVi

(Qi) v selectVj
(Qj) can only hold if Vi = Vj : assume without loss of

generality that v ∈ Vi \Vj , where v must then generate unbounds in Vj , creating
a mapping µ, v ∈ dom(µ), that can never appear in Vi.

4

To implement condition (1), let us first assume that all cqs contain all projec-
tion variables such that no unbounds can be returned. Note that in the previous
step we have computed the cores of cqs in c(G) and hence it is sufficient to
check for isomorphism between them; we can thus take the current r-graph Gi
for each Qi and apply iso-canonicalisation of Gi [13], removing any other Qj
(j > i) whose Gj is isomorphic. Thereafter, to implement condition (2), we can
check if if there exists a blank node mapping µ such that µ(Gj) ⊆ Gi, for i 6= j
(which is equivalent to checking simple entailment : Gi |= Gj [9]).

Now we drop the assumption that all cqs contain all variables in V , mean-
ing that we can generate unbounds. To resolve such cases, we can partition
{Q1, . . . , Qn} into various sets of cqs based on the projected variables they
contain, and then apply equivalence and containment checks in each part.

Definition 4. Let c(G) = {C1, . . . , Cn} denote the cq cores of G = d(r(Q)). A
cq core Ci is in e(G) iff Ci ∈ c(G) and there does not exist a cq core Cj ∈ c(G)
(i 6= j) such that: pvar(Ci) = pvar(Cj); and Ci ∼= Cj with j < i or Cj |= Ci. ut

Definition 5. Let e(G) = {C1, . . . , Cn} denote the minimal cq cores of G =
d(r(Q)). Let P = {(s, p, o) ∈ G | ∃(s, a, :Select) ∈ G} and U = {(s, p, o) ∈
G | ∃(s, a, :Union) ∈ G, and p = :arg implies ∃C ∈ e(G) : {o} = cq(C)}. We
define the minimisation of G as m(G) =

⋃
G′∈e(G) L

−(G′)∪P ∪U , where L−(G′)
denotes the replacement of variable IRIs with their original blank nodes. ut

The result is an r-graph representing a redundancy-free ucq.

4 We assume that cqs without variables may generate an empty mapping ({µ} with
dom(µ) = ∅) if the cq is contained in the data, or no mapping ({}) otherwise. This
means we will not remove such cqs (unless they are precisely equal to another cq)
as they will generate a tuple of unbounds in the results if and only if the data match.

12

4.4 Canonical labelling and query generation

We take the minimal r-graph e(G) generated by the previous methods and
apply the iso-canonicalisation method iCan(e(G)) to generate canonical labels
for the blank nodes in e(G); having normalised the ucq algebra and removed
redundancy, applying this process will finally abstract away the naming of vari-
ables in the original query from the r-graph. Then we are left to map from the
r-graph back to a query, which we do by applying r−(iCan(e(G))); in r−(·),
we order triple patterns in CQs, CQs in UCQs and variables in the projection
lexicographically. The result is the final canonicalised ucq in SPARQL syntax.
Soundness and completeness results for mqs are given in Appendix D.

4.5 Other features

We can represent other (non-mq) features of SPARQL (e.g., filters, optional,
etc.) as an r-graph in an analogous manner to that presented here; thereafter,
we can apply canonical labelling over that graph without affecting the semantics
of the underlying query. However, we must be cautious with ucq rewriting and
minimisation techniques. Currently in queries with non-ucq features, we detect
subqueries that are ucqs (i.e., use only join and union) and apply normalisation
only on those ucq subqueries considering any variable also used outside the ucq
as a virtual projected variable. Combined with canonical labelling, this provides
a cautious (i.e., sound but incomplete) canonicalisation of non-mq queries.

4.6 Implementation

We implement the described canonicalisation procedure using two main libraries:
Jena for parsing and executing SPARQL queries; and Blabel for computing the
core of RDF graphs and applying canonical labelling. The containment checks
over cqs are implemented using SPARQL ASK queries (with Jena). In the fol-
lowing, we refer to our system as QCan: Query Canonicalisation. Source code is
available at https://github.com/RittoShadow/QCan, while a simple online demo
can be found at http://qcan.dcc.uchile.cl/.

5 Evaluation

We now evaluate the proposed canonicalisation procedure for monotone SPARQL
queries. In particular, the main research questions to be empirically assessed are
as follows. RQ1: How is the performance of canonicalisation? RQ2: How many
additional duplicate queries can the canonicalisation process expect to find versus
baseline syntactic methods in a real-world setting? To address these questions, we
present two experimental settings. In the first setting, we apply our canonicalisa-
tion method over queries from the Linked SPARQL Queries (LSQ) dataset [22],
which contains queries taken from the logs of four public SPARQL endpoints.
In the second setting, we create a benchmark of more difficult synthetic queries
designed to stress-test the process. All experiments were run on a single machine
with two Intel Xeon E5-2609 V3 CPUs and 32GB of RAM running Debian v.7.11.

https://github.com/RittoShadow/QCan
http://qcan.dcc.uchile.cl/

13

10−4 10−3 10−2 10−1 100

QCan-Full

QCan-Label

Syntactic

Time (s)

Fig. 2. Runtimes for LSQ queries

Table 1. High-level results for canonicalising
LSQ queries, including the total time taken
and (max) duplicates (D.) found

Algorithm Time (s) D. Max.D. Queries

Syntactic 211 3,960 12 768,618
QCan-Label 28,066 10,722 40 768,618
QCan-Full 77,022 10,722 40 768,618

5.1 Real-world setting

In the first setting, we perform experiments over queries from endpoint logs
taken from the LSQ dataset [22], where we extract the unique strings for SELECT
queries that could be parsed successfully by Jena (i.e., that were syntactically
valid), resulting in 768,618 queries (see Appendix E for more details). Over these
queries, we then apply three experiments for increasingly complete and expensive
canonicalisation, as follows. Syntactic: We pass the query through the Jena
SPARQL parser and serialiser, parsing the query into an abstract algebra and
then writing the algebraic query back to a SPARQL query. QCan-Label: We
parse the query, applying canonical labelling to the query variables and reorder-
ing triple patterns according to the order of the canonical labels. QCan-Full:
We apply the entire canonicalisation procedure, including parsing, labelling, ucq
rewriting, minimisation, etc. We can now address our research questions.

(RQ1:) Per Table 1, canonicalising with QCan-Label is 127 times slower
than the baseline Syntactic method, while QCan-Full is 365 times slower
than Syntactic and 2.7 times slower than QCan-Label; however, even for the
slowest method QCan-Full, the mean canonicalisation time per query is a rela-
tively modest 100 ms. In more detail, Figure 2 provides boxplots for the runtimes
over the queries; we see that most queries under the Syntactic canonicalisation
generally take around 0.1–0.3ms, while most queries under QCan-Label and
QCan-Full take 10–100 ms. We did, however, find queries requiring longer:
approximately 2.5 seconds in isolated worst cases for QCan-Full.

(RQ2:) Canonicalising with QCan-Label finds 2.7 times more duplicates
than the baseline Syntactic method. On the other hand, canonicalising with
QCan-Full finds no more duplicates than QCan-Label: we believe that this
observation can be explained by the relatively low ratio of true mq queries in the
logs, and the improbability of finding redundant patterns in real queries. The
largest set of duplicate queries found was 12 in the case of Syntactic and 40
in the case of QCan-Label and QCan-Full.

5.2 Synthetic setting

Many queries found in the LSQ dataset are quite simple to canonicalise. In or-
der to see how the proposed canonicalisation methods perform for more complex
queries, we propose two categories of synthetic query: the first category is de-
signed to test the canonicalisation of cqs, particularly the canonical labelling

14

10 20 30
10−1

101

103

k

T
im

e
(s

)

2D-Grid

2 4 6 8

102

103

104

k

3D-Grid

0 20 40

103.5

104

104.5

k

Miyazaki

Fig. 3. Runtimes for threes types of synthetic cqs

and intra-cq minimisation steps; the second category is designed to test the
canonicalisation of ucqs, particularly the ucq rewriting and inter-cq minimi-
sation steps. Both aim at testing performance rather than duplicates found.

Synthetic CQ setting In order to test the minimisation of cqs, we select diffi-
cult cases for the canonical labelling and core computation of graphs [13]. More
specifically, we select the following three (undirected) graph schemas:

2D grids: For k ≥ 2, the k-2D-grid contains k2 nodes, each with a coordinate
(x, y) ∈ N2

1...k, where nodes with distance one are connected; the result is a
graph with 2(k2 − k) edges.

3D grids: For k ≥ 2, the k-3D-grid contains k3 nodes, each with a coordinate
(x, y, z) ∈ N3

1...k, where nodes with distance one are connected; the result is
a graph with 3(k3 − k2) edges.

Miyazaki: This class of graphs was designed by Miyazaki [16] to enforce a worst-
case exponential behaviour in Nauty-style canonical labelling algorithms.
For k, each graph has 20k nodes and 30k edges.

To create cqs from these graphs, we represent each edge in the undirected
graph by a pair of triple patterns (vi, :p, vj), (vj , :p, vi), with vi, vj ∈ V and :p
a fixed IRI for all edges. In order to ensure that the canonicalisation involves cq
minimisation, we enclose the graph pattern in a SELECT DISTINCT v query, which
provides the most challenging case for canonicalisation: applying set semantics
and projecting (and thus “fixing”) a single query variable v. We then run the
Full canonicalisation feature, which for cqs involves computing the core of the
r-graph and applying canonical labelling. Note that under minimisation, 2D-
Grid and 3D-Grid graphs collapse down to a core with a single undirected
edge, while Miyazaki graphs collapse down to a core with a 3-cycle.

In Figure 3 we present the runtimes of the canonicalisation procedure, where
we highlight that the y-axis is presented in log scale. We see that instances of
2d-Grid for k ≤ 10 can be canonicalised in under a second. Beyond that, the
performance of canonicalisation lengthens to seconds, minutes and even hours.

Synthetic MQ setting We also performed tests creating mqs in CNF (joins of
unions) of the form (t1,1 ∪ . . . ∪ t1,n) .// (tm,1 ∪ . . . ∪ tm,n), where m is the
number of joins, n is the number of unions, and ti,j is a triple pattern sampled

15

(with replacement) from a k-clique of triples with a fixed predicate (such that
k = m + n) to stress-test the performance of the canonicalisation procedure,
where each such query will be rewritten to a query of size O(nm). Detailed
results are available in Appendix F; in summary, QCan-Full succeeds up to
m = 4, n = 8, taking about 7.4 hours, or m = 8, n = 2, taking 3 minutes; for
values of m = 8, n = 4 and beyond, canonicalisation fails.

6 Conclusions

This paper describes a method for canonicalising SPARQL (1.0) queries consid-
ering both set and bag semantics. This canonicalisation procedure – which is
sound for all queries and complete for monotone queries – obviates the need to
perform pairwise containment/equivalence checks in a list/stream of queries and
rather allows for using standard indexing techniques to find congruent queries.
The main use-cases we foresee are query caching, optimisation and log analysis.

Our method is based on (1) representing the SPARQL query as an RDF
graph, over which are applied (2) algebraic ucq rewritings, (3 – in the case of
set semantics) intra-cq and inter-cq normalisation, (4) canonical labelling of
variables and ordering of query syntax, before finally (5) converting the graph
back to a canonical SPARQL query. As such, by representing the query as a
graph, our method leverages existing graph canonicalisation frameworks [13].

Though the worst-case complexity of the algorithm is doubly-exponential,
experiments show that canonicalisation is feasible for a large collection of real-
world SPARQL queries taken from endpoint logs. Furthermore, we show that the
number of duplicates detected doubles over baseline syntactic methods. In more
challenging experiments involving synthetic settings, however, we quickly start
to encounter doubly-exponential behaviour, where the canonicalisation method
starts to reach its practical limits. Still, our experiments for real-world queries
suggests that such difficult cases do not arise often in practice.

In future work, we plan to extend our methods to consider other query fea-
tures of SPARQL (1.1), such as subqueries, property paths, negation, and so
forth; we also intend to investigate further into the popular OPTIONAL operator.

Acknowledgements The work was supported by the Millennium Institute for
Foundational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Angles, R., Gutierrez, C.: The multiset semantics of SPARQL patterns. In: Inter-
national Semantic Web Conference (ISWC). pp. 20–36. Springer (2016)

2. Aranda, C.B., Hogan, A., Umbrich, J., Vandenbussche, P.: SPARQL web-querying
infrastructure: Ready for action? In: International Semantic Web Conference
(ISWC). pp. 277–293 (2013)

3. Arias Gallego, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An
empirical study of real-world SPARQL queries. In: Usage Analysis and the Web of
Data (USEWOD) (2011)

16

4. Chandra, A.K., Merlin, P.M.: Optimal Implementation of Conjunctive Queries in
Relational Data Bases. In: ACM Symposium on Theory of Computing (STOC).
pp. 77–90 (1977)

5. Chaudhuri, S., Vardi, M.Y.: Optimization of Real Conjunctive Queries. In: Prin-
ciples of Database Systems (PODS). pp. 59–70. ACM Press (1993)

6. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query containment
under SHI axioms. In: AAAI Conference on Artificial Intelligence (2012)

7. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: Evaluating and benchmarking
SPARQL query containment solvers. In: International Semantic Web Conference
(ISWC). pp. 408–423. Springer (2013)

8. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
W3C Recommendation (Feb 2014), http://www.w3.org/TR/rdf11-concepts/

9. Gutierrez, C., Hurtado, C.A., Mendelzon, A.O., Pérez, J.: Foundations of Semantic
Web databases. J. Comput. Syst. Sci. 77(3), 520–541 (2011)

10. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C
Recommendation (Mar 2013), http://www.w3.org/TR/sparql11-query/

11. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 Semantics. W3C Recommendation (Feb
2014), http://www.w3.org/TR/rdf11-mt/

12. Hogan, A.: Skolemising Blank Nodes while Preserving Isomorphism. In: World
Wide Web Conference (WWW). pp. 430–440. ACM (2015)

13. Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: Algorithms
for leaning and labelling blank nodes. ACM TWeb 11(4) (2017)

14. Kaminski, M., Kostylev, E.V.: Beyond well-designed SPARQL. In: International
Conference on Database Theory (ICDT). pp. 5:1–5:18 (2016)

15. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries. ACM Trans. Database Syst. 38(4), 25:1–25:45 (2013)

16. Miyazaki, T.: The Complexity of McKay’s Canonical Labeling Algorithm. In:
Groups and Computation, II. pp. 239–256 (1997)

17. Papailiou, N., Tsoumakos, D., Karras, P., Koziris, N.: Graph-aware, workload-
adaptive SPARQL query caching. In: ACM SIGMOD International Conference on
Management of Data. pp. 1777–1792. ACM (2015)

18. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3) (2009)

19. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL.
In: Principles of Database Systems (PODS). pp. 39–50 (2014)

20. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the
union and difference operators. J. ACM 27(4), 633–655 (1980)

21. Salas, J., Hogan, A.: Canonicalisation of Monotone SPARQL Queries. Technical
Report, http://aidanhogan.com/qcan/extended.pdf

22. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: International Semantic Web Conference (ISWC)
(2015)

23. Saleem, M., Stadler, C., Mehmood, Q., Lehmann, J., Ngomo, A.N.: Sqcframe-
work: SPARQL query containment benchmark generation framework. In: Knowl-
edge Capture Conference (K-CAP). pp. 28:1–28:8 (2017)

24. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: International Conference on Database Theory (ICDT). pp. 4–33. ACM (2010)

25. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database rep-
resentations of RDF/S stores. In: International Semantic Web Conference (ISWC).
pp. 685–701 (2005)

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-mt/
http://aidanhogan.com/qcan/extended.pdf

17

A Algebra of UCQs and UCQ-normalisation of MQs

We first define the syntax of a ucq:

Definition 6. The syntax of a ucq query is as follows:

1. If {t1, . . . , tn} is a set of triple patterns (n ≥ 1), then and({t1, . . . , tn}) is a
query pattern called a conjunctive query (cq) pattern.

2. If {C1, . . . , Cn} is a bag of cq patterns (n ≥ 1), then union({C1, . . . , Cn})
is a (ucq) query pattern.

3. If Q is a ucq query pattern and V is a set of variables such that for all v ∈ V ,
v appears in some pattern contained in Q, then select∆V (Q) is a query. ut

If Q is a query in ucq syntax, we denote by Q(G) the evaluation of Q over
G, which we now define.

Definition 7. Letting Q be a query in ucq syntax and G an RDF graphs, then
the semantics of a ucq query is defined as follows:

t(G) := {µ | µ(t) ∈ G,dom(µ) = V(t)}
and({t})(G) := t(G)

and({t1, . . . , tn})(G) := t1(G) .// tn(G)

union({C1, . . . , Cn})(G) :=C1(G) ∪ . . . ∪ Cn(G)

select∆V (Q)(G) :=πV (Q(G))

where µ denotes a query solution, {t1, . . . , tn} denotes a set of triple patterns,
and {C1, . . . , Cn} denotes a bag of CQs, with each Ci (for 1 ≤ i ≤ n) being of
the form and(Ti), where Ti is a set of triple patterns. ut

As before, select∆V (Q) then allows to state whether or not the query should
be evaluated under set or bag semantics. In case that ∆ = false, then ∪ is defined
as bag-union, adding the multiplicity of repeated results.

The ucq syntax has the same expressivity as monotone queries: for every
monotone query Q, there is a ucq Q′ such that Q ≡ Q′ (follows from [18, Prop.
3.8]). While in practical systems queries are often expressed in the monotone
syntax (which can be more concise per Example 1), the ucq syntax is far more
restricted, which leads us closer to a semantically-equivalent normal form. Hence
we now describe a procedure to convert from a monotone query to a ucq query.

Definition 8. For an mq Q, we define the ucq rewriting of Q, denoted u(Q),
as follows:

1. If Q is a triple pattern t, then u(Q) = and({t}).
2. If Q is [Q1 andQ2], then u(Q) = u∗([u(Q1)andu(Q2)]).
3. If Q is [Q1 unionQ2], then u(Q) = u∗([u(Q1)unionu(Q2)]).
4. If Q is select∆V (Q′), then u(Q) = select∆V (u(Q′))

18

where, in turn, u∗(Q) is defined as follows (where T denotes a set of triple
patterns and C denotes a bag of CQs of the form {and(T1), . . . , and(Tn)}):

5. If Q is [and(T1)and and(T2)] then u∗(Q) = and(T1 ∪ T2).
6. If Q is [and(T)and union(C)] or [union(C)and and(T)]

then u∗(Q) = union({and(T ∪ T ′) | and(T ′) ∈ C}).
7. If Q is [union(C1)and union(C2)]

then u∗(Q) = union({and(T1 ∪ T2) | and(T1) ∈ C1 ∧ and(T2) ∈ C2}).
8. If Q is [union(C1)union union(C2)] then u∗(Q) = union(C1 ∪ C2).
9. If Q is [and(T)union union(C)] or [union(C)union and(T)]

then u∗(Q) = union({and(T)} ∪ C).
10. If Q is [and(T1)union and(T2)] then u∗(Q) = union({and(T1), and(T2)}).

In the case of bag semantics, for point (7), the multiplicity of and(T1 ∪ T2) is
given by C1(T1)×C2(T2), where C1(T1) and C2(T2) denote the multiplicities of
T1 and T2 in their respective bags; for (8) bag union is applied for C1∪C2 adding
multiplicities. Under set semantics, set union can be applied throughout. ut
Example 6. Referring back to Example 1, QB corresponds to an equivalent ver-
sion of QA in ucq normal form where we have a union over joins, but never a
join over unions. ut
Lemma 1. Given a monotone query Q, then Q ≡ u(Q).

Proof. By inspection on the rewriting steps of Definition 8: (1) and({t})(G) is
directly defined as t(G); (2) this is a recursive step, (3) this is a recursive step,
(4) the evaluation of projection does not change from mq to ucq. Regarding
the recursive steps (2,3), note that (5,8,9,10) follow from the commutativity and
associativity of joins and unions. Regarding (6,7) for set semantics, note that
(7) follows for set semantics from the normal form for SPARQL proved in [18,
Lemma 2.5], while (6) is a special sub-case of (7) with a (virtual) union of a
single CQ on one side. Regarding (6) for bag semantics, the multiplicities of join
solutions for SPARQL are defined as the sum of the product of the multiplicity of
the compatible solutions on both sides of the join generating that join solution [1],
which the defined multiplicity preserves; on the other hand, regarding (7) for bag
semantics, the multiplicities of SPARQL union are the sum of the multiplicities
of the solutions from both sides [1], which the defined multiplicity preserves.
Regarding recursive steps, the proof is concluded by induction on the structure
of the individual rewriting steps in Definition 8. ut

We highlight that given an mq Q, the ucq resulting from u(Q) can be expo-
nential in the number of (non-unique) triple patterns in the query. The worst case
is given by an input mq query of the form Q = [Q1 and [Q2 and [. . . andQm]]]
where, for 1 ≤ i ≤ m, Qi = [ti,1 union [ti,2 union [. . . union ti,n]]]. Note that the
number of non-unique triple patterns in Q is of the order O(m × n). However,
u(Q) expands to the ucq union({and({t1, . . . , tm}) | t1 ∈ Q1 ∧ ... ∧ tm ∈ Qm}).
With n ways to choose any of t1, . . . tm, this query contains nm triple patterns.
This is analogous to the exponential explosion of DNF rewritings.

Please note that for brevity, the body of the paper assumes that Q has been
written to u(Q) as a prior step (i.e., the u(·) is left implicit).

19

B Inverse Mapping from an R-graph

We now define the inverse mapping of an r-graph to a query. For brevity, we
will define the case that the r-graph is in ucq normal form and will be mapped
back to a ucq; however, the inverse mapping can be extended naturally for other
forms of r-graph and other forms of queries.

Definition 9. Let G denote the r-graph r(u(Q)) for a monotone query Q. Let
>G ∈ IBL be the root of G such that there does not exist (s, p) such that
(s, p,>G) ∈ G. Further let G[z] denote the sub-graph of G rooted at z (see
Section 4.2). Finally, let ν : ILB→ ILV be a function that is the identity on IL
(i.e., for all x ∈ IL, ν(x) = x) and that maps B to V in a one-to-one manner.
We then define the inverse r-graph operation r−(G) to a ucq query as follows:

– If there exists (s, p, o) such that
{(z, a, :TP), (z, :s, s), (z, :p, p), (z, :o, o)} ⊆ G where z = >G,
then r−(G) = (ν(s), ν(p), ν(o)).

– If there exists {x1, . . . , xn} such that
{(z, a, :And), (z, :arg, x1), . . . , (z, :arg, xn)} ⊆ G where z = >G
and there does not exist (z, :arg, x) ∈ G such that x 6∈ {x1, . . . , xn}
then r−(G) = and({r−(G[x1]), . . . ,r−(G[xn])}).

– If there exists {x1, . . . , xn} such that
{(z, a, :Union), (z, :arg, x1), . . . , (z, :arg, xn)} ⊆ G where z = >G
and there does not exist (z, :arg, x) ∈ G such that x 6∈ {x1, . . . , xn}
then r−(G) = union({r−(G[x1]), . . . ,r−(G[xn])}).

– If there exists (x,∆, {v1, . . . , vn}) (for n ≥ 1) such that
{(z, a, :Select), (z, :arg, x), (z, :distinct, ∆),
. (z, :var, v1), . . . , (z, :var, vn)} ⊆ G where z = >G
and there does not exist (z, :var, v) ∈ G such that v 6∈ {v1, . . . , vn}
then r−(G) = select∆{ν(v1),...,ν(vn)}(r

−(G[x])). ut

Lemma 2. For a ucq Q, it holds that r−(r(Q)) ∼= Q.

Proof. Variables in r−(r(Q)) are generated by ν(β(v)) for all v ∈ Q; since
both ν and β are one-to-one, then ν ◦ β is one-to-one on V and thus variables
in r−(r(Q)) map one-to-one to variables in Q. With respect to the structure
of the query, by inspection, each sub-graph r(Q)[x] induced by Definition 9 is
rooted by ι(Q′) in Definition 1 for Q′ a subquery of Q and the triples matched
by Definition 9 correspond to those generated by Definition 1. We conclude
that r−(r(Q)) preserves the structure of Q modulo variable names. Finally, by
definition, a one-to-one change in variable names does not affect the congruence
relation, where ν ◦ β witnesses the congruence r−(r(Q)) ∼= Q. ut

Lemma 3. For an mq Q, it holds that r−(r(u(Q))) ∼= Q.

Proof. For the mq Q, Lemma 1 implies that u(Q) ≡ Q. Lemma 2 further implies
that r−(r(u(Q))) ∼= u(Q) since u(Q) is a ucq. Given r−(r(u(Q))) ∼= u(Q) ≡ Q,
we can then conclude that r−(r(u(Q))) ∼= Q. ut

20

We remark that the inverse mapping r−(·) generates a query in abstract
ucq-syntax, which contains three types of unordered elements: an unordered
set of projected variables, an unordered set of triple patterns in each cq, and
an unordered bag of cqs in the ucq. If we wish to create a canonical query in
concrete SPARQL syntax (i.e., a SPARQL query string), we must define and
apply a deterministic ordering within each such set/bag. Later we will apply
canonical labelling of blank nodes/variables, which can be used to provide a
deterministic ordering of variables that captures isomorphism. With this ordering
of variables, we can order the set of projected variables. Next we assume a total
syntactic ordering over VIL (again, B is replaced by V in the query); with this,
we can define a lexicographical ordering of triple patterns (ordered by subject,
then predicate, then object), which allows us to order the elements of cqs.
Finally, we can define an ordering of sets of triple patterns such that T1 ≤ T2 if
and only if T1 ⊆ T2 or min(T1 \ T2) < min(T2 \ T1); this allows us to order cqs
inside ucqs. With this, we can apply a deterministic ordering of all elements in
the ucq, allowing us to generate a canonical query in concrete SPARQL syntax.

C UCQ Minimisation Examples

We consider some examples to illustrate the minimisation process for ucqs fo-
cusing on the removal of redundant cqs. In the first example we consider, all
cqs contain all projected variables (and possibly other non-projected variables).

Example 7. Consider the following example of a ucq:

SELECT DISTINCT ?n WHERE {
{ ?m1 :cousin ?n . } UNION { ?n :cousin ?m2 . }
UNION { ?n :cousin ?x3 . } UNION { ?x4 ?y4 ?n . }
UNION { ?w5 ?x5 ?n . ?n ?y5 ?z5 . }
}

If we consider the first two cqs, they do not contribute the same results to ?n;
however, had we left the blank node :vn to represent ?n, their r-graphs would be
isomorphic, which means that during minimisation, one of these cqs would have
been removed. Temporarily grounding :vn before minimisation ensures they are
no longer isomorphic. On the other hand, the r-graphs of the second and third
cq will remain isomorphic and thus one will be removed (for the purposes of
the example, let’s arbitrarily say the third is removed). There are no further
isomorphic cqs and thus we proceed to containment checks.

Thereafter, the fourth cq maps to (i.e., contains) the first cq, and thus the
first cq will be removed. This containment check is implemented by creating the
following SPARQL ASK query from the r-graph for the fourth cq:

ASK WHERE {
_:and4 a :And ; :arg _:tp41 .
_:tp41 a :TP ; :s _:x4 ; :p _:y4 ; :o :vn .
}

. . . and applying it to the sub-r-graph representing the first cq:

21

_:and1 a :And ; :arg _:tp11 .
_:tp11 a :TP ; :s _:m1 ; :p :cousin ; :o :vn .

This evaluates as true and hence the first cq is removed. Likewise the fourth
cq maps to the fifth cq and hence the fifth cq will also be removed. This leaves
us with an r-graph representing the following ucq query:

SELECT DISTINCT ?n WHERE {
{ ?n :cousin ?m2 . } UNION { ?x4 ?y4 ?n . }
}

This ucq query is redundancy-free. ut

We provide a second example where, this time, some cqs do not contain all
projected variables.

Example 8. Consider the following extended example:

SELECT DISTINCT ?v ?w WHERE {
{ ?v :cousin ?w . } UNION { ?w :cousin ?v . }
UNION { ?v :cousin ?x3 . } UNION { ?v :cousin ?y4 . }
UNION { :a :b :c . } UNION { ?x6 ?y6 ?z6 . }
}

Let (Q1 ∪ . . . ∪Q6, V) denote this ucq, respectively, with Vi denoting the pro-
jected variables in each cq (e.g., V3 = {?v}). If we partition the set of cqs
by their projected variables Vi, we will end up with three sets of cqs as fol-
lows: {{Q1, Q2}, {Q3, Q4}, {Q5, Q6}} partitioned by {?v, ?w}, {?v} and {}, re-
spectively. Within each group we apply the previous conditions. Thus, for ex-
ample, we do not remove Q1 even though it would be naively contained in, for
example, Q3 (where ?x3 in Q3 would map to the IRI :vw in Q1). Rather, Q1,
Q2, Q3 (or Q4), and Q6 would be maintained, resulting in the query:

SELECT DISTINCT ?v ?w WHERE {
{ ?v :cousin ?w . } UNION { ?w :cousin ?v . }
UNION { ?v :cousin ?x3 . } UNION { ?x6 ?y6 ?z6 . }
}

The first two cqs can return multiple results, none containing an unbound;
the third cq will return the same results for ?v as the first cq but ?w will be
unbound each time; the fourth cq will return a single tuple with an unbound
for both variables ?v and ?w if and only if the RDF graph is not empty. ut

D Soundness and completeness

We provide some soundness and completeness results for the proposed canoni-
calisation scheme. We first give some initial results.

To begin, we note that distinguishing variables does not alter the semantics
of the query underlying the r-graph:

Lemma 4. For an mq Q, it holds that r−(d(r(u(Q)))) ∼= Q. ut

22

Proof. The function d(·) rewrites variables in each CQ that are not projected
away to fresh variables. Observing that for any RDF graph G, the expression
πV (ν1(Q1)(G)∪...∪νn(Qn)(G)) is equivalent to πV (Q1(G)∪...∪Qn(G)) so long as
each ν1, . . . , νn is a one-to-one variable mapping that is the identity on elements
of V , we can conclude that r−(d(r(u(Q)))) ≡ r−(r(u(Q))): the function d(·)
has no effect on solutions. Lemma 3 further states that r−(r(u(Q))) ∼= Q, and
hence we can conclude that r−(d(r(u(Q)))) ∼= Q. ut

The following result establishes soundness: i.e., that the proposed canonical-
isation procedure does not change the query results of the input query.

Theorem 1. For an mq Q, it holds that r−(iCan(m(d(r(u(Q)))))) ∼= Q.

Proof. The relation r−(iCan(d(r(u(Q))))) ∼= Q holds from Lemma 4, and the
fact that iCan(·) relabels blank nodes in a one-to-one fashion, thus renaming
variables in the output query in a one-to-one fashion (which by definition does
not affect the ∼= relation). We are thus left to show that the minimisation of cqs
and ucqs does not affect the semantics of the input query.

Set semantics: Minimising cqs by computing their cores is a classical tech-
nique based on the idea that two cqs are equivalent if and only if they are ho-
momorphically equivalent [4]. Likewise the minimisation of ucqs is covered by
Sagiv and Yannakakis [20], who (unlike in the relational algebra but analogous
to SPARQL) allow ucqs with existential variables; however, their framework
assumes that each cq covers all projected variables. Hence the only gap that
remains is the minimisation of SPARQL ucqs where cqs may not contain all
projected variables. This result is quite direct since a cq C1 cannot be contained
in a cq C2 if they cover different projected variables: assuming that v is a pro-
jected variable appearing in C1 but not in C2, then v always maps to UNBOUND
in C2 (i.e., v is not in the domain of solutions for C2), which can never occur for
C1, and hence C1 cannot be contained in C2, nor vice versa (in fact, they can-
not share any solutions!). Hence checking containment within the cq partitions
formed by the projected variables they contain does not miss containments. The
result for set semantics then follows from Sagiv and Yannakakis [20].

Bag semantics: neither cqs nor ucqs are minimised, and hence the result
follows directly from Lemma 4. ut

Finally we establish completeness: that for any two mqs, they are congruent
if and only if their canonicalised queries are equal.

Theorem 2. For two mqs Q1 and Q2, it holds that Q1
∼= Q2 if and only if

r−(iCan(m(d(r(u(Q1)))))) = r−(iCan(m(d(r(u(Q2)))))).

Proof. Set semantics: The main idea is that given a monotone query Q, we
show that the minimisation function m(·) will produce a minimal ucq Q′ that is
unique for the set of monotone queries congruent to Q (i.e., equivalent modulo
isomorphism to Q). For the minimisation of cqs, this follows directly from the
fact that we compute their minimal form as the core of a graph, which is known
to be unique modulo isomorphism [4,9]. For the minimisation of ucqs, we have

23

a non-deterministic choice when we choose one cq from each quotient set of
equivalent cqs with the same projected variables; however, since the cqs were
previously minimised, all such equivalent cqs are isomorphic, and hence the
choice is deterministic modulo isomorphism. For the last part, we need to show
that the final ucq produced is minimal. While we remove all cqs contained in
another cq – and all but one cq in each quotient set of equivalent cqs – we
are left to rule out the case that the results of a cq Qi may be contained in the
SPARQL union of the results of two cqs Qj and Qk but where none of the queries
are contained individually in the other (i.e., Qa 6v Qb for a, b ∈ {i, j, k} and
a 6= b). To rule out this case, we can consider the classical technique of producing
a canonical database [4] for Qi, which is produced by replacing every variable in
Qi with a unique fresh IRI; clearly there is then at least one solution for Qi over
the canonical database (mapping variables to their surrogate IRIs). Now if we
consider the canonical databases for Qi, we know that there cannot be a mapping
(homomorphism) from Qj nor Qk to this database since otherwise containment
would hold (since, e.g., Qi v Qj if and only if there is a homomorphism from
Qj to Qi [4]). Hence the result of Qi over this database cannot be contained in
the result of Qj ∪ Qk over the same, which serves as a counter-example to the
containment Qi v Qj ∪Qk. This concludes the argument that the minimisation
of ucqs is indeed minimal and unique modulo isomorphism for equivalent mqs.

Bag semantics: The result for bag semantics follows from the fact that no
minimisation (neither cq nor ucq) is possible since removing any triple pattern
from a cq or any cq from a ucq would directly affect the multiplicity of final
results [5]. Hence the ucq is unique modulo isomorphism for equivalent mqs.

Conclusion: We have argued that m(d(r(u(Q)))) represents a minimal
query that is unique modulo isomorphism for equivalent mqs (under set or
bag semantics). The subsequent application of iCan(·) thereafter produces a
canonical query with respect to isomorphism, which is thus unique for congru-
ent mqs. Finally, let Q′1 denote r−(iCan(m(d(r(u(Q1)))))) and let Q′2 denote
r−(iCan(m(d(r(u(Q2)))))). If Q1

∼= Q2, then Q′1 = Q′2 since the rewritten
queries are unique for the set of all congruent mqs. On the other hand, Theo-
rem 1 implies Q′1

∼= Q1 and Q′2
∼= Q2; as a result, if Q′1 = Q′2, then Q1

∼= Q2. ut

E LSQ Query Features

Table 2 provides an overview of these LSQ queries, first counting queries that
contain individual features, and second counting the combinations of ucq fea-
tures in queries that feature (at least) UNION. In terms of ucq features, we see
that JOIN and DISTINCT are used frequently, whereas UNION is used relatively in-
frequently. We also observe that OPTIONAL and FILTER are very commonly used
features: though it would be undecidable to consider canonicalisation of ucqs
with such additional features, we see that it is important to at least be able to
offer incomplete canonicalisation of such queries.

24

Table 2. Number of LSQ queries with individual features (left) and combinations of
ucq features involving UNION (right; u=UNION, d=DISTINCT, j=JOIN, *=other)

Feature Queries

DISTINCT 143,522
JOIN 309,087
UNION 34,282
Projection 665,956

FILTER 181,606
OPTIONAL 282,700
Named graph features 234,860
Solution Modifiers 5,810

Unsupported 1,046

Comb. Queries

u 1,480
ud 1,462
uj 1,902
udj 372
u* 6,127
uj* 199
ud* 168
udj* 22,572

F Synthetic MQ Experiments

We consider synthetic queries for testing the performance of canonicalising mqs,
including the application of ucq normal forms and intra-cq minimisation tech-
nique (as well as inter-cq minimisation and canonical labelling).

More specifically, we create synthetic mqs of the form (t1,1∪. . .∪t1,n) .//
(tm,1 ∪ . . . ∪ tm,n), where m is the number of joins, n is the number of unions,
and ti,j is a triple pattern sampled (with replacement) from the k-clique such
that k = m + n. Observe that such queries are not in ucq/DNF normal form
(union of joins) but rather in ucq/CNF normal form (join of unions). Hence we
will need to apply ucq normalisation, minimisation and canonical labelling. In
particular, the resulting initial ucq will be of size nm. Furthermore, note that by
sampling from the k-clique with replacement, we may end up with redundancy
in the cqs and ucqs that will be subject to minimisation.

We run these experiments for m = 2i and n = 2j for (i, j) ∈ N2
0...5, generating

five queries for each (m,n) value. Figure 4 presents the runtimes for canonicali-
sation of these synthetic ucqs, where each graph represents a particular m value,
with the x axis presenting the various n values. From these results, we can see
that we run into performance issues already for (4, 4), where producing a ucq
of size 44 = 64, the subsequent exponential processes – minimisation and canon-
icalisation – deteriorate in performance; other results for (4, 8) and (8, 4) were
not achieved. These synthetic cases highlight the double-exponential behaviour
of the canonicalisation algorithm. However, we conjecture that any canonical-
isation algorithm for mqs will be double-exponential, where the ΠP

2 -complete
result of Sagiv and Yannakakis [20] for mq equivalence establishes at least the
need for an exponential algorithm (unless P = NP) since canonicalisation must

25

20 21 22 23

10−1

10−0.5

n

T
im

e
(s

)

m = 1

20 21 22 23

10−1

100

n

m = 2

20 21 22 23
10−2

101

104

n

m = 4

Fig. 4. Runtimes for synthetic ucqs for varying m and n

then be ΠP
2 -hard; we further conjecture that an initial exponential rewriting of

the query to a particular given normal form is required for canonicalisation.5

It is important to highlight, however, that not all queries with four joins of
four unions would lead to such behaviour; the regularity of these synthetic (and
very artificial) queries makes them a particularly challenging case for minimi-
sation and canonicalisation. Again, experiments over real-world queries suggest
that canonicalisation is feasible for the types of queries that users tend to ask.

5 If we rather considered a rewriting to ucqs, the resulting “dual” rewriting would
also be exponential. Only an adaptive rewriting procedure – one that depends on
the characteristics of the particular query – could avoid the double-exponent.

	Canonicalisation of Monotone SPARQL Queries(Extended Version)

