
Exploration of Knowledge Graphs
via Online Aggregation

Oren Kalinsky
Amazon*

Israel
orenkalinsky@gmail.com

Aidan Hogan
DCC, Universidad de Chile & IMFD

Chile
ahogan@dcc.uchile.cl

Oren Mishali
Technion, Israel Institute of Technology

Israel
omishali@cs.technion.ac.il

Yoav Etsion
Technion, Israel Institute of Technology

Israel
yetsion@technion.ac.il

Benny Kimelfeld
Technion, Israel Institute of Technology

Israel
bennyk@cs.technion.ac.il

Abstract—Exploration systems over large-scale RDF knowl-
edge graphs often rely on aggregate count queries to indicate
how many results the user can expect for the possible next
steps of exploration. Such systems thus encounter a challeng-
ing computational problem: evaluating aggregate count queries
efficiently enough to allow for interactive exploration. Given that
precise results are not always necessary, a promising alternative
is to apply online aggregation, where initially imprecise results
converge towards more precise results over time. However, state-
of-the-art online aggregation algorithms, such as Wander Join,
fail to provide accurate results due to frequent rejected paths
that slow convergence. We thus devise an algorithm for online
aggregation that specializes in exploration queries on knowledge
graphs; our proposal leverages the low dimension of RDF graphs,
and the low selectivity of exploration queries, by augmenting
random walks with exact partial computations using a worst-
case optimal join algorithm. This approach reduces the number
of rejected paths encountered while retaining a fast sample time.
In an experimental study with random interactions exploring
two large-scale knowledge graphs, our algorithm shows a clear
reduction in error over time versus Wander Join.

I. INTRODUCTION

A variety of prominent knowledge graphs have emerged
in recent years, including open knowledge graphs such as
DBpedia [1], Freebase [2], LinkedGeoData [3], Wikidata [4],
and YAGO [5]. Several companies have also announced the
creation of proprietary knowledge graphs to power a variety
of Web applications, including eBay, Facebook, Google, and
Microsoft [6], among others.

Due to their scale and diversity, a major challenge faced
when considering a knowledge graph is to understand what
content it holds: what sorts of entities it describes, what sorts
of relations are represented, the extent of the coverage of
particular domains, etc. Prominent knowledge graphs, such as
DBpedia [1], Freebase [2] and Wikidata [4], contain in the
order of tens of millions of nodes and billions of edges rep-
resented using thousands of classes and properties, spanning

* Work was done prior to joining Amazon.

innumerable different domains. A variety of approaches [7]–
[12] have been proposed to help users explore large-scale
knowledge graphs by summarizing their content in terms of
the relationships between entities, the most common types,
and so forth. Such systems are enabled through exploratory
queries that provide counts of distinct elements matching
certain criteria in the knowledge graph, further indicating
how many results can be expected for the next exploration
steps [7]–[13].

Given the volume and diversity of prominent knowledge
graphs, the number of (intermediate) results that can be
generated by exploratory queries, and the goal of supporting
interactive exploration, a major challenge faced is that of per-
formance. The general trend in the aforementioned exploration
systems is towards computing the aggregation operations for
exploration either offline [13], or by relying on off-the-shelf
query engines [14]–[16]. However, computing aggregations
offline leads to space limitations, where for diverse knowledge
graphs (with tens of thousands of properties, classes, etc.
that can be combined), typically only a subset of relevant
results can be materialized [13], [17], [18]. Conversely, in
preliminary experiments with Virtuoso [19] – a state-of-the-
art [20]–[22] SPARQL query engine – we found, for example,
that computing the distribution of properties over all nodes in
DBpedia online (i.e., computing how many distinct nodes have
each property defined) takes over 5 minutes, which precludes
the possibility of interactive exploration.

To face the critical performance problem, we investigate
two orthogonal approaches. First, we explore the deploy-
ment of a query engine from the recent breed of Worst-
Case Optimal Join (WCOJ) algorithms [23]–[27] in order to
avoid an explosion of intermediate results when processing
multiway joins over large graphs. It was shown that these
algorithms are not only theoretically better than traditional
approaches, they are also empirically superior on graph query
patterns joining relations with low dimension. Specifically,
we select the Cached Trie Join algorithm [27] that offers
superior performance results on path counting queries, which

matches the nature of our exploration queries. Second, given
that WCOJ algorithms can still take tens of seconds to run
and precise counts are not always required for visualization,
we explore online aggregation algorithms [28] that trade
precision for performance, computing approximate counts at
a fraction of the cost observed even in the WCOJ setting;
for these purposes, we select the Wander-Join algorithm [29].
In essence, Wander Join applies a random walk between
database tuples that (jointly) match the join query, and upon
termination, updates an estimator of the aggregate function.

Ultimately we conclude that these two approaches are
complementary [30] and offer an algorithm that combines
online aggregation with exact computation. The general idea
is to apply the random walk of Wander Join, and at each
step, consider replacing the remaining walk with a precise
computation of the space of possible suffixes, this time using
Cached Trie Join. This consideration is done via an estimate
of selectivity. Using this approach substantially reduces the
rejection rate of the random walks on highly selective patterns.
Moreover, the estimator needs to be updated accordingly, and
we prove that it remains unbiased. We further extend our
algorithm to estimate counts in the presence of the distinct
operator, which is crucial to our exploration use case. We call
the resulting algorithm Audit Join, and prove that it provides
unbiased estimators of counts with and without the distinct
operator. In experiments that evaluate randomly-generated
exploration queries over two knowledge graphs – specifically
DBpedia [31] and LinkedGeoData [3] – our algorithm dramat-
ically reduces error with respect to computation time versus
Wander Join.

Our contribution is summarized as follows:
1) We evaluate three main alternatives for evaluating ex-

ploration queries: an off-the-shelf SPARQL engine (Vir-
tuoso), a WCOJ algorithm (Cached Trie Join), and an
online aggregation algorithm (Wander Join). This evalu-
ation reveals the critical limitations of all alternatives for
the use-case of exploring large-scale knowledge graphs.

2) We devise Audit Join – a specialized online-aggregation
algorithm for exploring knowledge graphs – and prove
that it produces unbiased estimates of counts.

3) We describe an experimental study of performance over
random explorations, showing the benefits of Audit Join
over the aforementioned alternatives.

II. RELATED WORK

Next, we discuss related work on exploration tools for
knowledge graphs, and some relevant approaches to query
evaluation.

Exploration Tools. Various approaches have been proposed
in recent years for exploring and visualizing graph data [32].

Faceted Browsing: In faceted browsers, users incremen-
tally add restrictions – called facets – to refine the current
results [33]. Often facets are annotated with counts to indicate
the results returned if selected (and to remove facets leading

to empty results). Some faceted systems focus on smaller
graphs from specific domains, such as mSpace (multime-
dia) [34], BrowseRDF (crime) [35], /facet (art) [36], Ontogator
(art) [37], ReVeaLD (biomedicine) [38] and Hippalus (zool-
ogy) [39]. Other faceted systems have been proposed for multi-
domain knowledge graphs, which contain thousands of classes
and properties and potentially billions of triples. Among
these systems, we can mention Neofonie [40], Rhizomer [17],
SemFacet [41], Semplore [42] and Sparklis [43] for exploring
DBpedia; Broccoli [18] and Parallax [44] for exploring Free-
base; and GraFa for exploring Wikidata [13]. Of these systems,
many do not present runtime performance evaluation [17],
[40], [44], [45], delegate query processing to a general-purpose
query engine [17], [43], [44], [46], apply a manual selection
of useful facets or a subset of data [40], [41], and/or otherwise
rely on a materialization approach to precompute and cache
aggregated meta-data (such as counts) [13], [17], [18].

Graph Profiling: Other works on graph profiling focus on
summarizing the content of a large knowledge graph for the
user [7]. Some systems provide a graph summary or quotient
graph [47], which groups nodes into super-nodes, between
which the most important relations are then summarized. The
partition of nodes may be based on bisimulations [48], formal
concept analysis [49], [50], semantic types [51]–[54], etc.
Other works generate statistical summaries of large graphs,
in terms of the most popular classes, properties, etc., offering
interactive visualizations [8]–[12]. These typically either apply
offline aggregations or use general-purpose query engines.

Query Engines. We provide an overview of approaches for
querying knowledge graphs as relevant to this work.

SPARQL Engines: SPARQL [55] is the standard for query-
ing RDF graphs, and is used by public query services over the
DBpedia, LinkedGeoData, and Wikidata knowledge graphs.
While several query engines support SPARQL (e.g., [14]–
[16]), we adopt Virtuoso [56] as a representative of this strat-
egy given its competitiveness in various benchmarks (e.g. [20],
[22]) and the fact that it optimizes for aggregate queries
by applying vectorized execution on columns represented as
compressed vectors of values [56].

Worst-Case-Optimal Joins: Worst-case optimal join algo-
rithms (e.g., [23], [25]–[27]) evaluate join queries with a run-
time guarantee that meets the Atserias–Grohe–Marx (AGM)
bound [57]: a worst-case tight bound for the size of the output.
Such algorithms are not only theoretically better than tradi-
tional approaches, they have been empirically shown to offer
better performance for evaluating graph query patterns [26],
[27], [58]. In this paper, we will adopt Cached Trie Join [27]
(CTJ): a state-of-the-art worst-case optimal join algorithm that
offers better performance on aggregate queries compared to
other approaches, including dynamic programming algorithms
with superior theoretical bounds.

Online Aggregation: Algorithms for online aggregation pro-
vide approximate results for aggregate queries that converge

Exploration
Interface

Query Engine
(Virtuoso, Cached Trie Join,

Wander Join, Audit Join)

Q

Q(G)
G

Fig. 1: System architecture where G denotes the (RDF)
knowledge graph, Q denotes an exploration query, Q(G)
denotes the results of Q over G; dashed and solid arrows

denote offline and online interactions respectively

over time to the exact result. This provides a tradeoff between
the accuracy and run-time, where users will immediately
receive an initial estimate for the query, which will improve
as they wait. Since the concept was coined by Hellerstein et
al. [28] works have proposed support for additional operators
and better statistical guarantees [59], as well as distributed and
parallel support [60]–[62]. While the solution was originally
for a single table, Haas et al. [63] developed Ripple Join,
an online aggregation algorithm that supports joins. More
recently, Li et al. [29] have introduced the Wander Join
algorithm for online aggregation over join results based on
random walks. Wander Join has also been used as an unbi-
ased sampling method for approximate query answering [64]
and join-size estimation [30], [65]. Section IV describes the
Wander Join algorithm in more detail with examples.

Novelty. The runtime performance of aggregation queries is
a critical and often limiting factor for interactive exploration
of knowledge graphs. We empirically show that existing
approaches are insufficient for large knowledge graphs: exact
computation is too slow and existing online aggregation algo-
rithms are slow to converge due to rejecting a high number
of “dead-end” random walks. We thus design a novel online
aggregation strategy, called Audit Join, that switches from
random walks to a worst-case optimal join algorithm when
encountering low-selectivity joins that cause high rejection
rates. We further prove that this strategy provides an unbiased
estimator of counts with and without a distinct operator, where,
to the best of our knowledge, no existing online aggregation
algorithm offers unbiased estimators in the distinct case.

III. EXPLORATION USE-CASE

Our proposed Audit Join algorithm can be applied in a
broad range of use-cases that require fast and accurate approx-
imations for aggregate count queries over knowledge graphs.
For a concrete motivation, we now summarize the exploration
system that prompted the effort on Audit Join and serves as
our main use-case. A more detailed description and examples
of the user interface and exploration model can be found in
our demonstration paper of the system [12] (that used Virtuoso
as its query engine).

Our system offers online exploration of large-scale knowl-
edge graphs and is implemented as a web application that
communicates with a specialized query engine, as illustrated in
Figure 1. In practice, the system can use any query engine that
supports aggregate queries over graph patterns (specifically,
count-distinct over joins); however, our engine aims to provide

interactive exploration with subsecond performance, including
in cases where millions of elements need to be counted. We
discuss query engines in Section IV. The user experience is
visual: no SPARQL knowledge is required from the user. In
principle, the user should have only a basic understanding of
what classes and properties are.

Data. Our system supports the exploration of an RDF graph,
which is a set of RDF triples. Each such triple consists of a
subject, a predicate, and an object. An RDF graph can be
viewed as a directed edge-labeled graph where each triple
encodes an edge. The subjects and predicates come from a
collection of Unique Resource Identifiers (URIs) and the object
is either a URI or a literal (e.g., a number). In the remainder
of this section, we assume a fixed underlying RDF graph. We
refer to terms used in the predicate position of a triple (e.g.,
birthPlace) as properties. Nodes in this RDF graph may be
instances of classes (e.g. Person, Movie, etc.) where these
classes may be further organized into a subclass hierarchy
(e.g., defining Movie to be a subclass of Work). A URI u
is said to be of class c if the RDF graph contains the triple
(u, rdf:type, c). One could also define membership based on
the transitive closure on subclasses; the choice between the
two is orthogonal to our model.

Functionality. Before describing our system in more detail,
we illustrate its functionality with an exploration example for
DBpedia, which results in the view shown in Figure 2.

Example III.1. Suppose that the user is interested in philoso-
phers, and in particular, they wish to learn about people who
have influenced philosophers. Starting from the top-level class
owl:Thing, the user is presented with a chart displaying its
direct subclasses, with the height of each bar in the chart
indicating the number of instances of each subclass. From
this chart, the user clicks on Agent to now view a chart with
its direct subclasses, subsequently selecting Person and then
Philosopher. The user can then switch to a property view
to see a chart representing either the incoming properties or
outgoing properties on instances of Philosopher. Selecting
the bar for influencedBy from the outgoing properties opens
a new chart, showing the different class instances connected
to philosophers via the influencedBy property. Clicking the
Person type in this chart and selecting the outgoing property
view then reveals the bar chart shown in Figure 2, showing
outgoing properties on instances of type Person that have
influenced philosophers; this allows the user to further explore
only people who have influenced philosophers and not the
entire set of Person instances.

We now define more formally the system’s model of visual
exploration. This model is based on bar charts constructed
in an iterative and interactive manner. We have three kinds
of bars. A class bar represents URIs of a common class
(e.g., Person). An outgoing-property bar, or out-property
bar for short, represents URIs that are the subject (source)
of a common associated outgoing property (e.g., subjects of
locatedIn triples). Analogously, an incoming-property bar, or

Fig. 2: An exploration pane over DBpedia showing outgoing properties about persons who have influenced philosophers.

expansion

object

subclass

class
out−prop

prop bar
expansionexpansion

prop bar

expansion expansion

in−prop
incoming

subject

outgoing

Fig. 3: State transitions in the exploration model

in-property bar, represents URIs that are the object (target)
of a common associated incoming property (e.g., objects of
locatedIn triples).

The category of a bar is the corresponding class or property,
depending on the kind of the bar. A bar chart (or simply
chart) is a mapping from categories to bars. Figure 2 presents
an instance of an outgoing-property bar chart in our system,
which we will further refer to later. In this example, the
category of the bar marked in red is the birthPlace property
and the height of the bar corresponds to the number of distinct
instances with this property.

Bar expansion The user can navigate using bar expansions
by clicking on the bars. A bar expansion is a function
that transforms the clicked bar into a new chart, with each
successive chart being the expansion of a bar from the previous
chart. We define five types of bar expansions that offer natural
exploration steps. These expansions lead to a transition system
between chart types, as seen in Figure 3.

In subclass expansion, we do the following. Given a class
bar with a category (class) c, this expansion displays all
categories that are direct subclasses of c, that is, all c′ such
that the graph contains (c′, rdfs:subClassOf, c). In the new
chart, each bar has the category c′ and it consists of all the
nodes of the clicked bar (of category c) with the class c′.

Given a class bar of category c, out-property expansion
displays all categories that are outgoing properties of c, that is,

all p such that the graph contains a triple (s, p, o) for some s in
the bar. The new chart has an out-property bar with category
p for each relevant property p, and the nodes of the resulting
bar are the URIs of the clicked bar that have the property p.
See Figure 2 for an example. Similarly, in-property expansion
is analogous to the out-property expansion, except that the bar
of p in the new chart is an in-property bar with the category p,
and it consists of all URIs that have p as an incoming property;
that is, all o from the clicked bar such that (s, p, o) is a graph
triple for some s.

Object expansion is enabled only for out-property bars.
Recall that, in this case, the category is a property p. The
categories of the new chart are the classes of the objects that
are connected to the nodes of the clicked bar through the
property p; that is, these are the classes c such that for some
(s, p, o) it is the case that s is in the clicked bar and o is of class
c. Hence, the new chart contains a class bar with the category
c that consists of all such o. Analogously, subject expansion
considers the subjects of incoming properties instead of the
objects of outgoing properties. In particular, when expanding
the bar of p, each bar of category c in the new chart consists
of the subjects s of class c such that the graph has the triple
(s, p, o) where o belongs to the clicked bar.

IV. QUERY ENGINE AND ALGORITHMS

To support interactive exploration in our use-case, the query
engine should answer join queries with grouped, distinct
counts in less than a second. Though such queries form a natu-
ral fragment for exploring and profiling knowledge graphs [7],
[32], [33] – where joins represent the user’s exploration path,
with counts used to summarize results – we did not find any
query engine that could evaluate such queries with the sub-
second response times required to enable interactive explo-
ration of large knowledge graphs with hundreds of millions or
billions of edges.

More specifically, in initial experiments with the Virtuoso
system, such queries would sometimes take minutes to com-
plete on knowledge graphs such as DBpedia. On the other

1 SELECT α COUNT(DISTINCT β) WHERE {
2 a1 b1 c1.
3 . . .
4 an bn cn.
5 } GROUP BY α

Fig. 4: The general form of an exploration query

hand, algorithms that implement worst-case-optimal joins have
recently been shown to be capable of orders-of-magnitude
speedup on path counting queries compared to traditional join
approaches [66], [67] (including join algorithms with linear
complexity [27]), and hence, offer a promising alternative.
Still, in experiments with Cached Trie Join [27] – a state-of-
the-art representative of these join algorithms – queries that
require large join results on multi-domain knowledge graphs
(e.g., DBpedia) may still take tens of seconds to run.

In order to achieve acceptable performance, we turn to
online aggregation, relaxing the expectation of exact counts
to instead aim for a fast but approximate initial response
whose error reduces over time [28]. Such a compromise is
well justified in the context of our exploration use-case, which
can suffer some loss of precision without impacting the user
experience. We thus investigate Wander Join [29], which is
designed for aggregate queries over the grouped results of join
queries; this algorithm has been demonstrated to offer much
better convergence compared to traditional online aggregation
approaches in experiments over TPC-H [29]. However, Wan-
der Join has two limitations for our use-case:

1) rejected paths slow convergence of the estimation, and
2) it does not support (i.e., provide an unbiased estimator)

for the count-distinct operator.
The main contribution of this paper is thus to propose

a novel online-aggregation algorithm, Audit Join, which ad-
dresses these limitations of existing algorithms. We adopt
the approach of online exploration algorithms that combine
random walks with exact computations for the problem of
uniform random sampling [30]. First, in cases where a high
number of rejected paths are deemed likely to occur, Audit
Join defers to partial exact computations using Cached Trie
Join. Second, Audit Join incorporates a novel estimator for
counts under the distinct operator that we prove to be unbiased.

This section discusses the various algorithms we investigate
to improve query performance in our interactive exploration
setting, starting with preliminaries on query translation, then
discussing Cached Trie Join and Wander Join, before propos-
ing Audit Join.

A. Query Translation and Structure

In Section III, we defined our exploration model. The five
operations of subclass, in-property, out-property, object and
subject expansions are translated to SPARQL queries. These
SPARQL queries produce the information required to generate
the next bar chart by first executing a multiway join that
encodes the expansions thus far, then a grouping on the URIs

of the next chart, and finally a distinct count on the focus
set of the next chart. Given the structure of exploration steps,
cyclic queries cannot occur.

The general form of these SPARQL queries is illustrated
by the query template in Figure 4. Here, each pattern of the
form ai bi ci refers to a triple pattern, where each term ai,
bi and ci (where 1 ≤ i ≤ n) is either a variable (e.g., ?s)
or a constant (e.g., <Person>). A variable may appear in
at most two triple patterns. Finally, α denotes a variable that
will be assigned the URIs of the next bar chart (either some
bi, or some ci where bi = rdf:type), while β returns the
focus set of the next bar chart (either some ai or ci). As an
example, the exploration birthplaces of persons is translated
to the SPARQL query shown in Figure 5. Aside from our
exploration system, such queries form the basis of a variety
of systems for searching and exploring knowledge graphs [7],
[32], [33].

Remark. In practice, patterns with the “rdf:type” property
are joined with the transitive closure of subclasses. For exam-
ple, in the pattern “?s rdf:type <Person>” of Figure 5,
?s will also be mapped to instances of (possibly indirect)
subclasses of <Person>. We materialize this subclass closure
and view it as a raw relation; instances, on the other hand, are
typed per the original data and joined with the subclass closure
at runtime. For simplicity, we leave the subclass closure (and
other forms of inference) implicit in the presentation of the
queries since it is orthogonal to the model.

In what follows, we denote by Gi the subset of triples of
the knowledge graph G that match the triple pattern (ai, bi, ci),
where a triple (a, b, c) matches (ai, bi, ci) if the two agree on
the constants (i.e., if ai is a constant then a = ai, and so on).

B. Aggregation via Cached Trie Join

The exact evaluation we incorporate in our approach is
based on the Cached Trie Join algorithm (CTJ) [27]. This
algorithm incorporates caching of intermediate join results
on top of the LeapFrog Trie Join algorithm (LFTJ) [23]—a
backtracking join algorithm that traverses over trie indexes.
In our context, we maintain six trie indexes over G, each
corresponding to an ordering of the three attributes (s, p and
o). The trie index has a root, and under the root a layer with
the values of the first attribute, and then a layer with the
values of the second attribute, and then the third attribute. Each
triple (s, p, o) corresponds to a unique root-to-leaf path of the
trie. For example, if the order is (p, o, s), then the first layer
corresponds to the predicates, the second to the objects, and
the third to the subjects; in this case, a path root→ b→ c→ a

1 SELECT ?c COUNT(DISTINCT ?o) WHERE {
2 ?s <birthPlace> ?o.
3 ?s rdf:type <Person>.
4 ?o rdf:type ?c.
5 } GROUP BY ?c

Fig. 5: An instance of an exploration query

t11

t21

t31

t41

t51

t12

t22

t32

t42

t52

t13

t23

t33

t43

t53

t14

t24

t34

t44

t54

G1

P1 = type

G2

P2 = Influnced

By

S1 = O2

G3

P3 = type

S2 = S3

G4

P4 = subclassOf

O4 = Philosopher

O3 = S4

Fig. 6: A join graph example of Object Expansion of the
InfluencedBy property and subjects of type

Philosopher from the DBpedia knowledge graph.

represents the triple (a, b, c) of G. In our implementation, B-
tree like indexes are used, similar to the indexes commonly
used in SPARQL query engines.

LFTJ assumes a predetermined order over the variables,
say x1, . . . , xm. We access the tuples of Gi using a trie Ti
with an order consistent with the predetermined order. For
example, if the triple pattern is ?q <birthPlace> ?r, and
?r precedes ?q in the predefined order, then Ti will be the
trie for (o, s, p), (o, p, s), or (p, o, s). LFTJ uses a backtracking
algorithm that walks over the Ti and looks for assignments for
x1, . . . , xm. It starts by finding the first matching value v1 for
x1. Then, the tries Ti that contain x1 restrict their search to
the subtree under x1 = v1. Next, it looks for the first match
v2 of the next variable x2, and all relevant tries restrict to the
subtree under x2 = v2. The algorithm continues to remaining
variables, until a match is found for all variables, or no match
is found for the next variable. Once a match is found, or the
algorithm gets stuck, it backtracks to the next value of the
previously scanned xi. Grouping and counting are applied in
the natural way.

While LFTJ guarantees worst-case optimality, it frequently
re-computes the same intermediate joins, since it does not
materialize any of the intermediate results [27]. To effectively
reuse the partial answers, CTJ augments LFTJ with a cache
structure guided by a tree decomposition of the query, guaran-
teeing the correctness of the algorithm. In the use-case of this
paper, the tree decomposition is easily determined by the path
formed by the query. CTJ uses different caching schemes to
cache partial count results that are later reused. Empirically,
CTJ can achieve orders of magnitude speedup over LFTJ and
other known join algorithms for graph queries on relations
with a low dimension [27].

Example IV.1. To illustrate the effectiveness of CTJ ver-

sus LFTJ, we continue our running example from Exam-
ple III.1. Specifically, we select the object expansion that
returns the objects (and their corresponding types) that were
InfluencedBy Philosophers. Figure 6 depicts an ex-
ample join graph of the query. There, each column in the figure
is a graph Gi, and each node tji is a tuple of Gi. An edge exists
between two tuples if they agree on their join attributes. For
instance, G2 (P2 = InfluencedBy) holds all the subjects that
were influenced by the objects and the join with G1(S1 = O2)
returns the types of all the influenced objects. We assume
that LFTJ uses the same predetermined join order as in the
figure from left to right. LFTJ will backtrack over the join
tree, recalculating the number of results under t42, t23 and t53
multiple times since they have multiple incoming paths (e.g.,
(t21, t

4
2), (t

4
1, t

4
2)). Nevertheless, CTJ will encounter these nodes

one time each and store the number of results in its cache until
it encounters them in later steps.

C. Wander Join

Wander Join is an online aggregation algorithm that is de-
signed for aggregates over joins [66], [67]. Since Wander Join
does not support the distinct operator, we ignore the operator
in this section. We also postpone discussion of grouping for
later in the section.

Given the query of Figure 4, Wander Join samples query
answers via independent random walks over the Gi, in contrast
to the full pre-order traversal of CTJ. It estimates counts using
the Horvitz–Thompson estimator [68], where each random
walk γ produces an estimator Cwj(γ) (described next), and
the final estimator is the average of Cwj(γ) over all random
walks γ. The walk γ is constructed as follows. First select a
random tuple t1 uniformly from G1. Next select a tuple t2 that
is consistent with t1; that is, t1 and t2 agree on their common
attributes; the choice is again uniform among all consistent ti.
Continue in this way, selecting a random tuple ti from Gi in
the ith step such that ti is consistent with ti−1. If, at any point,
no matching ti exists, the random walk γ terminates, the path
is rejected, and Cwj(γ) = 0. Otherwise, let di be the number
of ways of selecting ti, for i = 1, . . . , n. The probability of γ
is

∏n
i=1 1/di. The estimator Cwj(γ) is defined by

Cwj(γ) :=

n∏
i=1

di =
1

Pr(γ)
.

The estimator Cwj(γ) is unbiased; consequently, the final
estimator (i.e., the average) is also unbiased. To see why Cwj

is unbiased, denote by Γ the set of all successful (full) paths
from G1 to Gn. Then the sought count is |Γ|. Indeed,

E[Cwj] =
∑
γ∈Γ

Pr(γ) · Cwj(γ) =
∑
γ∈Γ

Pr(γ)

Pr(γ)
= |Γ| .

Example IV.2. To demonstrate Wander Join, we use our
running example of InfluencedBy Philosophers de-
picted in Figure 6. The random walk is from left to right.
Choosing the random path γ1 = (t21, t

2
2, t

2
3, t

2
4) yields the

estimate Cwj(γ1) = 5 · 4 · 4 · 2 = 160 objects (and their

corresponding types) that were influenced by philosophers. For
γ2 = (t41, t

5
2, t

5
3, t

5
4) we will get Cwj(γ2) = 5 · 2 · 3 · 2 = 60.

Finally, partial paths, such as (t21, t
2
2, t

3
3), will yield the estimate

zero. The final estimator is the average over all estimates
(including the zero estimates).

Wander Join adapts to grouping similarly to Ripple
Join [63]: maintaining separate estimators for each group,
using the random walk γ to only update the separator of the
group to which γ belongs.

Wander Join can further offer a confidence interval together
with the estimator [59]. For example, taking a confidence level
of 0.95:

Pr(|Cwj(γ)− |Γ|| ≤ ε) ≥ 0.95.

The confidence level quantifies the probability that |Cwj(γ)−
|Γ|| is in the (half-width) confidence interval, denoted by ε.
The confidence interval (CI) should shrink together with the
estimator.

D. Audit Join

We first describe Audit Join without the distinct operator.
We also ignore grouping, since Audit Join is adapted to
grouping similarly to Wander Join and Ripple Join. Hence,
our goal is again to estimate |Γ|, where Γ is the set of all full
random walks γ from G1 to Gn.

Base Algorithm. For a prefix δ = (t1, . . . , t`) of a random
walk, denote by Γδ the set of full paths γ with the prefix
δ. At each step of the random walk, we make a rough
estimation of the complexity of computing the precise |Γδ|;
we describe this estimation later in the section. If the estimate
is low, we actually compute |Γδ| using CTJ (as described in
Section IV-B), and then our estimate is

Caj(δ) := |Γδ| ×
∏̀
i=1

di =
|Γδ|
Pr(δ)

.

Otherwise, we proceed exactly as in the case of Wander Join.
In particular, if we cannot continue in the random walk, or
reach a full path, then we use Caj(δ) :− Cwj(δ).

Example IV.3. We illustrate Audit Join (without distinct) by
continuing our example over Figure 6. Suppose that after
the random walk δ = (t21, t

2
2), we choose to run an exact

evaluation. Then |Γδ| = 2, since there are two full paths
(ending at t24 and t34) that begin with δ. The estimate is then
Caj(δ) = |Γδ|/Pr(δ) = 2 · (5 · 4) = 40.

The following proposition shows that Caj is unbiased by
straightforwardly adapting the argument for Wander Join.

Proposition IV.1. Caj is an unbiased estimator of |Γ|.

Proof. Let ∆ be the set of all paths δ where Audit Join
decides to terminate the path and produce an estimate. This
can be because δ is a full path, because it cannot proceed, or
because we decide to compute the exact |Γδ|. The reader can
verify that, no matter which of the three is the case, Audit Join
produces the same estimator, namely |Γδ|/Pr(δ). In particular,

|Γδ| = 1 in the first case and |Γδ| = 0 in the second. We have
the following.

E[Caj] =
∑
δ∈∆

Pr(δ) · |Γδ|
Pr(δ)

=
∑
δ∈∆

|Γδ| = |Γ|

Therefore, Caj is unbiased, as claimed.

Note that Audit Join automatically leverages the caching of
CTJ, potentially avoiding re-computation when building the
same prefix δ in later random walks. The reuse of the cached-
prefix can dramatically increase the number of successful
samples as shown in our experiments in Section V.

Distinct. We now extend our estimator to support the distinct
operator. Recall the query of Figure 4. Our goal is to count
the distinct values taken by β. For a full path γ, we denote by
β(γ) the value to which γ assigns β. Let V = {β(γ) | γ ∈ Γ}.
Our goal is to estimate |V |. For b ∈ V , we denote by Pr(b)
the probability that the random walk reaches a full path γ with
β(γ) = b; that is, Pr(b) is the sum of the probabilities of all
γ ∈ Γ that assign b to β. Similarly, we denote by Pr(δ, b) the
probability that the random walk starts with δ and reaches a
full path γ with β(γ) = b; that is, Pr(δ, b) is the sum of the
probabilities of all γ ∈ Γ such that δ is a prefix of γ and γ
assigns b to β. We then combine these probabilities into the
following estimator for distinct.

Cd
aj(δ) :=

∑
b∈V

Pr(δ, b)

Pr(δ) · Pr(b)
(1)

Example IV.4. To demonstrate Audit Join with count distinct,
we again use our running example over Figure 6. For this
example, suppose that β occurs in G3, and moreover, that each
tuple ti3 holds a unique value for β (while many join tuples
may include t3). Suppose that the random walk produces
δ = (t21, t

2
2), and that Audit Join decides to run an exact

evaluation at this point. There are two full paths that extend
δ, both through (t32). We denote by b the value of β for (t32).
From the previous example we get that Pr(δ) = 1

20 . There are
three paths leading to t32, and by summing their probabilities
we get Pr(b) = 1

5·4·3 +
2

5·4·4 = 1
24 . The last probability of our

estimator is Pr(δ, b) = Pr(b | δ) ·Pr(δ) = 1
4 ·

1
20 = 1

80 , Hence,
our estimator yields the following.

Cd
aj(δ) =

Pr(δ, b)

Pr(δ) · Pr(b)
=

20 ∗ 24
80

The estimate is, therefore, six: Cd
aj(δ) = 6.

In our implementation, the probability Pr(b) is computed
online, after sampling the partial random path δ, by using
CTJ to materialize all paths leading to the sampled b = β(δ),
summing up their probabilities, and caching the results. With
respect to Example IV.4, this is necessary to determine that
there are three paths leading to t32 and to compute their proba-
bilities, which are then summed to compute Pr(b). Clearly this
can be an expensive join query. Nevertheless, our experiments
show that the online Pr(b) computation is very often tractable

AuditJoin(G1, . . . , Gn, α, β)

1: N := 0
2: A := the set of possible assignments for α
3: B := the set of possible assignments for β
4: repeat
5: F1 := G1

6: δ := ε
7: for i = 1, . . . , n do
8: N := N + 1
9: select t ∈ Fi randomly and uniformly

10: δ := (δ, t)
11: if i = n or tipping point is reached then
12: for all a ∈ A do
13: Ca := Ca +

∑
b∈B

Pr(a,b,δ)
Pr(a,b)·Pr(δ)

14: end for
15: continue . Go to line 5
16: end if
17: Fi+1 := Gi+1 n t
18: if Fi+1 = ∅ then
19: continue . Go to line 5
20: end if
21: end for
22: until time limit is reached
23: for all a ∈ A do
24: estimate count-distinct for a as Ca/N
25: end for

Fig. 7: Audit Join pseudo code

after setting β = b, taking about 2.5 microseconds on average
and up to 20 milliseconds in rare cases.

Next, we show that the estimator is unbiased.

Proposition IV.2. Cd
aj is an unbiased estimator of |V |.

Proof. Following a similar reasoning as in the proof of
Proposition IV.1, we can treat all cases of the estimator in
a uniform way, that is, according to Equation (1). In the
following analysis, we identify value b ∈ V with the event
that the random walk is complete and, moreover, assigns b to
β. Hence, we have the following.

E[Cd
aj] =

∑
δ∈∆

Pr(δ) ·
∑
b∈V

Pr(δ, b)

Pr(δ) · Pr(b)

=
∑
δ∈∆

Pr(δ) · 1

Pr(δ)
×

∑
b∈V

Pr(δ | b)

=
∑
b∈V

∑
δ∈∆

Pr(δ | b)

=
∑
b∈V

1 = |V |

Therefore, Cd
aj is unbiased, as claimed.

Audit Join can then use the same formulas as Wander
Join [59] to provide a confidence interval using the Audit Join
estimator.

Tipping Point. To decide when to use partial exact compu-
tations, we use the same simple technique for join-size esti-
mation as used by PostgreSQL [69]. In the case of two triple
patterns (a1, b1, c1) and (a2, b2, c2) joining on say c1 = c2,

the size is estimated as the product between the number of
triples matched by (a1, b1, c1) and (a2, b2, c2), divided by the
maximum number of distinct terms of c1 or c2. For more than
two patterns, we compose the estimates in the straightforward
manner. If the estimate is lower than a predefined threshold,
Audit Join switches to exact computation. In this case we
say that the tipping point is reached. Though simple, this
technique allows Audit Join to consistently achieve consid-
erable improvements, as shown in the experimental section.
Investigating more sophisticated estimates (e.g., [70]) is left
for future research.

Summary. We summarize the Audit Join algorithm in Fig-
ure 7. The code is similar to the process described in Sec-
tion IV-D, except that it incorporates grouping. The sets A
and B are projections over the attributes α and β, respectively
(Figure 4). The estimates are accumulated in Ca for every
group a. The probability Pr(a, b, δ) corresponds to the event
that the random walk starts with δ and includes the group a and
the counted value b. Hence, it is the sum of the probabilities
of all such random walks. Similarly, Pr(a, b) is the probability
that the random walk includes the group a and the counted
value b. Note that in line 17, the left semi-join Gi+1nt consists
of all the tuples of Gi+1 that can be matched with t. Finally,
on line 24, the number of distinct results for each group a is
computed by dividing Ca by the number of random walks N .

Limitations. Our focus is on supporting exploration queries
of the form illustrated in Figure 4, where a variable appears
in at most two triple patterns (and constants can appear any-
where). Like WJ, the AJ algorithm is based on random walks
and could utilize similar methods to support online aggregation
for cyclic queries, while following CTJ’s caching policies. The
AJ algorithm does not, however, currently support other forms
of query operators, such as negation (anti-joins), optionals
(left-joins), etc.; or other forms of aggregation, such as sum,
average, etc. Extending the AJ algorithm to support such
queries is an interesting direction for future work.

V. EXPERIMENTAL STUDY

Our experimental study compares the performance of four
query engine strategies – Virtuoso, Cached Trie Join (CTJ),
Wander Join (WJ) and Audit Join (AJ) – for answering a
variety of queries in the context of our use-case exploration
system. Though Virtuoso and CTJ both compute exact results,
and thus are somewhat incomparable with WJ and AJ, we
include their results primarily to motivate the need for online
aggregation in the context of knowledge graph exploration.
The focus of our experiments is rather to compare WJ and
AJ, which are both online aggregation algorithms.

A. Configuration

We take Virtuoso as an off-the-shelf query engine and
implement the other three strategies in C++. We implement
WJ and CTJ as described in their corresponding papers and
then implement AJ on top of these algorithms. We now discuss
the configuration and implementation of each strategy.

We use Virtuoso v. 07.20.3217 [56] and configure it to
use all available memory for caching its indexes. Specifically,
we maintain the index orders (s, p, o), (o, p, s), (p, s, o), and
(p, o, s); these orders are sufficient to support our exploration
queries. Virtuoso runs the subclass closure for expansions
using property paths on the original graph; the query planner
shows that this closure is executed first and takes a few
milliseconds for both knowledge bases.

Our CTJ implementation uses LFTJ [23] as the trie join
algorithm. Since WJ does not support transitivity, the subclass
closure is computed offline and materialized in the graph
(instances are indexed with only their explicit types per the
original data). The trie indexes are implemented using sorted
arrays (std::vector) such that each search is done in O(log(n)).
Similarly to Virtuoso, we implement CTJ with four of the
six possible index orders: (s, p, o), (o, p, s), (p, s, o), and
(p, o, s). The CTJ cache structure uses an array of hashtables
(std::unordered map[]).

In WJ, the graph is saved in an unsorted array (std::vector).
Analogously to CTJ, the subclass closure is performed of-
fline and materialized. The algorithm uses hashtable indexes
(std::unordered map) over the array that enable sampling in
O(1) time. In the case of distinct – as there is no formal
support for this operator in WJ – we augment it with the
technique proposed by Haas et al. in Ripple Join [28], [63]
for performing online aggregation in the distinct case: this
technique stores the set of samples seen thus far and rejects
new samples that have already been seen.

AJ is implemented on top of WJ and CTJ; it likewise
assumes that the subclass closure has been materialized.
Our implementation uses a hybrid hashtable/trie data-structure
where the hashtable indexes point to a sorted array, allowing
O(1)-time sampling for WJ and O(log(n))-time search for
CTJ. Analogously to CTJ, AJ maintains four index orders
and the same caching structure. Thus, all systems use a
similar amount of memory which fits into the memory of our
server. Specifically, the indexes for all systems use 72GB and
194GB of memory for the DBpedia and LinkedGeoData KGs
(described below), respectively. We note that that much larger
KGs may not fit into memory, and leave the investigation of
index compression and paging techniques for future work.
Unlike WJ, AJ uses its own unbiased estimator for distinct
(per Section IV).

B. Methodology

Data. Our data include two large-scale knowledge graphs:
DBpedia [1] and LinkedGeoData [3]; details of these two
graphs are presented in Table I. DBpedia contains multi-
domain data extracted from Wikimedia projects such as
Wikipedia; we take the English version of DBpedia v.3.6,
containing more than 400 million RDF triples, 370 thousand
classes and 61 thousand properties. LinkedGeoData specializes
in spatial data extracted from OpenStreetMap; we take the
November 2015 version, containing more than 1.2 billion RDF
triples, one thousand classes, and 33 thousand properties. In
the case of LinkedGeoData, since no root class is defined in

TABLE I: Dataset information

Dataset Version Size Triples Classes Props

DBpedia 3.6 4.9 GB 432M 370,082 61,944
LGD 2015-11 14.0 GB 1,217M 1,147 33,355

the original data, we explicitly add a class that is the parent of
all classes previously without a parent in the class hierarchy.

Queries. Our queries consist of randomly generated explo-
ration paths that imitate users applying incremental expan-
sions. More specifically, our generator starts with the root class
of a graph. At each step, the generator uniformly selects one
of the expansion operations, which is translated to a SPARQL
query of the form shown in Figure 4. Next, one of the groups
(aka. bar) from the answer is randomly sampled; we apply
a weighted sampling according to the size of the group to
increase focus on large groups (otherwise since the majority
of groups are small, the explorations would fixate on small
groups). The generator continues for four steps or until it gets
an empty result. Queries with empty results are ignored and
not considered part of the path. We ran this generator 25 times
for each graph resulting in a total of 50 distinct non-empty
queries. The error is computed as the absolute difference
between the exact count and estimated count divided by the
exact result; consequently, the reported absolute mean error
(MAE) is the average error over all groups in the result. For
each query, we define the selectivity of a query similarly to
Wander Join [66]:

1− join size including filters
join size without filters

.

In our setting, each filter sets a variable in a query to a
constant. Since each group has its own estimator, we compute
the selectivity of each group separately and average all groups.

Machine and Testing Protocol. Our server has four 2.1 GHz
Xeon E5-2683 v4 processors, 500 GB of DDR4 DRAM, and
runs Ubuntu 16.04.4 Linux. Each experiment was performed
three times, and the average runtime and mean absolute error
(MAE) are reported. MAE will simply be referred to as mean
error. We run each online aggregation algorithm for nine
seconds and report the estimate after each second. For each
query, we tested different join orders of WJ and selected the
one with the best MAE.

C. Results

We first present results on a selection of six queries to
illustrate different behaviour in all four compared approaches.
We then compare the error observed over time for the two
online aggregation approaches over all queries, contrasting
different exploration depths, the two different datasets, and
queries with and without distinct.

Selected queries with distinct. Figure 8 presents the results
for a selection of six queries (with distinct) that illustrate a
variety of behaviours in the compared approaches. Each graph

2 4 6 8
Time (secs)

0

250

500

750

1000

1250

1500
M

ea
n

Er
ro

r (
%

)

dbpedia_Thing_props_ci
Virtuoso: 307.4 secs, CTJ: 4.7 secs

WJ
WJ CI
AJ
AJ CI

(a) Out-property expansion of
class Thing

2 4 6 8
Time (secs)

0

20

40

60

M
ea

n
Er

ro
r (

%
)

dbpedia_Thing_subclss_ci
Virtuoso: 21.7 secs, CTJ: 2.4 secs

WJ
WJ CI
AJ
AJ CI

(b) Subclass expansion of
class Thing

2 4 6 8
Time (secs)

0

100

200

300

400

500

M
ea

n
Er

ro
r (

%
)

dbpedia_Thing_musicalArtist_connections_ci
Virtuoso: 11.8 secs, CTJ: 0.7 secs

WJ
WJ CI
AJ
AJ CI

(c) Object expansion of
property musicalArtist
(subjects of type Thing)

2 4 6 8
Time (secs)

0

100

200

300

400

500

M
ea

n
Er

ro
r (

%
)

linkedgeodata_ConnectTrees_props_ci
Virtuoso: 16854.8 secs, CTJ: 19.4 secs

WJ
WJ CI
AJ
AJ CI

(d) Out-property expansion of
class Thing

2 4 6 8
Time (secs)

0.00

0.05

0.10

0.15

0.20

0.25
M

ea
n

Er
ro

r (
%

)

linkedgeodata_Shop_subclss_ci
Virtuoso: 2.2 secs, CTJ: 8.1 secs

WJ
WJ CI
AJ
AJ CI

(e) Subclass expansion of
class Shop

2 4 6 8
Time (secs)

0

200

400

600

M
ea

n
Er

ro
r (

%
)

linkedgeodata_Place_props_ci
Virtuoso: 56.1 secs, CTJ: 8.3 secs

WJ
WJ CI
AJ
AJ CI

(f) Out-property expansion of
class Place

Fig. 8: The MAE per second of the estimators (WJ and AJ) and 0.95 confidence intervals (WJ CI and AJ CI), as well as exact
runtimes (Virtuoso and CTJ) for a selection of exploration queries: from DBpedia (top) and from LinkedGeoData (bottom)

presents the mean error over time, in seconds, for a specific
exploration query. The times for the exact engines, specifically
Virtuoso and CTJ, are indicated above the graph. The top row
presents results over DBpedia, while the bottom row presents
results over LinkedGeoData. The WJ CI and AJ CI approaches
assume a 0.95 confidence interval.

Virtuoso and CTJ take more than a second to answer
most queries and take notably longer for the larger dataset:
LinkedGeoData (with three times more edges). Focusing on
Virtuoso, we see that while some queries run in the order of
seconds, others run in minutes or even hours: the out-property
expansion of Thing (the root class) on LinkedGeoData runs
for more than four hours (see Figure 8d). On the other
hand, CTJ generally offers a major performance improvement
over Virtuoso: though slower in one case (see Figure 8e), in
the worst cases, CTJ returns results in tens of seconds; for
example, the query that took Virtuoso over 4 hours takes
CTJ around 20 seconds. Still, even with the considerable
performance improvements offered by CTJ, runtimes in the
order of tens of seconds would hurt the interactivity and
usability of our system.

When comparing the mean errors of WJ and AJ over time
in Figure 8, it is clear that the accuracy and convergence of AJ
are considerably higher than WJ for the selected queries. These
improvements are due to the two extended features of AJ: the
reduction of rejection rates using CTJ, and the addition of an
unbiased estimator for the distinct case (we shall test without

distinct in later experiments). We now discuss some individual
cases in more detail.

Looking first at DBpedia, for the out-property expansion
of Thing (Figure 8a), the mean error of WJ is 519% after
one second and 303% after nine seconds; the corresponding
errors for AJ are 7.5% and 3.7%, respectively—almost two
orders of magnitude improvement compared to WJ. The
drastic improvement is mainly because AJ uses partial exact
aggregations that more accurately estimate the large number
of groups in the query (more than 52,000); these groups
have a high per-group selectivity averaging very close to 1.
Consequently, while the sample rejection rate of WJ is 86%
for this query, AJ rejection rate is only 6% (14× lower).

In the object expansion of musicalArtist (Figure 8c),
which originates from the subclass expansion of Thing
(Figure 8b), WJ has a mean error of 163% and 53% after
one and nine seconds, respectively. While still better than WJ,
the accuracy of AJ drops, starting at a mean error of 24% and
reaching 9% (on the other hand, given the high selectivity of
the full join query, namely 0.996, CTJ returns exact results in
less than a second).

Moving to the second row of plots in Figure 8, while
the larger scale of LinkedGeoData notably affects Virtuoso
and CTJ, the results for online aggregation remain similar
to DBpedia. Figure 8d shows that WJ’s estimation of the
out-property expansion on Thing results in a mean error of
194% after one second, which slowly drops to 145% after

1 2 3 4 5 6 7 8 9
Time (secs)

0

200

400

600
M

ea
n

Er
ro

r (
%

)
WJ
AJ

(a) Step 1 queries on DBpedia

1 2 3 4 5 6 7 8 9
Time (secs)

0

200

400

600

800

1000 WJ
AJ

(b) Step 2 queries on DBpedia

1 2 3 4 5 6 7 8 9
Time (secs)

0

200

400

600 WJ
AJ

(c) Step 3 queries on DBpedia

1 2 3 4 5 6 7 8 9
Time (secs)

0

1000

2000

3000 WJ
AJ

(d) Step 4 queries on DBpedia

1 2 3 4 5 6 7 8 9
Time (secs)

0

50

100

150

M
ea

n
Er

ro
r (

%
)

WJ
AJ

(e) Step 1 queries on
LinkedGeoData

1 2 3 4 5 6 7 8 9
Time (secs)

0

100

200

300

400 WJ
AJ

(f) Step 2 queries on
LinkedGeoData

1 2 3 4 5 6 7 8 9
Time (secs)

0

500

1000

1500 WJ
AJ

(g) Step 3 queries on
LinkedGeoData

1 2 3 4 5 6 7 8 9
Time (secs)

0

500

1000

1500

2000 WJ
AJ

(h) Step 4 queries on
LinkedGeoData

Fig. 9: MAE over time of all queries with a varying number of exploration steps (WJ left; AJ right)

nine seconds; for the same query, AJ estimates the results
with a mean error close to 0% from the first second. The
selectivity of the out-property expansion query is 0.88, while
the average per-group selectivity is 0.9998. For this query, AJ
reduces the rejection rate by 3.2× and increases the number
of successful samples by 2.6× due to the reuse of the CTJ
caches for recurrent samples.

The subclass expansion on Shop (Figure 8e) is quickly
well-estimated by both WJ and AJ, resulting in a mean error
of 0.17% and 0.04% after one second, respectively. This is
mostly due to a small number of groups with a low per-
group selectivity. Though estimates worsen in the third query
for an out-property expansion of Place (Figure 8f), AJ still
outperforms WJ in this case.

All queries with distinct. For each exploration depth and
knowledge graph, Figure 9 presents the range of mean errors
for all estimates under the distinct operator as box plots
(specifically, Tukey plots), displaying the interquartile range
of error (the box), the median error (the inner line), and the
most extreme value within 1.5× the interquartile range (the
whiskers). These plots show the variation of mean error across
all queries over time, where we see that AJ is consistently
better than WJ over all randomly generated queries: the
median of mean errors for WJ in some cases reaches over
1,000% after one second and 300% after nine seconds (see
Figure 9d); on the other hand, the same median errors for
AJ are at worst 104% after one second, and 50% after nine
seconds.

An interesting result can be found when comparing the
graphs for a varying numbers of exploration steps. Taking
LinkedGeoData, for example, the accuracy of WJ drops when
comparing the first step (Figure 9e) with subsequent steps

(Figures 9f–9h resp.). A similar trend can be seen for DBpedia
(though less clear moving from step one to two). We attribute
this trend to (1) an increasing number of rejections: later steps
tend to become more specific, adding more selective joins;
and (2) increasing duplicates: as the query becomes larger,
more variables are projected away. Both issues are specifically
addressed by the AJ algorithm. With respect to point (1),
Figure 11 presents the rejection rate for each query sorted by
the rejection rate. It shows that the rejection rate of AJ is much
lower than that of WJ. For example, AJ offers a rejection rate
of less than 25% for 28 queries, while WJ for only 9 queries.

Our results show that the average sample time of both
algorithms is comparable, at about 2.5 microseconds: while
the AJ estimator is sometimes slower to compute (reaching a
maximum sample time of 20 milliseconds), the use of caching
offsets AJ’s slower estimations, resulting in comparable sam-
ple times with WJ.

All queries without distinct. Though our exploration system
requires the distinct operator for counts, we also perform
experiments in the non-distinct case to understand the relative
impact of the unbiased distinct estimator and the partial exact
computations on reducing error in AJ. Figure 10 presents
Tukey plots of mean error over time for all queries without
distinct, and both datasets, separated by the number of explo-
ration steps. Overall we conclude that: (1) the error observed
for WJ drops from the distinct case to the non-distinct case;
(2) the errors generally increase in AJ versus the distinct case;
and (3) AJ continues to significantly outperform WJ, though
by a lesser margin when considering the non-distinct case. We
surmise that though AJ no longer benefits from the unbiased
distinct estimator, it still outperforms WJ in the non-distinct
case due to the partial exact computations; hence the benefits

1 2 3 4 5 6 7 8 9
Time (secs)

0

20

40

60

80

100
M

ea
n

Er
ro

r (
%

)
WJ
AJ

(a) Step 1 queries

1 2 3 4 5 6 7 8 9
Time (secs)

0

50

100

150

200 WJ
AJ

(b) Step 2 queries

1 2 3 4 5 6 7 8 9
Time (secs)

0

250

500

750

1000

1250
WJ
AJ

(c) Step 3 queries

1 2 3 4 5 6 7 8 9
Time (secs)

0

200

400

600

800

1000 WJ
AJ

(d) Step 4 queries

Fig. 10: MAE over time in seconds for queries without the distinct operator (WJ left; AJ right)

0 10 20 30 40 50
Queries sorted by rejection rate

0.00

0.25

0.50

0.75

1.00

Re
je

ct
io

n
ra

te

WJ
AJ

Fig. 11: Rejection rate of AJ and WJ on each query

of AJ are not only due to the unbiased distinct estimator.

Summary. With respect to the traditional approach of com-
puting exact results, exploration queries take in the order of
hours for Virtuoso, and in the order of tens of seconds for CTJ,
with both approaches slowing down for the larger LinkedGeo-
Data graph when compared with DBpedia. Computing exact
counts (with either approach) is not compatible with our goal
of interactive runtimes while exploring large-scale knowledge
graphs.

With respect to comparing online aggregation methods (WJ
vs. AJ), we find that AJ significantly reduces error (by orders
of magnitude) versus WJ over the same time period, and in
most cases can quickly converge to estimates with less than 1%
mean error. We also find that the relative benefit of AJ and
WJ improves as more exploration steps are added. Through
experiments on non-distinct queries, we find that AJ continues
to significantly reduce error versus WJ due to its inclusion of
CTJ for partial exact computations.

Overall we find that online aggregation is a viable alterna-
tive for interactively exploring large-scale knowledge graphs,
for which our proposed AJ algorithm – using partial exact
computations and an unbiased distinct estimator – significantly
reduces error.

VI. CONCLUSIONS

We presented an efficient implementation of a system for
exploring large knowledge graphs. The system utilizes algo-
rithms that specialize in the exploration queries of our system.

Our queries are based on a formal framework for the visual
exploration of knowledge graphs, where an exploration step
consists of the transformation of the bar of one bar chart
into the next bar chart. We investigated the implementation
of this framework using various query engines, including a
SPARQL engine, a recent in-memory join algorithm, and on-
line aggregation. Finally, as our main contribution, we devised
and analyzed Audit Join: a specialized online-aggregation al-
gorithm that combines the random walks of Wander Join with
exact computation, and extends its estimator to accommodate
the count aggregations under the distinct operator. Our experi-
ments show that the runtimes of both methods for performing
exact counts are too slow for supporting interactive exploration
over large-scale knowledge graphs. Focusing thereafter on
online aggregation, we find that when compared with Wander
Join, Audit Join significantly reduces error with respect to time
in all experiments, often by orders of magnitude, including
both distinct and non-distinct cases. This we believe that Audit
Join is a promising approach for powering the exploration of
large-scale knowledge graphs.

Looking to the future, we see two principal lines of research.

The first line relates to further improving AuditJoin. For
one, we wish to arrive at a more general understanding of how
partial exact computation complements online aggregation in
order to devise a more principled way to combine both; our
results, along with those of Zhao et al. [30], show this to be
a very promising approach in general, and more work can be
done to refine this idea. We will also explore the application
of our approach to general join queries, beyond the acyclic
queries produced by our system, as well as support for other
types of query operators and aggregation functions.

The second line of research relates to exploring and fur-
ther developing use-cases for AuditJoin. We wish to explore
directions for improving the usability of our exploration sys-
tem based on AuditJoin. Some envisaged extensions include:
allowing users to explore and contrast multiple knowledge
graphs simultaneously, adding support for incremental index-
ing on updates, extending filtering capabilities, and adding
support for further semantics beyond subclass closure. We are
also interested in exploring other use-cases for AuditJoin in the
context of scenarios requiring efficient cardinality estimations
over large-scale knowledge graphs.

REFERENCES

[1] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “DBpedia - a crystallization point for the web of data,”
Web Semantics, vol. 7, no. 3, pp. 154–165, Sep. 2009.

[2] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,
“Freebase: a collaboratively created graph database for structuring
human knowledge,” in ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2008, pp. 1247–1250.

[3] S. Auer, J. Lehmann, and S. Hellmann, “Linkedgeodata: Adding a spatial
dimension to the web of data,” in The Semantic Web - ISWC 2009,
A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard,
E. Motta, and K. Thirunarayan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 731–746.

[4] D. Vrandecic and M. Krötzsch, “Wikidata: a free collaborative knowl-
edgebase,” Commun. ACM, 2014.

[5] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “YAGO2:
A spatially and temporally enhanced knowledge base from wikipedia,”
Artif. Intell., vol. 194, pp. 28–61, 2013.

[6] N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor,
“Industry-scale knowledge graphs: lessons and challenges,” Commun.
ACM, vol. 62, no. 8, pp. 36–43, 2019.

[7] M. B. Ellefi, Z. Bellahsene, J. Breslin, E. Demidova, S. Dietze, J. Szy-
manski, and K. Todorov, “RDF Dataset Profiling – a Survey of Features,
Methods, Vocabularies and Applications,” Semantic Web, 2018.

[8] S. Auer, J. Demter, M. Martin, and J. Lehmann, “LODStats - An
Extensible Framework for High-Performance Dataset Analytics,” in
Knowledge Engineering and Knowledge Management (EKAW), 2012.

[9] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann, “Profiling and
mining RDF data with ProLOD++,” in International Conference on Data
Engineering (ICDE), 2014.

[10] N. Bikakis, G. Papastefanatos, M. Skourla, and T. Sellis, “A hierarchical
aggregation framework for efficient multilevel visual exploration and
analysis,” Semantic Web, vol. 8, no. 1, pp. 139–179, 2017.

[11] R. A. A. Principe, B. Spahiu, M. Palmonari, A. Rula, F. D. Paoli,
and A. Maurino, “ABSTAT 1.0: Compute, Manage and Share Seman-
tic Profiles of RDF Knowledge Graphs,” in European Semantic Web
Conference (ESWC), 2018, pp. 170–175.

[12] T. Yahav, O. Kalinsky, O. Mishali, and B. Kimelfeld, “eLinda: Explorer
for Linked Data,” in Extending Database Technology (EDBT), 2018.

[13] J. Moreno-Vega and A. Hogan, “GraFa: Scalable Faceted Browsing for
RDF Graphs,” in International Semantic Web Conference (ISWC), 2018.

[14] T. Neumann and G. Weikum, “Rdf-3x: A risc-style engine for rdf,” Proc.
VLDB Endow., pp. 647–659, Aug. 2008.

[15] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and
R. Velkov, “Owlim: A family of scalable semantic repositories,” Semant.
web, vol. 2, no. 1, pp. 33–42, Jan. 2011.

[16] B. B. Thompson, M. Personick, and M. Cutcher, “The bigdata® RDF
graph database,” in Linked Data Management. CRC Press, 2014, pp.
193–237.

[17] J. M. Brunetti, R. G. González, and S. Auer, “From overview to facets
and pivoting for interactive exploration of Semantic Web data,” IJSWIS,
vol. 9, no. 1, pp. 1–20, 2013.

[18] H. Bast and B. Buchhold, “An index for efficient semantic full-text
search,” in Conference on Information and Knowledge Management
(CIKM), 2013.

[19] O. Erling, “Virtuoso, a Hybrid RDBMS/Graph Column Store,” IEEE
Data Eng. Bull., vol. 35, no. 1, pp. 3–8, 2012.

[20] BSBM, “Berlin sparql benchmark,” http://wifo5-03.informatik.
uni-mannheim.de/bizer/berlinsparqlbenchmark/.

[21] C. Bizer and A. Schultz, “The berlin SPARQL benchmark,” Int. J.
Semantic Web Inf. Syst., vol. 5, no. 2, pp. 1–24, 2009.

[22] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress
testing of RDF data management systems,” in International Semantic
Web Conference (ISWC), 2014, pp. 197–212.

[23] T. L. Veldhuizen, “Triejoin: A simple, worst-case optimal join algo-
rithm,” in ICDT, 2014, pp. 96–106.

[24] M. Abo Khamis, H. Q. Ngo, and A. Rudra, “Faq: Questions asked
frequently,” in Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, ser. PODS ’16. New
York, NY, USA: ACM, 2016, pp. 13–28.

[25] H. Q. Ngo, D. T. Nguyen, C. Re, and A. Rudra, “Beyond worst-
case analysis for joins with minesweeper,” in Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, ser. PODS ’14. New York, NY, USA: ACM, 2014, pp. 234–
245.

[26] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré,
“Emptyheaded: A relational engine for graph processing,” ACM Trans.
Database Syst., 2017.

[27] O. Kalinsky, Y. Etsion, and B. Kimelfeld, “Flexible caching in trie joins,”
in EDBT, 2017, pp. 282–293.

[28] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in
Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’97. New York, NY, USA: ACM,
1997, pp. 171–182.

[29] F. Li, B. Wu, K. Yi, and Z. Zhao, “Wander join: Online aggregation via
random walks,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, 2016.

[30] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi, “Random sampling
over joins revisited,” in Proceedings of the 2018 International Confer-
ence on Management of Data, ser. SIGMOD ’18. ACM, 2018, pp.
1525–1539.

[31] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“DBpedia – A large-scale, multilingual knowledge base extracted from
Wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[32] A.-S. Dadzie and M. Rowe, “Approaches to visualising linked data: A
survey,” Semantic Web, vol. 2, no. 2, pp. 89–124, 2011.

[33] Y. Tzitzikas, N. Manolis, and P. Papadakos, “Faceted exploration of
RDF/S datasets: a survey,” J. Intell. Inf. Syst., vol. 48, no. 2, pp. 329–
364, 2017.

[34] m. schraefel, M. Wilson, A. Russell, and D. A. Smith, “mSpace:
improving information access to multimedia domains with multimodal
exploratory search,” Commun. ACM, vol. 49, no. 4, pp. 47–49, 2006.

[35] E. Oren, R. Delbru, and S. Decker, “Extending faceted navigation for
RDF data,” in International Semantic Web Conference (ISWC), 2006,
pp. 559–572.

[36] M. Hildebrand, J. van Ossenbruggen, and L. Hardman, “/facet: A
browser for heterogeneous Semantic Web repositories,” in International
Semantic Web Conference (ISWC), 2006, pp. 272–285.

[37] E. Mäkelä, E. Hyvönen, and S. Saarela, “Ontogator - A semantic view-
based search engine service for web applications,” in International
Semantic Web Conference (ISWC), 2006, pp. 847–860.

[38] M. R. Kamdar, D. Zeginis, A. Hasnain, S. Decker, and H. F. Deus,
“Reveald: A user-driven domain-specific interactive search platform for
biomedical research,” Journal of Biomedical Informatics, vol. 47, pp.
112–130, 2014.

[39] Y. Tzitzikas, N. Bailly, P. Papadakos, N. Minadakis, and G. Nikitakis,
“Using preference-enriched faceted search for species identification,”
IJMSO, vol. 11, no. 3, pp. 165–179, 2016.

[40] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle,
H. Düwiger, and U. Scheel, “Faceted Wikipedia Search,” in Business
Information Systems (BIS), 2010, pp. 1–11.

[41] M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska, and
D. Zheleznyakov, “Faceted search over RDF-based knowledge graphs,”
J. Web Sem., vol. 37-38, pp. 55–74, 2016.

[42] H. Wang, Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran, Y. Yu, and Y. Pan,
“Semplore: A scalable IR approach to search the web of data,” J. Web
Sem., vol. 7, no. 3, pp. 177–188, 2009.

[43] S. Ferré, “Expressive and scalable query-based faceted search over
SPARQL endpoints,” in International Semantic Web Conference (ISWC),
2014, pp. 438–453.

[44] D. F. Huynh and D. R. Karger, “Parallax and companion: Set-based
browsing for the data web,” Technical Report, http://davidhuynh.net/
media/papers/2009/www2009-parallax.pdf.

[45] A. Wagner, G. Ladwig, and T. Tran, “Browsing-oriented semantic
faceted search,” in Database and Expert Systems Applications (DEXA),
2011.

[46] P. Heim, T. Ertl, and J. Ziegler, “Facet graphs: Complex semantic
querying made easy,” in The Semantic Web (ESWC), 2010, pp. 288–
302.

[47] Š. Čebirić, F. Goasdoué, and I. Manolescu, “Query-oriented summariza-
tion of RDF graphs,” PVLDB, vol. 8, no. 12, pp. 2012–2015, 2015.

[48] M. P. Consens, V. Fionda, S. Khatchadourian, and G. Pirrò, “S+EPPs:
Construct and Explore Bisimulation Summaries, plus Optimize Naviga-
tional Queries; all on Existing SPARQL Systems,” PVLDB, 2015.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf
http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf

[49] M. Kirchberg, E. Leonardi, Y. S. Tan, S. Link, R. K. L. Ko, and B. Lee,
“Formal Concept Discovery in Semantic Web Data,” in International
Conference on Formal Concept Analysis (ICFCA). Springer, 2012, pp.
164–179.

[50] M. Rouane-Hacene, M. Huchard, A. Napoli, and P. Valtchev, “Relational
Concept Analysis: mining concept lattices from multi-relational data,”
Ann. Math. Artif. Intell., vol. 67, no. 1, pp. 81–108, 2013.

[51] S. Kinsella, U. Bojars, A. Harth, J. G. Breslin, and S. Decker, “An
interactive map of semantic web ontology usage,” in International
Conference on Information Visualisation, 2008, pp. 179–184.

[52] S. Campinas, T. Perry, D. Ceccarelli, R. Delbru, and G. Tummarello,
“Introducing RDF graph summary with application to assisted SPARQL
formulation,” in Database and Expert Systems Applications Workshop
(DEXA). IEEE Computer Society, 2012, pp. 261–266.

[53] M. Dudás, V. Svátek, and J. Mynarz, “Dataset summary visualization
with lodsight,” in Extended Semantic Web Conference (ESWC) – Demo.
Springer, 2015, pp. 36–40.

[54] F. Florenzano, D. Parra, J. L. Reutter, and F. Venegas, “A Visual Aide for
Understanding Endpoint Data,” in International Workshop on Visualiza-
tion and Interaction for Ontologies and Linked Data (VOILA@ISWC).
CEUR-WS.org, 2016, pp. 102–113.

[55] “Sparql,” https://www.w3.org/TR/sparql11-overview/.
[56] “Openlink Virtuoso,” https://virtuoso.openlinksw.com/.
[57] A. Atserias, M. Grohe, and D. Marx, “Size bounds and query plans for

relational joins,” in Proceedings of the 2008 49th Annual IEEE Sympo-
sium on Foundations of Computer Science, ser. FOCS ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 739–748.

[58] D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré,
and A. Rudra, “Join processing for graph patterns: An old dog with
new tricks,” in Proceedings of the GRADES’15. New York, NY, USA:
ACM, 2015, pp. 2:1–2:8.

[59] P. J. Haas, “Large-sample and deterministic confidence intervals for on-

line aggregation,” in Proceedings of the Ninth International Conference
on Scientific and Statistical Database Management, ser. SSDBM ’97.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 51–63.

[60] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie, “Online aggre-
gation for large mapreduce jobs,” PVLDB, 2011.

[61] C. Qin and F. Rusu, “Parallel online aggregation in action,” in Confer-
ence on Scientific and Statistical Database Management, SSDBM ’13,
Baltimore, MD, USA, July 29 - 31, 2013, 2013, pp. 46:1–46:4.

[62] ——, “PF-OLA: a high-performance framework for parallel online
aggregation,” Distributed and Parallel Databases, vol. 32, no. 3, pp.
337–375, 2014.

[63] P. J. Haas and J. M. Hellerstein, “Ripple joins for online aggregation,”
in Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’99. ACM, 1999, pp. 287–298.

[64] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska,
“Revisiting reuse for approximate query processing,” PVLDB, vol. 10,
no. 10, pp. 1142–1153, 2017.

[65] Y. Chen and K. Yi, “Two-level sampling for join size estimation,” in
SIGMOD Conference. ACM, 2017, pp. 759–774.

[66] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case optimal join
algorithms,” J. ACM, vol. 65, no. 3, pp. 16:1–16:40, 2018.

[67] D. T. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré,
and A. Rudra, “Join processing for graph patterns: An old dog with new
tricks,” in GRADES@SIGMOD/PODS. ACM, 2015, pp. 2:1–2:8.

[68] D. G. Horvitz and D. J. Thompson, “A generalization of sampling
without replacement from a finite universe,” Journal of the American
statistical Association, vol. 47, no. 260, pp. 663–685, 1952.

[69] PostgreSQL, “How the planner uses statistics,” https://www.postgresql.
org/docs/current/static/planner-stats-details.html.

[70] D. Vengerov, A. C. Menck, M. Zaı̈t, and S. Chakkappen, “Join size
estimation subject to filter conditions,” PVLDB, vol. 8, no. 12, pp. 1530–
1541, 2015.

https://www.w3.org/TR/sparql11-overview/
https://virtuoso.openlinksw.com/
https://www.postgresql.org/docs/current/static/planner-stats-details.html
https://www.postgresql.org/docs/current/static/planner-stats-details.html

	Introduction
	Related Work
	Exploration Use-Case
	Query Engine and Algorithms
	Query Translation and Structure
	Aggregation via Cached Trie Join
	Wander Join
	Audit Join

	Experimental Study
	Configuration
	Methodology
	Results

	Conclusions
	References

