
MillenniumDB: A Multi-modal, Multi-model Graph Database
Domagoj Vrgoč

PUC Chile & IMFD Chile

Santiago, Chile

vrdomagoj@uc.cl

Carlos Rojas

IMFD Chile

Santiago, Chile

cirojas6@uc.cl

Renzo Angles

Universidad de Talca & IMFD Chile

Talca, Chile

rangles@utalca.cl

Marcelo Arenas

PUC Chile & IMFD Chile

Santiago, Chile

marenas@ing.puc.cl

Vicente Calisto

IMFD Chile

Santiago, Chile

vicente.calisto@imfd.cl

Benjamín Farías

PUC Chile & IMFD Chile

Santiago, Chile

bffarias@uc.cl

Sebastían Ferrada

Universidad de Chile

Santiago, Chile

scferradaa@gmail.com

Tristan Heuer

IMFD Chile

Santiago, Chile

theuer@uc.cl

Aidan Hogan

Universidad de Chile & IMFD Chile

Santiago, Chile

ahogan@dcc.uchile.cl

Gonzalo Navarro

Universidad de Chile & IMFD Chile

Santiago, Chile

gnavarro@dcc.uchile.cl

Alexander Pinto

PUC Chile & IMFD Chile

Santiago, Chile

aupinto@uc.cl

Juan Reutter

PUC Chile & IMFD Chile

Santiago, Chile

jlreutte@uc.cl

Henry Rosales

Universidad de Chile & IMFD Chile

Santiago, Chile

hrosmendez@gmail.com

Etienne Toussiant

IMFD Chile

Santiago, Chile

tsst.etienne@gmail.com

ABSTRACT

Current knowledge graphs encompass diverse data formats, in-

cluding images, text, tables, audio files, and videos. Additionally,

the graph database ecosystem is required to support multiple co-

existing data models. Addressing these challenges is essential for

promoting interoperability between data sources. This demo in-

troduces MillenniumDB, a high-performing, open-source graph

database handling this diversity of data formats and models.

MillenniumDB is a multi-modal, multi-model graph database,

supporting the popular property graph paradigm, the SemanticWeb

format RDF, and the multi-layered graph model, which combines

and extends the two. In terms of querying, its provides support

for a Cypher-like language over property graphs and multilayered

graphs, as well as SPARQL 1.1 support over RDF. The engine is build

on a solid theoretical foundation and it leverages worst-case optimal

join algorithms in combination with traditional relational query op-

timization. It also support a wide array of graph-specific tasks such

as path finding, pattern recognition, and similarity search on multi-

modal data. In this demo, we will showcase how MillenniumDB is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0422-2/24/06. . . $15.00

https://doi.org/10.1145/3626246.3654757

currently being used to host three public multi-modal knowledge

graphs. The first one, a multi-layered graph called TelarKG, was

developed at IMFD Chile to track the information about the Chilean

constitutional reform. In the second one, called BibKG, we integrate

information about Computer Science publications from different

sources and make them available as a property graph. Finally, for

RDF, we provide a SPARQL endpoint for Wikidata, the largest

knowledge graph openly available online. We remark that our end-

points have stable links, allowing the audience to post queries using

their Web browser with no restrictions, and will be available during

the review process and during the demo.

CCS CONCEPTS

• Information systems→ Data management systems; Data-

base query processing; Graph-based database models.

KEYWORDS

graph databases, knowledge graphs, property graphs

ACM Reference Format:

Domagoj Vrgoč, Carlos Rojas, Renzo Angles, Marcelo Arenas, Vicente Cal-

isto, Benjamín Farías, Sebastían Ferrada, Tristan Heuer, Aidan Hogan, Gon-

zalo Navarro, Alexander Pinto, Juan Reutter, Henry Rosales, and Etienne

Toussiant. 2024. MillenniumDB: A Multi-modal, Multi-model Graph Data-

base. In Companion of the 2024 International Conference on Management of
Data (SIGMOD-Companion ’24), June 9–15, 2024, Santiago, AA, Chile. ACM,

New York, NY, USA, 4 pages. https://doi.org/10.1145/3626246.3654757

https://doi.org/10.1145/3626246.3654757
https://doi.org/10.1145/3626246.3654757

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Domagoj Vrgoč et al.

1 INTRODUCTION

Graph databases have become a key database model in recent years.

Graphs offer a much more intuitive and flexible representation of

several application domains than traditional relational databases,

including bioinformatics, social networks, transport, and more be-

sides [1]. Graphs can also be used to integrate information that

spans multiple domains, as seen in open knowledge graphs such as

Wikidata [9]. The popularity of graph databases has spurred the

development of several data models, such as property graphs [1]

and RDF [5]; query languages including Cypher [8], SPARQL [4]

and GQL [7]; and numerous graph database engines.

But even though the graph database ecosystem is thriving, there

are still many requirements that are not yet addressed or entirely

solved by current systems. As we explain below, some of these re-

quirements involve the wide range of models and query languages

that are currently available. We also find newer technical require-

ments related to graph analytics and machine learning, driven by

modern applications using graph data. This shows that there is still

a need to develop graph database systems.

In this demonstration we present MillenniumDB [17]: an open-

source graph database system built specifically to address three

fundamental requirements. The first and most important require-

ment ismulti-modality. Knowledge graphs today are composed

of data that is stored in different formats. Wikidata [9], for example

contains images, text data, tables, and even audio files. However,

existing systems can only point to these resources, filtering them

based on their neighboring graph structure, or possible informa-

tion about their names. Hence, we envision that graph database

systems should be able to filter multi-modal data in a native

way, allowing queries that, for example, return scientists from a
particular university working on topics relevant for SIGMOD (text),
or return paintings similar to the artwork by a given artist (images).
We address this by incorporating vector-based similarity search

into our graph query engine.

The second fundamental requirement is incorporating sup-

port for different data models and query languages. A key

challenge relating to interoperability within the graph database

ecosystem is the variety of models and query languages. From prop-

erty graphs through RDF to RDF
∗
, and from Cypher through GQL

to SPARQL, numerous standardization efforts have not yet resulted

in a single model and query language followed and implemented by

every graph database system. Furthermore, given the differences

between, say, property graphs and RDF, there are enough reasons to

assume we are several years short of a unifying standard, if indeed

such a standard will ever emerge. Hence, we envision that systems

should natively support several query languages and data

models. We have addressed this requirement by making the inter-

operability of our engine a priority from its inception, and a key

criterion of its design. The foundations of these distinctive models

and query languages share key characteristics that can be exploited

for interoperability purposes. Different data models are taken care

of by various indexes, all of which provide interoperable interfaces

that are then consumed by our engine. This allows us to support,

on the same system, a range of graph-based models, including RDF,

property graphs, and even graphs using a custom model based on

quads that we call multilayer graphs [2].

As is usual in graph databases, performance is one of the most

important aspects. In this context, MillenniumDB aims to provide

and push the boundaries of state-of-the-art performance. Notably,

our query engine integrates traditional join-based algorithms with

novel worst-case optimal algorithms. The coordination between

these two query answering approaches is important to ensure best

performance when dealing with complex queries [10].

In comparison to existing alternatives, most graph databases

work with one data model (with a notable exception being Amazon

Neptune). In contrast, MillenniumDB supports both RDF and mul-

tilayer graphs, the latter being a model flexible enough to store a

generalized form of property graphs [2]. In terms of multi-modality,

to the best of our knowledge, there are no graph database systems

that can support both semantic similarity search and graph query

answering at the same time. Neo4j, for example, supports storing

tensor data for nodes, but such tensors can only be consumed for

analytics, and do not integrate with querying functionalities. Unlike

many alternatives, MillenniumDB is an open source graph database

engine that can be accessed, extended and tested freely.

2 SYSTEM OVERVIEW

We now give a brief overview of the MillenniumDB graph database

system. Figure 1 provides a quick overview of our architecture, and

the full codebase can be found at https://github.com/MillenniumDB.

2.1 Storage Manager

MillenniumDB stores the graph internally as tuples of 8-byte iden-

tifiers, distinguishing the different components in data models (e.g.

nodes, edges and values in a property graph database). Then we

use B+ trees to store graphs. The number of B+ trees depends on

the data model used for a particular domain graph, but, for ex-

ample, in the case of property graphs one would have to store

relations (sourceid, edgeid, targetid) specifying the id of the source
and target nodes, and of the edge nodes, a relation storing all ids,

a relation storing the label of each object, and a relation storing

every attribute of a node or edge. In order to support traditional and

worst-case optimal joins, we store different permutations for each

of these relations (as in e.g. [11]), which allow us to access easily

all information for nodes or edge, for example, all target nodes of a

given edge, or all edges going from a source node, etc.

To support similarity queries, we also support a binary rela-

tion that contains tensor data for (a subset of) node or edge ids.

These tensors are further indexed using an LSHForest scheme [3],

which can be created for a variety of distances, including Euclidean

distance and angular distance.

2.2 Query Processor

The evaluation of queries in MillenniumDB follows the standard

pipeline of a database query evaluation process. The string of the

query is first parsed, and then translated into a logical plan. In turn,

this logical plan is analyzed and transformed into a physical plan,

which can then be evaluated.

Two notable inclusions in our engine are support formultiway

joins using worst-case optimal algorithms and support for

similarity search. Regarding multiway joins, our logical query

plans may include pieces of graph patterns that are evaluated using

https://github.com/MillenniumDB

MillenniumDB: A Multi-modal, Multi-model Graph Database SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

Disk

Buffer Manager

Indexing

Storage Manager

Parser

Query Rewrite

Optimizer

Evaluation

Query Processor

Object File

DomainGraph

Labels

Properties

RDF

Tensors

Cost-based plans

Worst-case optimal

Path queries

MQL/Cypher

SPARQL

Figure 1: MillenniumDB system architecture

Leapfrog Trie Join (LTJ) [15], a worst case optimal join that works

by computing the join of several relations at once. These types of

joins have been shown to produce much better results for more

complex graph patterns (see e.g. [11]), and indeed we also perceive

this in our own evaluation [17]. Regarding similarity search, our

system integrates a query command to ask for node ids that are

most similar to a given node or resource. To evaluate this command,

the query engine treats LSHForests as a virtual relation, which is

then integrated into physical plans.

2.3 Performance

In a previous article [17], we presented an experimental evaluation

of MillenniumDB, comparing it with five graph-oriented database

systems: Blazegraph [14], a Java-based RDF store; JenaTDB [13],

a component of Jena for storing and query RDF data; JenaLF [11],

a version of JenaTDB implementing a Leapfrog-style algorithm;

Virtuoso [6], a relational-based RDF store; and Neo4J [18].

The experimental evaluation was based onWikidata [16], a large

real-world knowledge graph. Specifically, we used a “truthy” dump

version, keeping only triples in which the subject position is a

Wikidata entity, and the predicate is a direct property. The size of

the dataset was 1,257,169,959 RDF triples, resulting in the following

storage costs for each system: MillenniumDB = 203GB, BlazeGraph

= 70GB, JenaTDB = 110GB, JenaLF = 195GB, Virtuoso = 70GB, and

Neo4j = 112GB. MillenniumDB uses extra disk space because of the

additional indices needed to support worst-case optimal join over

domain graphs (similar to the case of JenaLF).

We conducted a performance evaluation focused on two funda-

mental query features: graph pattern matching and path match-

ing. Our evaluation of graph pattern matching included 835 real-

world graph pattern queries and 850 synthetic queries. The real-

world queries were obtained from the Wikidata SPARQL query

log [12], and were grouped into single (399 queries) and multiple

(436 queries), according to the number of triple patterns. The for-

mer group tests the triple matching capabilities of the systems,

whereas the latter group tests join performance. In order to cre-

ate the synthetic graph pattern queries, we selected 17 different

complex join patterns (based on [11]), then we generated 50 dif-

ferent queries for each pattern, resulting in a total of 850 queries.

These synthetic queries were designed to test the performance of

worst-case optimal joins. For evaluating path matching, we used

1,683 queries involving regular path expressions (i.e. 2RPQ queries).

These queries were extracted from a log of SPARQL queries that

produced timeouts on the Wikidata endpoint [12].

Our results show that MillenniumDB is the highest performing

system, with speedups of 3-10 times over all datasets as compared

to other engines. This is true both for average query times and

for their distribution. Equally, MillenniumDB was the most stale

engine with fewest timeouts and errors (see [17] for specifics).

3 DEMONSTRATION

The goals of this demonstration are twofold. First, we aim to show

how MillenniumDB addresses the three fundamental requirements

presented in the introduction: how it handles multi-modal data,

how it incorporates support for different data models and query

languages, and how its design pushes the boundaries of state-of-the-

art performance in query evaluation. Second, the demonstration

is designed to provide attendees with a hands-on experience with

MillenniumDB. Specifically, during the demonstration, attendees

will learn about our datasets and services, retrieve interesting infor-

mation in a variety of domains, get an idea of how MillenniumDB

works, and understand how it could be used for their research or

applications.

3.1 The Experience

For each dataset, participants will be able to either access the end-

points through their web browser, or by navigating in a dedicated

computer. Endpoints carry the following information:

• A brief description of the dataset, how data was gathered,

and what it contains.

• A description of the schema of the graph.

• A wide variety of query examples they can try out.

• A white-box interface where users can alter examples or try

out new queries on their own.

Learning about the internals of the database. Additionally, for

the demonstration, a selection of example queries will be linked

with a description of the logical plan, the physical plan, and the

search process that generated these plans. This will give users

more knowledge on how their queries were evaluated, whether

traditional or worst-case optimal joins were used, and how was the

semantic similarity query processed, if applicable.

Following the same idea, our dedicated computer will have a

version of the endpoint for which the console will show, in real

time, the plans selected for this query. Our team will then be able to

explain, in real time, the process used to select the best alternative

for evaluating the query, and the technology used by the engine.

Finally, attendees will be encouraged to download and try out

MillenniumDB on their personal computers. The documentation

and installation instructions are currently available at our docu-

mentation page (https://mdb.imfd.cl/doc/).

3.2 The Datasets

Users will be able to query and explore the following three knowl-

edge graphs. Please note that these endpoints are currently main-

tained under the assumption that they will receive a light number

of requests. Prior to the demo these will be set up in an environment

ready to accept and coordinate a larger load of requests.

BibKG. This is a bibliographic knowledge graph constructed

by integrating DBLP (https://dblp.org) and ArnetMiner (https://

www.aminer.org/). It contains full information about publications,

scientists and their fields, and is an ideal database to grasp the

concept of browsing. Figure 2 shows a possible pathway users may

engage with when browsing the graph: they would start searching

for a particular author, then browse their papers, and continue from

there. Users in this endpoint will be encouraged to run so-called

https://mdb.imfd.cl/doc/
https://dblp.org
https://www.aminer.org/
https://www.aminer.org/

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Domagoj Vrgoč et al.

Figure 2: Exploring scientific contributions of Alexandra Me-

liou with BibKG, powered by MillenniumDB. Data is queried

using a property graph query language.

triangle queries, and other complex graph queries, so that they

can experience for themselves how our engine selects between

traditional and worst-case optimal joins for their query plans. The

endpoint is currently available at https://bibkg.imfd.cl/.

TelarKG. This is a political knowledge graph containing infor-

mation about the (first) recent Chilean constitutional process. This

knowledge graph contains information in different modalities: ev-

erything that the members of the constitutional convention stated

and voted for in plenary sessions, including both video and tran-

scripts of the sessions, plus their social network trace, and further

public social and media information that we retrieved during the

process. Figure 3 shows how users can query and interact with text

data, in this case looking for the text that a particular convention

member voted in favor of. Furthermore, users of this endpoint will

be encouraged to try out our semantic similarity functionalities,

allowing them to query, for example, for all videos in which a partic-

ular member of the convention spoke about a subject. The endpoint

is currently available at https://telarkg.imfd.cl/.

Wikidata. This is a knowledge graph natively available in RDF

format. We use this to showcase how MillenniumDB can han-

dle different data models and/or query languages (in this case

RDF/SPARQL). This endpoint corresponds to a snapshot of the

entire Wikidata database [9], and is currently available at https:

//wikidata.imfd.cl/. Figure 4 shows the querying page of this end-

point, where nuances of SPARQL, such as prefixes, are provided to

help users write their queries. The SPARQL query in this figure is

a triangle pattern, which MilleniumDB evaluates efficiently using

worst-case optimal joins.

ACKNOWLEDGMENTS

Work supported by ANID – Millennium Science Initiative Program

– Code ICN17_002 and ANID Fondecyt Regular project 1221799.

REFERENCES

[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,

and Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5 (2017). https://doi.org/10.1145/3104031

[2] Renzo Angles, Aidan Hogan, Ora Lassila, Carlos Rojas, Daniel Schwabe, Pedro A.

Szekely, and Domagoj Vrgoc. 2022. Multilayer graphs: a unified data model for

graph databases. In GRADES-NDA’22. ACM, 11:1–11:6.

[3] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-

tuning indexes for similarity search. In WWW’05. 651–660.

Figure 3: Querying material for which a certain member of

the Chilean Constitutional Convention voted in favor within

TelarKG, powered by MillenniumDB. Data is queried using a

property graph query language, and this text is also subject

to be queried for semantic similarity.

Figure 4: Wikidata endpoint powered by MillenniumDB. The

endpoint uses SPARQL for querying and a YASGUI frontend.

[4] World Wide Web Consortium et al. 2013. SPARQL 1.1 overview. (2013).

[5] World Wide Web Consortium et al. 2014. RDF 1.1 concepts and syntax. (2014).

[6] Orri Erling. 2012. Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data
Eng. Bull. 35, 1 (2012), 3–8. http://sites.computer.org/debull/A12mar/vicol.pdf

[7] Alin Deutsch et. al. 2022. Graph Pattern Matching in GQL and SQL/PGQ. In

SIGMOD ’22. https://doi.org/10.1145/3514221.3526057

[8] Nadime Francis et. al. 2018. Cypher: An Evolving Query Language for Property

Graphs. In SIGMOD 2018. https://doi.org/10.1145/3183713.3190657

[9] The Wikimedia Foundation. 2021. Wikidata:Database download. https://www.

wikidata.org/wiki/Wikidata:Database_download

[10] Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and

Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational

Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891–1904.
[11] AidanHogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. 2019. AWorst-Case

Optimal Join Algorithm for SPARQL. In ISWC’19. Springer, 258–275.
[12] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and Adrian

Bielefeldt. 2018. Getting the Most Out of Wikidata: Semantic Technology Usage

in Wikipedia’s Knowledge Graph. In ISWC 2018.
[13] Jena Team. 2021. Jena TDB. https://jena.apache.org/documentation/tdb/

[14] Bryan Thompson, Mike Personick, and Martyn Cutcher. 2014. The Bigdata® RDF

Graph Database. In Linked Data Management. Chapman and Hall/CRC, 193–237.

[15] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.

In ICDT’14. 96–106.
[16] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[17] Domagoj Vrgoč, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,

Carlos Buil-Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan

Romero. 2023. MillenniumDB: An Open-Source Graph Database System. Data
Intell. 5, 3 (2023), 560–610. https://doi.org/10.1162/dint_a_00229

[18] Jim Webber. 2012. A programmatic introduction to Neo4j. In SPLASH ’12, Gary T.

Leavens (Ed.). https://doi.org/10.1145/2384716.2384777

https://bibkg.imfd.cl/
https://telarkg.imfd.cl/
https://wikidata.imfd.cl/
https://wikidata.imfd.cl/
https://doi.org/10.1145/3104031
http://sites.computer.org/debull/A12mar/vicol.pdf
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3183713.3190657
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://jena.apache.org/documentation/tdb/
https://doi.org/10.1162/dint_a_00229
https://doi.org/10.1145/2384716.2384777

	Abstract
	1 Introduction
	2 System Overview
	2.1 Storage Manager
	2.2 Query Processor
	2.3 Performance

	3 Demonstration
	3.1 The Experience
	3.2 The Datasets

	Acknowledgments
	References

