
Semantic Web 0 (2022) 1–0 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

LSQ 2.0: A Linked Dataset of
SPARQL Query Logs
Claus Stadler a,*, Muhammad Saleem a, Qaiser Mehmood b, Carlos Buil-Aranda c, Michel Dumontier d,
Aidan Hogan e, Axel-Cyrille Ngonga Ngomo a

a Universität Leipzig, IFI/AKSW, PO 100920, D-04009 Leipzig
b Insight Center for Data Analytics, National University of Ireland, Galway
c IMFD; Informatics Department, Universidad Técnica Federico Santa María, Chile
d Institute of Data Science, Maastricht University, Maastricht, The Netherlands
e IMFD; Department of Computer Science, University of Chile, Santiago, Chile

Abstract. We present the Linked SPARQL Queries (LSQ) dataset, which currently describes 43.95 million executions of 11.56
million unique SPARQL queries extracted from the logs of 27 different endpoints. The LSQ dataset provides RDF descriptions of
each such query, which are indexed in a public LSQ endpoint, allowing interested parties to find queries with the characteristics
they require. We begin by describing the use cases envisaged for the LSQ dataset, which include applications for research on
common features of queries, for building custom benchmarks, and for designing user interfaces. We then discuss how LSQ has
been used in practice since the release of four initial SPARQL logs in 2015. We discuss the model and vocabulary that we use to
represent these queries in RDF. We then provide a brief overview of the 27 endpoints from which we extracted queries in terms of
the domain to which they pertain and the data they contain. We provide statistics on the queries included from each log, including
the number of query executions, unique queries, as well as distributions of queries for a variety of selected characteristics. We
finally discuss how the LSQ dataset is hosted and how it can be accessed and leveraged by interested parties for their use cases.

Keywords: SPARQL federation, Web of Data, RDF

1. Introduction

Since its initial recommendation in 2008 [70], the
SPARQL query language for RDF has received consid-
erable adoption, where it is used on hundreds of public
query endpoints accessible over the Web [92]. The most
prominent of these endpoints receive millions of queries
per month [12], or even per day [57]. There is much
to be learnt from queries received by such endpoints,
where research on SPARQL would benefit—and has
already benefited—from access to real-world queries
to help focus both applied and theoretical research on
commonly seen forms of queries [59].

To exemplify how access to real-world queries can
directly benefit research on SPARQL, first consider the
complexity results of SPARQL [67], which show that

*Corresponding author: cstadler@informatik.uni-leipzig.de

evaluation of SPARQL queries is intractable (PSPACE-
hard). But do the worst cases predicted in theory ac-
tually occur in practice? Is it possible to define frag-
ments of the language that avoid computationally dif-
ficult cases and lead the way to efficient algorithms
dedicated to these common cases? The answer is yes,
where a number of restricted fragments of SPARQL
queries have been identified that are less computation-
ally costly for important tasks. These fragments include
well-designed queries that use the OPTIONAL clause in
restricted ways [21, 67], queries with low treewidth [21]
whose structure is close to that of a tree, queries such as
simple transitive expressions [58] or (certain fragments
of) simple conjunctive regular path queries [36] where
only restricted use of Kleene star (*) is allowed in path
expressions, certain types of simple conjunctive regular
path queries where disjunction (|) is not allowed inside
Kleene star, and threshold queries that limit the number
of results returned [20]. Studies of SPARQL query logs

1570-0844/22/$35.00 © 2022 – IOS Press and the authors. All rights reserved



2 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

have shown that these fragments cover many of the
queries seen in practice [24, 58], where query logs help
to bridge the theory and practice of SPARQL [59].

Another use case for a large collection of real-
world queries pertains to benchmarking. For over a
decade, the SPARQL community has relied on synthetic
datasets and queries (e.g., LUBM [40], Berlin [19]),
or real-world datasets and hand-crafted queries (e.g.,
BTC [63], FedBench [83]) to perform benchmark-
ing. However, Aluç et al. [7] and Saleem et al. [82]
find the queries of these benchmarks to often be
too narrow and simplistic. Building benchmarks from
real-world queries can help tune implementations and
guide research towards better support for the types
of queries most commonly encountered in practical
settings [13, 16, 62, 65, 79, 100]. Yet another use
case is caching [50, 54, 99]. Here, real-world queries
can be used to simulate practical workloads experi-
enced by endpoints. The usability of SPARQL inter-
faces [24, 25, 52, 74] can also benefit from query logs,
as these logs can reveal patterns in how users incremen-
tally build their queries, as has recently been studied by
Bonifati et al. [24] in DBpedia logs. These use cases
and others will be discussed in more detail in Section 2.

Recognising the value of query logs, a number of
such collections have been published previously, in-
cluding contributions from USEWOD [55]1, as well as
Wikidata [57]. These logs have been widely used and
analysed by a variety of authors (e.g., [12, 21, 23, 57,
68, 73]). However, i) these logs are provided in ad-hoc
formats, varying in terms of syntax and information pro-
vided depending on the particular SPARQL implemen-
tation used to host the endpoint. ii) Typically, queries
are published as strings, meaning (for example) that a
client would need to use a SPARQL query parser and
some procedural code to find queries matching particu-
lar structures or characteristics. iii) Moreover, runtime
statistics in terms of–for example–the selectivity of in-
dividual query patterns with respect to the base dataset
of the endpoint are not provided. iv) Furthermore, these
datasets have generally been limited to publishing logs
from a small number (1–4) of endpoints.

In this dataset description paper, we extend upon our
previous work [77], which reported on the initial release
of the Linked SPARQL Query Dataset (LSQ). The goal
of LSQ is to publish queries from a variety of SPARQL
logs in a consistent format and associate these queries
with rich metadata, including both static metadata (i.e.,

1http://usewod.org/; retr. 2015/04/14.

considering only the query) and runtime metadata (i.e.,
considering the query and the dataset). In particular,
we propose an RDF representation of queries that cap-
tures their source, structure, static metadata and runtime
metadata. These RDF descriptions of queries are in-
dexed in a SPARQL endpoint. Thus, they allow clients
to retrieve the queries of interest to their use case declar-
atively, potentially sourced from several endpoints at
once. In comparison to our previous work [77], which
described the initial release of the dataset in 2015:

– The LSQ dataset has grown considerably: LSQ 2.0
now features logs from 27 endpoints (22 of which
are from Bio2RDF) compared with 4 initial end-
points. As a result, the number of query executions
described by the LSQ 2.0 dataset has grown from
5.68 million to 43.95 million.

– Based on the experiences gained from the first
version of LSQ, we have improved the RDF model
to provide better modularisation and more detailed
metadata, facilitating new ways in which clients
can select the queries of interest to them; we have
likewise updated the LSQ vocabulary accordingly.

– We have re-engineered the extraction framework,
which takes as input raw logs produced by a vari-
ety of popular SPARQL engines and Web servers,
producing an output RDF graph in the LSQ 2.0
data model describing the queries. The RDFization
process can now be scaled as it leverages Apache
Spark2. The LSQ software framework has been
released as open source.

– We have evaluated the new queries locally in a
Virtuoso instance in order to gain runtime statistics
(including estimates of the number of results, the
selectivity of patterns, overall runtimes, etc.), and
have updated the statistical analysis of the queries
featured by LSQ to include the additional data
provided by the new endpoints.

– Since the initial release, LSQ has been used by a
variety of diverse research works on SPARQL [2,
2, 3, 11, 14, 15, 17, 18, 21, 22, 22, 22, 26, 30, 31,
31, 32, 34, 35, 37, 37, 37, 37, 39, 39, 41, 42, 49,
58, 69, 71, 72, 75, 76, 78–80, 82, 84, 85, 85, 86,
88–90, 93, 96–98, 101]. To exemplify the value
of LSQ, we discuss the various ways in which the
dataset has been used in these past years.

LSQ 2.0 is available at http://aksw.github.io/LSQ/.
The rest of the paper is structured as follows:

2https://spark.apache.org/



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Section 2 describes use cases envisaged for LSQ.
– Section 3 details the model and vocabulary used by

LSQ to represent and describe SPARQL queries.
– Section 4 describes how LSQ is published follow-

ing Linked Data principles and best practices.
– Section 5 first describes the datasets for which

LSQ indexes queries, and then provides details on
the raw logs from which queries are extracted.

– Section 6 provides an analysis of the LSQ dataset
itself, as well as the queries it contains.

– Section 7 describes how LSQ has been adopted
for the past six years since its initial release.

– Section 8 concludes and discusses future direc-
tions for the LSQ dataset.

2. Use Cases

To help motivate the Linked SPARQL Queries
dataset, we first discuss some potential use cases that
we envisage. We then list some general requirements
for LSQ that arise from these use cases.

UC1 Custom Benchmarks A number of benchmarks
have been proposed recently based on real-world
queries observed in logs [16, 62, 79, 100]. The
LSQ dataset can support the creation of such
benchmarks, allowing users to select queries from
a diverse selection of logs based on custom criteria
matching the metadata provided by LSQ. Queries
may be selected so as to provide a general bench-
mark that is representative of real-world work-
loads, or a specialised benchmark focused on par-
ticular query characteristics, such as path expres-
sions, multi-way joins, and aggregation queries.

UC2 SPARQL Adoption Various works have anal-
ysed SPARQL query logs in order to understand
how features of the SPARQL standard are used “in
the wild” as well as to extract structural properties
of real-world queries [12, 21, 23, 24, 57, 68, 73].
In turn, this family of works has led to the defi-
nition of tractable fragments of queries that are
common in practice [20, 58]. LSQ can facilitate
further research on the use of SPARQL in the wild
as it compiles logs from different domains.

UC3 Caching Techniques for SPARQL caching [50,
60, 66, 99] aim to re-use solutions across multiple
queries. Caching allows for reducing the computa-
tional requirements needed to evaluate a workload,
particularly in cases where queries are often re-
peated and the underlying data do not change too

frequently. The LSQ dataset can again provide a
sequence of real-world queries for benchmarking
caching systems in realistic settings.

UC4 Usability Aside from efficiency, a crucial aspect
of SPARQL research and development is to ex-
plore techniques that allow non-expert users to
express queries against endpoints more easily. A
number of techniques have been proposed to en-
hance the usability of SPARQL endpoints, includ-
ing works on auto-completion [25, 52, 74], query
relaxation [38, 43, 95] and query builders [10, 27,
44, 94]. Such works could use the LSQ dataset
to investigate patterns in how users iteratively for-
mulate more complex queries, causes for queries
with empty results, as well as to detect the most
important features that interfaces must support.

UC5 Optimisation Understanding the most common
cases encountered in real-world queries can al-
low for optimising implementations towards those
cases. One such optimisation is to define workload-
aware schemes for local [8, 9] and distributed [4,
28, 45] indexing that attempt to group data com-
monly requested together in the same region of
storage; other optimisations look at scheduling the
execution of parallel query requests in an effec-
tive and fair manner [56], or propose efficient al-
gorithms for frequently encountered patterns in
queries [58]. The LSQ dataset can provide diverse
examples of real workloads to help configure and
evaluate such techniques.

UC6 Meta-Querying The final use case is admittedly
more speculative. By meta-querying, we refer
to LSQ being used to query for queries of in-
terest, for example, to find the (most common)
queries that are asked about specific resources,
such as finding out what queries are being asked
involving dbr:Zika_virus, or what frequent co-
occurrences of resources appear in queries. Meta-
querying along these lines may help to understand
what are the common information needs of users.

These six use cases are intended to help motivate the
dataset, to give ideas of potential applications, and also
to help distil some key requirements for the design of
the dataset. The list should not be considered complete,
as other use cases will naturally arise in future. We
identify the following facets of the dataset as relevant
to support the aforementioned six use cases.

F1 Static Query Features LSQ should describe the
key features of each query independently of the



4 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

dataset. These include SPARQL keywords (e.g.,
UNION, DISTINCT), syntactic features (e.g., prop-
erty paths), and structural features (e.g., multi-way
joins, number of projected variables, statistics re-
lating to basic graph patterns (BGPs), etc.). Fur-
thermore, the query should make the resources it
mentions explicit. Static features are of key impor-
tance to UC1, UC2, UC4, UC5 and UC6.

F2 Provenance LSQ should provide provenance meta-
data about the execution of each query, including
the endpoint it was issued to, a timestamp of when
it was executed, and an anonymised identifier for
the client. Timestamps are of particular importance
to UC3 and UC4, while an anonymised identifier
for the client is mostly of importance to UC4.

F3 Runtime Query Statistics LSQ should include
statistics of the evaluation of the query over the
original dataset, including the number of results
returned, the estimated runtime, and the selectivity
of individual patterns in the query. Again, making
such statistics available allows clients to select
and analyse queries with regard to these features
without having to execute them over the original
dataset. Runtime statistics are of particular impor-
tance to UC1, UC3, UC4 and UC5.

These facets guide the design of the LSQ dataset in
terms of what is included, and how the descriptions of
individual queries are represented in RDF.

3. Data Model & Vocabulary

In this section, we describe the data model and vo-
cabulary employed by LSQ for describing SPARQL
queries. First, we identify a number of desiderata:

D1 Generality The data model should facilitate a va-
riety of use cases and cover at least the aforemen-
tioned facets (F1–F3) without the need for clients
to parse the raw query strings.

D2 Conciseness With logs containing millions of
queries, the data model should be relatively
concise—in terms of triples produced per query—
to keep LSQ at a manageable volume of data.

D3 Usability Core competency questions over the
dataset (e.g., find all queries using a particular
feature) should be expressible in terms of simple
queries that are efficient to evaluate.

D4 Linked Data Compatibility URIs should be deref-
erenceable so as to abide by the Linked Data Prin-
ciples. Terms from external well-known vocabu-
laries should be re-used where appropriate. Links
to other datasets should be provided.

It is important to note that some of these desiderata
are incompatible. For example, D2 is in direct conflict
with D1 as adding more meta-data for queries can in-
crease generality, but decreases conciseness. D2 can
also be seen as being in conflict with D3 and D4, as D3
can be achieved by adding “shortcut” representations
for common needs, while D4 requires the addition of
links to external datasets, both of which reduce con-
ciseness. Consequently, the data model must find a bal-
ance between providing a detailed description of each
query, being useful for various purposes, and keeping
the overall dataset relatively concise and manageable.

In Figure 1 we provide an overview of the model
used to represent queries in RDF, while in Listing 1 we
provide a snippet of the top-level data generated for a
query found in the SWDF logs.3 We now discuss the
groups of features described for each query.

Query instance We define a “query” to be uniquely
identified by the syntactic query string (independently
of the endpoint, the particular execution, etc.). We type
these queries with lsqv:Query. Instances of this class
are linked to the query string using lsqv:text, and to
various instances of local and remote executions. Other
links are provided to other resources that capture further
details of the static features of the query, its structure,
as well as runtime statistics of its local execution (on
our server) as information about its remote execution
(on the original server).

Static features Next we define some static features
of the query, independent of the dataset over which it
is evaluated. These include links to its individual join
variables, triple patterns, and basic graph patterns; the
SPARQL features that is uses; its number of projected
variables, basic graph patterns, join variables, triple pat-
terns; the maximum, mean and median degree of its
join variables; and the maximum and minimum size
of its basic graph patterns. The triple patterns and ba-
sic graph patterns themselves link to the SPIN repre-
sentation of the query included in the description (and
discussed presently); the triple patterns, in turn, link to

3Note that for the purposes of presentation, we abbreviate some
of the details of the query, including the IRIs used to identify local
query executions.



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 1: An example LSQ/RDF representation of a SPARQL query in Turtle syntax

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix lsqr: <http://lsq.aksw.org/> .
@prefix lsqv: <http://lsq.aksw.org/vocab#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix swc: <http://data.semanticweb.org/ns/swc/ontology#> .
@prefix swr: <http://data.semanticweb.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix prov: <http://www.w3.org/ns/prov#> .

# Primary resource describing the query found with the SWDF logs
lsqr:lsqQuery-3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8

lsqv:hasLocalExec lsqr:localExec-v9fBp3ElS1aVXXN1Z8zX1jxcHX3iy-axTgRrU2c7NY8 ;
lsqv:hasRemoteExec lsqr:re-data.semanticweb.org-sparql_2014-05-22T16:08:17Z ,

lsqr:re-data.semanticweb.org-sparql_2014-05-20T13:24:13Z ;
lsqv:hasStructuralFeatures lsqr:lsqQuery-3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8-sf ;
lsqv:hash "3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8" ;
lsqv:text """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swc: <http://data.semanticweb.org/ns/swc/ontology#>
SELECT DISTINCT ?prop
WHERE { ?obj rdf:type swc:SessionEvent ; ?prop ?targetObj FILTER isLiteral(?targetObj) }
LIMIT 150""" .

# Static features of the query
lsqr:lsqQuery-3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8-sf

lsqv:bgpCount 1 ;
lsqv:hasBgp lsqr:bgp-_x9Mckke-V9R3ddISuw-Nj_j278nT5HwiA1WUNk7tgY ;
lsqv:joinVertexCount 1 ;
lsqv:joinVertexDegreeMean 2 ;
lsqv:joinVertexDegreeMedian 2 ;
lsqv:projectVarCount 1 ;
lsqv:tpCount 2 ;
lsqv:tpInBgpCountMax 2 ;
lsqv:tpInBgpCountMean 2 ;
lsqv:tpInBgpCountMedian 2 ;
lsqv:tpInBgpCountMin 2 ;
lsqv:usesFeature lsqv:fn-isLiteral , lsqv:Select , lsqv:Limit , lsqv:Functions , lsqv:Group , lsqv:Filter ,

lsqv:Distinct , lsqv:TriplePattern .

# Remote execution no. 1 on the original endpoint
lsqr:re-data.semanticweb.org-sparql_2014-05-22T16:08:17Z

prov:atTime "2014-05-22T16:08:17Z"^^xsd:dateTime ;
lsqv:endpoint swr:sparql ;
lsqv:hostHash "O5UQpDtofxAsrJk7yzGfDolFGylMFw5446KcRZDcBkU" .

# Remote execution no. 2 on the original endpoint
lsqr:re-data.semanticweb.org-sparql_2014-05-20T13:24:13Z

prov:atTime "2014-05-20T13:24:13Z"^^xsd:dateTime ;
lsqv:endpoint swr:sparql ;
lsqv:hostHash "7aPNvqsgizRuEjH7_cO_dXoqLk-exKJ-xFmbCH3ew_E" .

# Local execution to extract statistics
lsqr:localExec-v9fBp3ElS1aVXXN1Z8zX1jxcHX3iy-axTgRrU2c7NY8-xc

lsqv:benchmarkRun lsqr:xc-swdf_2020-09-23_at_23-09-2020_17:10:19 ;
lsqv:hasQueryExec lsqr:queryExec-Cmv7SccybbBxwkep_cHvDiF3piq29tH7NWlDfIiCHqU .

# Results of local execution
lsqr:queryExec-Cmv7SccybbBxwkep_cHvDiF3piq29tH7NWlDfIiCHqU

prov:atTime "2020-09-23T15:27:36.325Z"^^xsd:dateTime ;
lsqv:countingDuration 0.008466651 ;
lsqv:evalDuration 0.008868635 ;
lsqv:resultCount 16 .

# The full data further include a SPIN description of the query, a list of BGPs within the query,
# a list of triple patterns and terms within the query, as well as execution statistics for individal
# BGPs, triple patterns and sub-BGPs induced by join variables



6 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

lsqv:Query
lsqv:hash (xsd:string)
lsqv:text (xsd:string)
lsqv:parseError (xsd:string)

lsqv:LocalExec

lsqv:hasLocalExec

lsqv:RemoteExec
prov:atTtime (xsd:dateTimeStamp)
lsqv:hostHash (xsd:string)

lsqv:hasRemoteExec

cogs:Endpoint

lsqv:endpoint

lsqv:StructuralFeatures
lsqv:bpgCount (xsd:integer)
lsqv:joinVertexCount (xsd:integer)
lsqv:joinVertexDegreeMean (xsd:decimal)
lsqv:joinVertexDegreeMedian (xsd:integer)
lsqv:projectVarCount (xsd:integer)
lsqv:tpCount (xsd:integer)
lsqv:tpInBgpCountMax (xsd:integer)
lsqv:tpInBgpCountMean (xsd:integer)
lsqv:tpInBgpCountMedian (xsd:integer)
lsqv:tpInBgpCountMin (xsd:integer)

lsqv:hasStructuralFeatures

sd:Feature

lsqv:usesFeature

lsqv:Bgp

lsqv:hasBgp

lsqv:BgpExec lsqv:hasExec

sp:Query

lsqv:hasSpin

sp:Select
sp:Ask

sp:Describe
sp:Construct

lsqv:QueryExec
lsqv:countingDuration (xsd:decimal)
lsqv:evalDuration (xsd:decimal)
lsqv:resultCount (xsd:integer)
lsqv:serializedResult (xsd:string)
prov:atTtime (xsd:dateTimeStamp)

lsqv:hasQueryExec

lsqv:hasElementExec

lsqv:BenchmarkRun

lsqv:benchmarkRun

dct: http://purl.org/dc/terms/
lsqv: http://lsq.aksw.org/vocab#
prov: http://www.w3.org/ns/prov#
sd: http://www.w3.org/ns/sparql-service-description#
sp: http://spinrdf.org/sp#

Fig. 1. Core of the LSQ data model: dashed lines indicate sub-classes; datatype properties are embedded within their associated class nodes
to simplify presentation; external classes are shown with dotted borders. For clarity, we do not show details of the SPIN representation, or the
execution of query elements more fine-grained than BGPs (which follow a similar pattern)

the resources used by the query. The join variables, on
the other hand, are described separately, indicating the
degree of the variable and type of join [81] it induces.

SPIN representation While the static features aim to
capture some high-level descriptions of the query that
may be of interest to specific use cases, some details
may be missing. In the interest of generality, we also
include for each query a SPARQL Inferencing Notation
(SPIN) [48] representation of the query, which essen-
tially captures a fine-grained translation of the SPARQL
query to RDF. This SPIN encoding can be translated
back to a SPARQL query equivalent to the original.4

Remote execution(s) Next, individual queries are as-
sociated with one or more executions on the original
endpoint, including a timestamp of when the query was
executed, as well as an anonymised ID for the client—
based on their cryptographically-hashed and salted I.P.—
to identify which queries are run by the same agent.5

The remote execution is also linked to the originat-

4Given a query Q and dataset D, let Q(D) denote the result(s) of
evaluating Q over D. Two queries Q1 and Q2 are then defined to be
equivalent if and only if Q1(D) = Q2(D) for every dataset D.

5A “salt” in cryptography is a privately-held arbitrary string that is
combined (e.g., concatenated) with the input being hashed in order to
avoid attacks based on precomputed tables (e.g., of common values
or, in this case, of a collection of I.P.’s of interest).

ing endpoint using lsqv:endpoint.6 Given that these
meta-data constitute provenance for the query, we use
the PROV Ontology (PROV-O) [51] for modelling the
time, date and agent involved in the remote execution.

Local execution In most cases, the log of the remote
executions will not provide statistics about the execu-
tion of the query in terms of how many results were
returned, how long it took, how selective were the in-
dividual patterns, and so forth. Hence we re-execute
the queries offline against the original dataset to gener-
ate runtime statistics about the query. Local executions
were run on a machine with 64 core Intel(R) Xeon(R)

6Although there exist properties called “endpoint”—such as
void:sparqlEndpoint or sd:endpoint—the domains of these
properties were not query executions, but rather VoID datasets (i.e.,
sets of RDF triples), or SPARQL services. Though it would be possi-
ble to define properties such as lsqv:dataset or lsqv:service
and then link a query execution <x> to an endpoint URL <e> with
<x> lsqv:dataset [ void:sparqlEndpoint <e> ], or alter-
natively <x> lsqv:service [ sd:endpoint <e> ], this would
introduce O(n) additional triples to the LSQ 2.0 dataset, for n the
number of remote query executions (in LSQ 2.0, n = 43, 952, 379).
(Please note that the dataset or service may change during the
lifetime of the log, which we do not have information about;
hence we cannot refer to one dataset/service at a given endpoint.)
Thus we rather introduce lsqv:endpoint in the data and de-
fine property chain axioms in the LSQ 2.0 vocabulary to relate
lsqv:endpoint to lsqv:dataset/void:sparqlEndpoint and
lsqv:service/sd:endpoint.



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

CPU E5-2683 v4 @ 2.10GHz, and 528 GB RAM run-
ning Ubuntu 18.04.5 LTS using Virtuoso 7.2.7 Due to
the large number of queries to evaluate, we set a query
timeout of one minute. The statistics generated include
the number of results and the runtime for the query, as
well as the number of results and the selectivity for each
individual triple pattern.8 Runtime statistics are com-
puted in a controlled environment that abstract away
external factors such as the load on the endpoint server,
etc.; however, due to the costs involved in evaluating
such queries, we compute these only for one query en-
gine, namely Virtuoso 7.2, where runtime estimates
may thus vary for other engines.

Summary The meta-data described in this section aim
to strike a balance in terms of the four desiderata men-
tioned previously. In terms of Generality, we provide
detailed meta-data for static query features, for prove-
nance, and for runtime query statistics. In terms of Con-
ciseness, though the detailed meta-data do require po-
tentially many triples to be encoded for each query, we
take steps to reduce this number by re-using resources
insofar as appropriate where, for example, each unique
query string is encoded once per log, with one set of
static features, one SPIN representation, and one set of
local executions, being subsequently linked to its differ-
ent remote executions (rather than duplicate the former
meta-data each time the same query string appears in
the log). In terms of Usability, we provide some “short-
cut triples” that allow for quickly finding queries of
interest; for example, the static features of the query are
largely of this form, where all such meta-data could in
principle be computed from the SPIN representation,
but using rather complex SPARQL queries over LSQ;
the static query features are thus presented to make
it easier to find queries, for example, with a certain
range of numbers of triple patterns, or queries using
DISTINCT and GROUP BY, etc. We will discuss Linked
Data Compatibility in the section that follows.

4. Publication

The LSQ dataset is published as Linked Data. Before
describing the current contents of LSQ, we discuss in
more detail how LSQ has been published.

7The configuration used for Virtuoso was MaxQueryMem =
32G, NumberOfBuffers = 20050000, and MaxDirtyBuffers =
20000000.

8The selectivity of the triple pattern is the ratio of triples from the
dataset that it selects.

Access Methods We provide a number of ways to ac-
cess LSQ. Firstly, following Linked Data principles,
all IRIs under the lsqr: namespace are made derefer-
enceable using a 303 Redirect; this is implemented
with LodView9 and supports content negotiation. A
SPARQL endpoint is provided for querying LSQ 2.0.
Table 1 lists the locations for these access methods.

Vocabulary As seen in Figure 1, we use a mixture
of a custom vocabulary in the lsqv: namespace, as
well as existing vocabulary where possible. The custom
LSQ vocabulary dereferences (via 303 Redirect) to
an RDFS/OWL definition of the corresponding terms
in Turtle, which includes metadata about authors. The
vocabulary meets four of the five stars of Linked Data
vocabulary use [46].10 With respect to external vocabu-
lary, we re-use terms from the SPARQL Inferencing No-
tation (SPIN) ontology [48], as well as the Provenance
Ontology (PROV-O) [51] where possible.

Discoverability The LSQ dataset has been registered
in the DataHub catalogue, while the LSQ vocabu-
lary has been listed on Linked Open Vocabularies
(LOV) [91] as well as prefix.cc. We provide these lo-
cations in Table 1. We also compute and publish meta-
data about the LSQ dataset using the Vocabulary of
Interlinked Datasets (VoID) [5]. More specifically, we
compute a separate VoID description for each log and
make the resulting description accessible via both a
downloadable file and a named graph of the SPARQL
endpoint.

Availability The LSQ dataset has been hosted for over
six years (at the time of writing) by the Agile Knowl-
edge Engineering and Semantic Web (AKSW) group.
As discussed in Section 7, it has been widely adopted
in that time. The dataset is available to all under a CC-
BY license. We further make the source code used for
generating the LSQ dataset from the raw query logs
available on Github https://github.com/AKSW/LSQ.

5. LSQ 2.0 Logs

We now describe the content of the LSQ 2.0 dataset.
In order to collect raw SPARQL query logs, we sent

9https://github.com/LodLive/LodView
10With respect to the fifth star, which requires that our LSQ vo-

cabulary be linked to from external vocabularies, we are not aware
of such links, though we do know, for example, that Varga et al. [93]
incorporate elements of the LSQ vocabulary within their own Analyt-
ical Metadata (AM) model, while Singh et al. [85] also use the LSQ
vocabulary within their benchmark.



8 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Locations from which LSQ can be accessed including an example Linked Data IRI, the vocabulary, dumps, the SPARQL endpoint, as well as
locations where LSQ is indexed, including DataHub, Linked Open Vocabularies (LOV) and prefix.cc

Method Location

Linked Data IRIs http://lsq.aksw.org/lsqQuery-3wBd2uKotB_-vUxnngs6ZNsGPhJmIDD9c7ig0UI24y8 (example)
Vocabulary http://lsq.aksw.org/vocab
Dumps http://lsq.aksw.org/downloads
SPARQL Endpoint http://lsq.aksw.org/sparql

Catalogue Location

Datahub https://datahub.io/dataset/lsq
LOV https://lov.linkeddata.es/dataset/lov/vocabs/lsq
prefix.cc http://prefix.cc/lsqv

mails both to the public-lod@w3.org mailing list
and to individual providers of endpoints. We also in-
corporated logs from LSQ 1.0 [77] and a sample of
queries from the Wikidata logs [57]. We thus acquired
access to the logs of 27 endpoints, 22 of which are part
of Bio2RDF release 3 [33].11 Table 2 provides high-
level statistics of the query logs from which we extract
the LSQ dataset, including the query executions regis-
tered; the unique query strings; the number of queries
providing a runtime error, or returning zero results; as
well as the percentage of unique queries using SELECT,
CONSTRUCT, DESCRIBE or ASK. Aside from the initial
log of LSQ, only one log is already publicly available,
namely Wikidata [57], of which we include a subset
described in our data model.

AFFYMETRIX is a biomedical Linked Dataset describ-
ing probesets found in DNA microarrays [33].

BIOMODELS is a biomedical Linked Dataset describ-
ing mathematical models of biological systems [33].12

BioPortal is a biomedical Linked Dataset cataloguing
biomedical ontologies [33].

CTD: Comparative Toxicogenomics Database is a
biomedical Linked Dataset that describes how environ-
mental chemicals relate to diseases [33].

DBPEDIA is a cross-domain Linked Dataset that is
primarily extracted from Wikipedia [53].

DBSNP: Single Nucleotide Polymorphism Database
is a biomedical Linked Dataset that describes single

11We also acquired logs for the British Museum and UniProt end-
points, but decided to omit them due to having few unique queries.

12The external SPARQL endpoint is spelt biomedels, and thus
the IRIs use this spelling in LSQ 2.0.

base nucleotide substitutions and short deletion and
insertion polymorphisms [33].

DRUGBANK is a biomedical Linked Dataset that de-
scribes drugs and drug targets [33].

GENAGE is a biomedical Linked Dataset that de-
scribes human and other genes linked with ageing [33].

GENDR: Dietary Restriction Gene Database is a
biomedical Linked Dataset that describes genes associ-
ated with dietary restrictions [33].

GO: Gene Ontology is a biomedical ontology that
describes gene, gene products, and their functions [33].

GOA: Gene Ontology Annotation is a biomedical
Linked Dataset that provides annotations on proteins,
RNA and protein complexes [33].

HGNC: HUGO Gene Nomenclature Committee is a
biomedical Linked Dataset that describes human gene
nomenclature [33].

IREFINDEX is a biomedical Linked Dataset that in-
dexes interaction data for proteins [33].

KEGG: Kyoto Encyclopedia of Genes and Genomes
is a biomedical Linked Dataset that describes functions
of genes and biological systems [33].

LINKEDGEODATA is a geographical Linked Data ex-
tracted primarily from Open Street Map [87].

LINKEDSQP: Linked Structured Product Labelling is
a biomedical Linked Dataset that contains meta-data
about drug labels sourced from DailyMed [33].

MGI: Mouse Genome Informatics is a biomedical
Linked Dataset that describes mouse genes, alleles, and
strains [33].



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

NCBI Gene is a biomedical Linked Dataset that de-
scribes gene-related information given by the National
Center for Biotechnology Information (NCBI) [33].

Online Mendelian Inheritance in Man (OMIM) is
a biomedical Linked Dataset that catalogues human
genes as well as genetic traits and disorders [33].

PHARMGKB is a biomedical Linked Dataset describ-
ing how genetic variations impact drug responses [33].

SABIORK: System for the Analysis of Biochemical
Pathways – Reaction Kinetics is a biomedical Linked
Dataset that describes biochemical reactions [33].

SGD: Saccharomyces Genome Database is a biomed-
ical Linked Dataset describing the biology and genetics
of the yeast Saccharomyces cerevisiae [33].

SIDER: Side Effect Resource is a biomedical Linked
Dataset describing the side effects of drugs [33].

SWDF: Semantic Web Dog Food is a bibliograph-
ical Linked Dataset describing papers, presentations
and people participating in top Semantic Web related
conferences and workshops [61].

TAXONOMY: NBCI Taxonomy is a biomedical Linked
Dataset that describes all organisms found in genetic
databases [33].

WIKIDATA is a collaboratively edited knowledge
graph hosted by the Wikimedia foundation [57].

WORMBASE is a biomedical Linked Dataset that de-
scribes the biology and genome of worms [33].

6. LSQ 2.0 Query Statistics

We now look in more detail at the composition of
the queries currently included in the LSQ dataset. In
particular, we first look at some high-level statistics
for queries in the dataset, before looking at the static
features of the query, the agents making the queries, as
well as runtime statistics computed against the corre-
sponding dataset. Finally we discuss the composition
of the LSQ dataset itself.

High-level statistics: Table 2 provides a high-level
analysis of the queries (both query executions and
unique queries) appearing in each of the logs con-
sidered. From the overall row, we see that LSQ con-
tains 43.95 million query executions and 11.56 mil-
lion unique queries, implying that each query is exe-
cuted, on average, 3.8 times within each log. Of the

unique queries, 7.7 million (66.9%) have runtime er-
rors; and 2.3 million (20.0%) have no errors but re-
turn empty results. A high ratio of runtime errors
come from the Bio2RDF logs. The majority of queries
are CONSTRUCT queries (60.0%), followed by SELECT
(32.3%), DESCRIBE (7.1%) and ASK (0.5%). We find
that CONSTRUCT queries are particularly prevalent on
Bio2RDF endpoints, while DESCRIBE queries are par-
ticularly prevalent on DBPEDIA and Wikdata endpoints,
possibly due to the use of such queries for dereferencing
Linked Data IRIs through the endpoint.

Static features: Turning to static features, we first look
at the percentages of unique queries without parse er-
rors using different SPARQL features (note that we will
analyse joins in BGPs and property paths later). Table 3
provides statistics for the usage of different features
of SPARQL. We see that FILTER is among the most
widely used features, along with SPARQL functions
and expressions (note that almost all filters use such ex-
pressions). This feature is followed by DISTINCT and
other solution modifiers, UNION, OPTIONAL, etc. No-
tably these are all SPARQL 1.0 features. The SERVICE
keyword is commonly used on WIKIDATA since the
Wikidata Query Service provides a custom service for
retrieving multilingual labels as preferred/available.

Next, in Table 4, we provide three types of statis-
tics about the basic graph patterns and property path
features used. First, we present the unique number of
subject, predicate and object terms used in the BGPs
of the logs in order to characterise their diversity. We
see that DBPEDIA, LINKEDGEODATA and WIKIDATA

offer the most diversity, particularly in terms of predi-
cates found in the queries. Second, we present the per-
centage of queries with different types of joins in the
basic graph patterns [81]. Each join variable in a basic
graph pattern is analysed in order to understand how
they connect triple patterns. We say that a join vertex
has an “outgoing link” if it appears as a subject of a
triple pattern, and that it has an “incoming link” if it
appears as predicate or object. The join types are then
defined as follows:

STAR has multiple outgoing but no incoming links.
PATH has one incoming and one outgoing link.
HYBRID has at least one incoming and outgoing link

and three or more links overall.
SINK has multiple incoming but no outgoing links.

From Table 4, we see that the majority of queries have
no joins, but where present, STAR joins are the most fre-
quent, followed by HYBRID and SINK joins. Third, we



10 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
High-level statistics for queries in the LSQ dataset (QE = Query Executions, UQ = Unique Queries, RE = Runtime Error, ZR = Zero Results, SEL
= SELECT, CON = CONSTRUCT, DES = DESCRIBE)

DATASET QE UQ RE ZR SEL (%) CON (%) DES (%) ASK (%)

AFFYMETRIX 1,229,339 311,096 277,983 31,659 16.47 83.21 0.02 0.30
BIOMODELS 1,238,375 435,232 412,984 21,692 41.18 58.75 0.00 0.06
BIOPORTAL 1,337,804 89,664 85,273 3,389 64.88 34.78 0.00 0.34
CTD 940,390 287,296 266,999 19,824 11.98 87.76 0.00 0.26
DBPEDIA 6,535,500 4,258,941 1,259,972 1,755,338 69.90 3.59 25.23 1.28
DBSNP 794,023 269,498 267,662 1,698 4.99 94.99 0.00 0.02
DRUGBANK 1,613,951 379,233 372,022 6,186 46.67 52.80 0.05 0.48
GENAGE 589,211 265,067 263,205 1,661 5.55 94.43 0.00 0.02
GENDR 690,864 270,697 262,776 7,726 7.53 92.45 0.00 0.02
GO 1,839,991 121,542 88,743 30,082 98.31 0.03 0.35 1.31
GOA 3,544,273 343,836 310,800 32,317 26.18 73.69 0.06 0.07
HGNC 1,529,681 364,961 327,540 33,568 29.15 70.58 0.04 0.23
IREFINDEX 1,560,704 309,777 289,546 19,858 18.10 81.88 0.00 0.02
KEGG 66,830 19,871 10,386 8,004 92.04 4.30 0.41 3.24
LINKEDGEODATA 154,884 61,897 11,028 13,990 98.58 1.00 0.02 0.40
LINKEDSQP 337,001 204,112 203,534 310 0.28 99.69 0.00 0.03
MGI 1,316,673 319,627 277,080 33,781 21.12 78.60 0.05 0.23
NCBIGENE 770,716 216,832 215,938 718 8.71 91.26 0.00 0.04
OMIM 1,506,621 335,541 290,483 44,093 22.78 76.89 0.08 0.26
PHARMGKB 94,540 24,000 14,597 8,649 60.35 39.65 0.00 0.01
SABIORK 922,407 274,098 253,733 19,938 7.91 92.07 0.00 0.02
SGD 973,281 318,641 309,593 7,199 16.06 80.53 0.30 3.12
SIDER 599,285 277,766 274,963 1,965 9.38 90.59 0.00 0.03
SWDF 1,415,567 101,423 30,792 36,789 73.57 0.06 26.17 0.21
TAXONOMY 7,698,898 354,582 334,290 20,041 15.83 84.16 0.00 0.02
WIKIDATA 3,298,254 844,256 520,976 150,395 95.03 0.13 0.08 4.77
WORMBASE 1,353,316 498,170 496,325 1,660 49.33 50.66 0.00 0.01

Overall 43,952,379 11,557,656 7,729,223 2,312,530 36.14 57.8 1.89 0.60

present the number of queries using different property
path features, where we see that DBPEDIA and WIKI-
DATA contain the most use of property path queries,
while Bio2RDF logs exhibit little use of this feature.
The most used such feature is / for concatenation.

These statistics may be helpful for consumers to
choose which dataset/log to work with. For example,
for the purposes of benchmarking joins, a dataset such
as LINKEDGEODATA or WIKIDATA may be chosen as
most queries feature joins; in order to benchmark or
analyse property paths, DBPEDIA or WIKIDATA may
be chosen as they use this feature more frequently; etc.

Provenance: Executions and Agents Next we look at
how many clients (anonymised IPs) and unique queries
underlie the executions registered in order to compare
the diversity of the different datasets. Note that client

information is not available for WIKIDATA. In Figures 2
and 3, we present Lorenz curves for the number of ex-
ecutions per client and per query, respectively.13 We
present results for Bio2RDF together as one series to
ensure better readability. In general, we see a skew in
the graph away from the equality curve towards the
bottom-left corner, meaning that a small number of
clients/queries are involved in a large number of execu-

13Lorenz curves visualise (in)equality in distributions for a given
quantity over a given set of elements: a coordinate (x, y) indicates
that ratio x of elements (given in ascending order by their quantity)
are associated with ratio y of the total quantity. The solid black line
indicates a hypothetical equality where each element is associated
with the same quality. For example, in Figure 2 on the DBPEDIA

curve, the point (0.80, 0.29) denotes that 80% of clients invoke 29%
of the executions (or 20% of the clients invoke 71% of the executions).



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Percentage of unique queries without parse errors using the specified SPARQL feature (SOL. MOD. includes the solution modifiers ORDER
BY, OFFSET, and LIMIT; AGG. includes aggregation features GROUP BY, HAVING, AVG, SUM, COUNT, MAX, and MIN; NEG. includes MINUS, NOT
EXISTS, and EXISTS; BIND. includes VALUES and BINDING; GRAPH includes FROM, FROM NAMED, and GRAPH; FUNC. includes SPARQL
functions and expressions)

DATASET UNION OPTIONAL DISTINCT FILTER REGEX SERVICE SUB-Q. SOL. M. AGG. NEG. BIND. GRAPH FUNC.

AFFYMETRIX 3.68 0.02 7.64 83.30 0.15 0.01 0.06 4.85 0.36 0.00 0.01 0.69 83.30
BIOMODELS 2.64 0.01 0.18 94.32 0.06 0.00 0.01 0.12 0.10 0.00 0.00 0.03 94.32
BIOPORTAL 1.50 0.06 0.05 37.95 2.23 0.01 0.01 0.21 34.10 0.00 0.00 34.26 37.95
CTD 3.99 0.02 0.37 88.06 0.06 0.04 0.01 3.57 0.13 0.00 0.01 3.21 88.06
DBPEDIA 28.68 19.97 22.22 29.87 4.10 0.00 2.22 8.92 9.98 0.00 1.11 0.01 29.87
DBSNP 0.05 0.01 0.10 94.87 0.00 0.05 0.01 0.13 0.07 0.00 0.00 0.09 94.87
DRUGBANK 2.58 15.55 12.37 54.67 1.81 0.10 0.02 9.31 2.59 0.00 0.01 2.73 54.67
GENAGE 0.00 0.01 0.08 94.37 0.00 0.00 0.01 0.06 0.07 0.00 0.00 0.02 94.37
GENDR 0.01 0.01 0.07 96.55 0.00 0.01 0.01 0.06 0.07 0.00 0.00 0.02 96.55
GO 9.08 0.16 20.98 18.82 5.92 0.89 0.07 3.86 0.08 0.00 0.01 0.02 18.82
GOA 4.17 0.01 5.00 84.76 9.15 0.86 0.03 0.71 0.09 0.00 0.00 0.44 84.76
HGNC 3.16 0.02 5.00 84.12 0.04 0.03 0.02 1.20 0.44 0.00 0.00 0.47 84.12
IREFINDEX 9.99 1.00 0.86 83.37 2.29 0.01 0.01 0.87 0.12 0.00 0.00 0.74 83.37
KEGG 11.64 1.13 54.91 7.22 2.86 0.07 0.04 42.95 1.02 0.00 0.01 0.79 7.22
LINKEDGEODATA 1.15 19.13 9.24 18.06 2.61 0.01 7.64 30.75 37.57 0.00 0.52 2.52 18.06
LINKEDSQP 0.00 0.01 0.00 99.76 0.00 0.00 0.01 0.05 0.07 0.00 0.00 0.03 99.76
MGI 3.57 0.02 6.99 79.43 0.43 0.01 0.03 2.98 0.57 0.00 0.05 0.64 79.43
NCBIGENE 0.02 0.01 0.17 91.53 0.02 0.03 0.01 2.72 0.22 0.00 0.00 2.61 91.53
OMIM 3.52 1.10 4.90 80.83 0.31 0.39 0.04 5.62 0.93 0.00 0.01 1.09 80.83
PHARMGKB 33.05 0.00 42.22 47.92 0.28 0.13 0.01 43.40 0.07 0.00 0.00 1.14 47.92
SABIORK 4.15 0.01 0.12 92.00 0.00 0.00 0.01 0.17 0.09 0.00 0.00 0.05 92.00
SGD 1.63 0.01 6.73 80.06 0.09 0.03 0.04 4.38 3.87 0.00 0.00 4.24 80.06
SIDER 0.02 0.01 7.44 90.87 0.00 0.03 0.01 7.42 0.09 0.00 0.00 0.73 90.87
SWDF 40.13 34.08 53.16 2.34 0.87 0.04 0.10 31.45 1.08 0.00 0.01 32.32 2.34
TAXONOMY 3.19 0.01 0.04 92.91 0.04 0.00 0.01 0.35 0.25 0.00 0.00 0.44 92.91
WIKIDATA 9.27 29.21 15.32 26.48 1.13 54.38 7.44 40.72 7.99 0.00 8.99 0.00 26.48
WORMBASE 14.16 4.46 0.12 69.92 9.69 1.58 0.00 0.27 0.63 0.00 0.00 0.82 69.92

Overall 7.22 4.67 10.23 67.57 1.63 2.17 0.66 9.14 3.77 0.00 0.34 3.34 67.57

tions. The skew is more evident in the case of clients,
and particularly for the SWDF and Bio2RDF datasets;
thus consumers of LSQ 2.0 should be aware that a high
ratio of queries from these datasets come from a small
number of clients (likely bots). DBPEDIA is the most
diverse in terms of clients and queries.

Static and Runtime Statistics Next, in order to charac-
terise how complex the queries are to evaluate, in Ta-
ble 5 we present some relevant static and runtime statis-
tics, where static statistics can be computed from the
query string, while runtime statistics require evaluating
the query locally (only queries that were successfully
run are counted; see Table 2 for statistics on runtime er-
rors). Regarding runtimes, we recall that these were run

with a one minute timeout, which represents the max
runtime. We see that LINKEDGEODATA contains the
most costly queries to run, which appears to correlate
with larger result sizes and a larger mean join-vertex
degree. Relatively high runtimes are also seen for the
KEGG dataset. The simplest queries to run are found
in the GENAGE, GENDR and TAXONOMY datasets.
These results suggest, for example, that LINKEDGEO-
DATA might be more suitable for consumers looking
for a challenging benchmark.

LSQ dataset statistics The LSQ 2.0 dataset, describ-
ing 43.95 million executions of 11.56 million unique



12 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Analysis of basic graph patterns and property paths including number of unique subject/predicate/object terms, percentage of unique queries
containing different types of joins (a query may contain multiple join types), and number of queries using different types of property path
expressions (/ denotes concatenation, ^ denotes inverse, * denotes zero-or-more; + denotes one-or-more; | denotes disjunction

DATASET
BGP TERMS JOIN TYPES (%) PROP. PATH FEATURES

SUBJ. PRED. OBJ. STAR HYB. PATH SINK NONE / ^ * + |

AFFYMETRIX 17,912 432 27,398 2.36 0.16 0.03 0.10 97.57 2 0 0 0 1
BIOMODELS 14,055 347 120,148 37.22 0.10 0.01 0.04 62.71 2 0 0 0 1
BIOPORTAL 9,275 130 6,275 36.26 34.22 0.01 53.08 44.60 1 0 0 0 1
CTD 14,927 276 22,320 1.72 0.19 0.04 0.16 98.21 3 1 0 0 1
DBPEDIA 912,943 10,842 1,104,732 29.38 7.06 1.71 15.48 69.56 49,660 39,039 271 7,582 32,709
DBSNP 12,825 112 6,069 2.10 0.06 0.01 0.04 97.86 2 0 0 0 1
DRUGBANK 37,578 989 34,601 33.39 16.81 2.01 7.50 64.44 8 0 1 0 1
GENAGE 2,666 113 11,875 4.30 0.04 0.01 0.01 95.66 2 0 0 0 1
GENDR 5,664 104 705 4.22 4.17 0.01 0.01 95.74 3 0 0 0 1
GO 35,504 394 59,362 16.51 0.90 0.87 1.31 83.14 4 2 0 0 1
GOA 33,593 204 22,044 8.06 0.05 0.02 0.02 91.89 5 0 0 0 1
HGNC 23,430 414 36,857 15.72 1.53 0.02 4.30 84.21 2 0 0 0 1
IREFINDEX 20,067 171 28,069 9.09 0.35 0.01 1.50 90.85 2 0 0 0 1
KEGG 5,620 251 8,964 7.24 1.67 0.51 0.93 92.08 3 0 0 0 1
LINKEDGEODATA 13,498 5,991 2,628 49.51 24.15 0.04 34.27 41.28 672 78 0 0 9
LINKEDSQP 326 55 144 0.05 0.03 0.02 0.00 99.91 2 0 0 0 1
MGI 28,702 391 23,867 2.13 1.36 0.15 0.56 97.79 5 0 0 0 1
NCBIGENE 11,753 254 4,427 2.16 0.20 0.02 0.18 97.79 3 0 1 0 1
OMIM 23,504 623 50,229 7.00 4.57 0.34 3.95 92.52 10 0 0 0 3
PHARMGKB 1,099 83 13,548 8.03 50.69 0.82 1.83 47.97 0 0 0 0 1
SABIORK 14,224 156 19,775 0.70 0.04 0.02 0.01 99.25 2 0 0 0 1
SGD 7,228 508 13,460 6.83 5.65 0.03 4.02 93.06 2 0 0 0 1
SIDER 8,792 152 3,589 0.53 0.08 0.02 0.04 99.43 6 0 0 0 1
SWDF 25,640 420 10,823 32.05 7.27 3.34 0.95 58.62 94 22 0 0 17
TAXONOMY 16,201 207 97,298 22.54 0.23 0.01 0.21 77.41 6 0 0 0 1
WIKIDATA 47,871 11,779 263,974 46.63 17.59 4.98 12.05 41.20 134,811 2,944 3,838 0 23,525
WORMBASE 53,807 148 24,083 39.40 5.13 4.47 5.07 60.55 2 0 0 0 1

Overall 1,398,704 35,546 2,017,264 15.74 6.58 0.72 5.47 80.56 185,314 42,086 4,111 7,582 56,285

queries, contains 1.24 billion triples, split into 27 named
graphs (one for each of the datasets listed).14

7. LSQ Adoption

In this section we present how LSQ has been adopted
since its initial release with four logs in 2015. We or-
ganise this discussion following the motivational use
cases we originally envisaged, as presented in Section 2.
Table 6 provides an overview of the research works
that have used LSQ, and the relevant use case(s) that
they target. We now discuss these works in more detail;

14We exclude some named graphs created by Virtuoso.

note that in the case of works that relate to multiple use
cases, we will discuss them once in what we identify to
be the “primary” related use case. We further discuss
some works that have used the LSQ dataset for use
cases beyond the six we had originally envisaged.

UC1: Custom Benchmarks LSQ has been adopted in
various works for creating custom benchmarks.

– Saleem et al. [79] present a framework for gen-
erating benchmarks that can be used to evaluate
SPARQL endpoints under typical workloads; the
benchmarks generate query types depending on
the features of the queries submitted to the end-
point, where LSQ is used for testing.



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ratio of clients

ra
ti
o
of

q
u
er
y
ex
ec
u
ti
o
n
s

Equality Bio2RDF
DBpedia LinkedGeoData
SWDF

Fig. 2. Lorenz curve for distribution of executions per client

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ratio of queries

ra
ti
o
of

q
u
er
y
ex
ec
u
ti
on

s

Equality Bio2RDF
DBpedia LinkedGeoData
SWDF Wikidata

Fig. 3. Lorenz curve for distribution of executions per query

– Later works by Saleem et al. further propose
frameworks for generating benchmarks from LSQ
for the purposes of evaluating query contain-
ment [80] and federated query evaluation [78], as
well as comparing existing SPARQL benchmarks
against LSQ in order to understand how represen-
tative they are of real workloads [82].

– Hernández et al. [42] present an empirical study
of the efficiency of graph database engines for an-
swering SPARQL queries over Wikidata; they re-
fer to LSQ to verify that the query shapes consid-
ered for evaluation correspond with other analyses
of real-world SPARQL queries.

– Fernández et al. [35] evaluate various archiv-
ing techniques and querying strategies for RDF
archives that store historical data; in their eval-
uation, they select the 200 most frequent triple
patterns from the DBPEDIA query set in LSQ.

– Azzam et al. [15] use LSQ for retrieving highly-
demanding queries from the dataset in order to
evaluate their system for dividing the load pro-
cessed by different SPARQL servers.

– Bigerl et al. [18] develop a tensor-based triple
store, where they used LSQ as input to the FEASI-
BLE framework to generate a custom benchmark.

– Azzam et al. [14] present a system that dynam-
ically delegates query processing load between
clients and servers. The authors use the Linked
Data Fragments client/server approach improving

it with the aforementioned technique and use 16
queries from LSQ to complement their evaluation.

– Davoudian et al. [30] present a system that parti-
tions graphs depending on the access frequency
to their nodes. In this way the system implements
workload-aware partitioning. The authors use LSQ
for evaluating their approach.

– Desouki et al. [32] propose a method to generate
synthetic benchmark data. To generate these syn-
thetic data they use other RDF graphs available,
such as SWDF and DBPEDIA 2016. They bench-
mark their approach using queries from LSQ.

– Röder et al. [71] develop a method to predict the
performance of knowledge graph query engines;
to do so the authors use a stochastic generation
model that is able to generate graphs of arbitrary
sizes similar to the input graph. They use LSQ as
a benchmark of real-world queries.

UC2: SPARQL Adoption Other works have used LSQ
to understand how SPARQL is being used in practice.

– Han et al. [41] provide a statistical analysis of
the queries of LSQ, surveying both syntactic fea-
tures, such as the number of triple patterns, the
SPARQL features used, the frequency of well-
designed patterns; as well as semantic proper-
ties, such as montonicity, weak-monotonicity, non-
monotonicity and satisfiability.

– Bonifati et al. [21, 22] conduct detailed analysis
of the queries in various logs, including LSQ; they



14 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Comparison of the mean values of runtime statistics across all query logs (PVs = Project Variables, BGPs = Basic Graph Patterns, TPs = Triple
Patterns, JVs = Join Vertices, MJVD = Mean Join Vertex Degree, MTPS = Mean Triple Pattern Selectivity)

DATASET
STATIC STATISTICS (mean) RUNTIME STATISTICS (mean)

PVs BGPs TPs JVs MJVD MTPS RESULT SIZE RUNTIME (SEC)

AFFYMETRIX 1.93 1.06 1.10 0.03 0.06 0.82 12708.39 0.084
BIOMODELS 1.24 1.04 1.42 0.37 0.75 0.57 4896.67 0.011
BIOPORTAL 1.16 1.03 1.94 1.43 1.12 0.54 1699.48 0.004
CTD 2.56 1.05 1.08 0.02 0.04 0.85 24354.24 0.102
DBPEDIA 2.78 2.37 3.23 0.93 0.66 0.01 114038.38 0.164
DBSNP 1.09 1.02 1.04 0.02 0.04 0.97 757108.37 0.009
DRUGBANK 2.61 1.05 1.93 0.69 0.91 0.66 119759.38 0.007
GENAGE 1.88 1.00 1.09 0.04 0.13 0.99 1642.84 0.003
GENDR 2.73 1.00 1.08 0.08 0.09 0.97 83.50 0.003
GO 1.46 1.10 1.37 0.22 0.38 0.02 93806.20 0.046
GOA 1.87 1.03 1.12 0.08 0.16 0.85 7692.26 0.016
HGNC 1.91 1.05 1.29 0.23 0.35 0.80 2419.43 0.019
IREFINDEX 2.92 1.13 1.43 0.19 0.25 0.82 32200.76 0.077
KEGG 2.27 1.15 1.31 0.13 0.18 0.33 175469.53 3.862
LINKEDGEODATA 2.27 1.16 2.62 1.10 1.76 0.15 11055973.09 6.788
LINKEDSQP 2.01 1.00 1.00 0.00 0.00 1.00 9503.41 0.014
MGI 2.04 1.04 1.11 0.05 0.06 0.84 2050.76 0.178
NCBIGENE 1.39 1.02 1.04 0.03 0.04 0.95 10731.33 0.021
OMIM 1.83 1.07 1.26 0.17 0.18 0.77 3505.54 0.020
PHARMGKB 1.96 1.34 2.48 1.06 1.08 0.39 255.61 0.017
SABIORK 2.96 1.05 1.06 0.01 0.02 0.88 1610.77 0.005
SGD 1.45 1.12 1.96 0.35 0.18 0.58 108951.60 0.058
SIDER 1.34 1.00 1.01 0.01 0.01 0.98 9703.86 0.010
SWDF 4.04 3.37 3.97 0.45 0.92 0.03 37362.67 0.007
TAXONOMY 1.77 1.17 1.53 0.23 0.59 0.69 1928.75 0.004
WIKIDATA 3.00 2.47 4.73 1.06 1.81 0.00 17817773.63 0.412
WORMBASE 1.56 1.25 2.05 0.65 0.87 0.98 9888.61 0.007

Overall 2.07 1.26 1.71 0.35 0.47 0.65 1126559.96 0.440

study a variety of phenomena in these queries, in-
cluding their shape, their (hyper)treewidth, com-
mon abstract patterns found in the property paths,
“streaks” that represent a sequence of user refor-
mulations from a seed query, and more besides.

UC3: Caching LSQ can also be used to simulate real
workloads for systems that explore caching techniques.

– Knuth et al. [49] propose a middleware compo-
nent to which applications register and get notifi-
cations when the results of their SPARQL queries
change; the authors study the problem of schedul-
ing refresh queries for a large number of registered
queries and use LSQ to validate their approach.

– Akhtar et al. [2, 3] propose an approach to capture
changes in an RDF dataset and update a cache

system in front of the SPARQL endpoint exposing
that data; their approach consists of a change met-
ric that quantifies the changes in an RDF dataset,
and a weighting function that assigns importance
to recent changes; they use LSQ to verify their
approach for real workloads.

– Salas and Hogan [76] propose a method for query
canonicalisation, which consists in mapping con-
gruous queries—i.e., queries that are equivalent
modulo variable names—to the same query string;
their main use case is to increase the hit rate of
SPARQL caches, where they use LSQ to test effi-
ciency on real-world queries and to see how many
congruent queries can be found in real workloads.

– Savafi et al. [75] study SPARQL adoption using
LSQ so they can later provide queries to sum-



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
Research works making use of the LSQ dataset since its initial release, ordered by year and then alphabetically by author name, with relevant use
cases indicated (UC1: Custom Benchmarks; UC2: SPARQL Adoption; UC3: Caching; UC4: Usability; UC5: Optimisation; UC6: Meta-Querying)

NAME YEAR UC 1 UC 2 UC 3 UC 4 UC 5 UC 6 Other

Saleem et al. [79] 2015 X

Arenas et al. [11] 2016 X X

Benedetti and Bergamaschi [17] 2016 X

Georgala et al. [39] 2016 X

Han et al. [41] 2016 X X

Hernandez et al. [42] 2016 X

Knuth et al. [49] 2016 X X

Rico et al. [72] 2016 X

Schoenfisch and Stuckenschmidt [84] 2016 X X

Song et al. [86] 2016 X X

Bonifati et al. [21] 2017 X X

Dellal et al. [31] 2017 X

Fokou et al. [37] 2017 X

Stegemann and Ziegler [88] 2017 X X X

Thakkar et al. [89] 2017 X

Akhtar et al. [2] 2018 X X

Bonifati et al. [22] 2018 X X

Darari et al. [29] 2018 X

Martens and Trautner [58] 2018 X

Salas and Hogan [76] 2018 X X

Saleem et al. [78] 2018 X

Saleem et al. [80] 2018 X

Varga et al. [93] 2018 X

Viswanathan et al. [96] 2018 X

Akhtar et al. [3] 2019 X X

Cheng and Hartig [26] 2019 X X X

Fafalios and Tzitzikas [34] 2019 X

Fernandez et al. [35] 2019 X

Potoniec [69] 2019 X X

Saleem et al. [82] 2019 X

Thost and Dolby [90] 2019 X X

Wang et al. [98] 2019 X

Savafi et al. [75] 2019 X

Singh et al. [85] 2019 X X

Azzam et al. [15] 2020 X

Bigerl et al. [18] 2020 X

Bonifati et al. [24] 2020 X X X

Figueira et al. [36] 2020 X X

Jian et al. [47] 2020 X X

Zhang et al. [101] 2020 X X

Aebeloe et al. [1] 2021 X X

Almendros-Jimenez et al. [6] 2021 X X

Azzam et al. [14] 2021 X

Davoudian et al. [30] 2021 X

Desouki et al. [32] 2021 X

Röder et al. [71] 2021 X

Wang et al. [97] 2021 X X



16 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

marise the Knowledge Graphs such that they can
be more efficiently accessed from and stored on
mobile devices with limited resources.

UC4: Usability LSQ also has applications for improv-
ing the usability of SPARQL endpoints.

– Arenas et al. [11] propose a method for reverse-
engineering SPARQL queries, which attempts to
construct a query that will return a given set of
positive examples as results, but not a second set
of negative examples; the authors use LSQ to show
that the approach scales well in the data size, num-
ber of examples, and in the size of the smallest
query that fits the data.

– Benedetti and Bergamaschi [17] present a system
(LODeX) that allows users to explore SPARQL
endpoints more easily through a formal model
defined over the endpoint schema; they show that
LODeX is able to generate 77.6% of the 5 million
queries contained in the original LSQ dataset.

– Dellal et al. [31] proposes query relaxation meth-
ods for queries with empty results, based on find-
ing minimal failing subqueries (generating empty
results) and maximal succeeding subqueries (gen-
erating non-empty results) to aid the user [37]. The
paper refers to LSQ to establish that queries with
empty results are common in practice.

– Stegemann and Ziegler [88] propose new opera-
tors for the SPARQL language that allow for com-
posing path queries more easily; the authors evalu-
ated their approach with a user study and analysis
of the extent to which their language is able to
express the real-world queries found in LSQ.

– Viswanathan et al. [96] propose a different form of
query relaxation, which generalises a specific re-
source to a variable on which specific restrictions
are added that correspond to relevant characteris-
tics of the resource; they use LSQ to understand
how entities are queried in practice.

– Potoniec [69] proposes an interactive system for
learning SPARQL queries from positive and nega-
tive examples;15 he uses the DBPEDIA queries of
LSQ for experiments.

– Wang et al. [98] present an approach for explain-
ing missing results for a SPARQL query—based
on answering “why-not” questions that ask why a
specific result is not included—to help users refine
their initial queries; the authors search LSQ for
queries useful for their approach.

15Notably the system is called Learning SPARQL Queries (LSQ).

– Bonifati et al. [24] analyse “streaks” in DBpedia
query logs,16 where a streak is defined as a se-
quence of similar queries in chronological order,
capturing the idea of a user refining and/or extend-
ing an initial query towards a final query.

– Jian et al. [47] use LSQ to evaluate their approach
for SPARQL query relaxation (to generalise users’
queries) and query restriction (to refine users’
queries) based on approximation and heuristics.

– Zhang et al. [101] propose a method to model
client behaviour when formulating SPARQL
queries in order to predict their intent and optimise
queries. They use LSQ for their evaluation.

– Almendros-Jimenez et al. [6] present two methods
for discovering and diagnosing “wrong” SPARQL
queries based on ontology reasoning. They evalu-
ate their approach using LSQ queries.

– Wang et al. [97] focus on providing explanations
for SPARQL query similarity measures. The au-
thors provide similarity scores using several ex-
plainable models based on Linear Regression, Sup-
port Vector Regression, Ridge Regression, and
Random Forest Regression. They use LSQ to eval-
uate their query classification.

UC5: Optimisation The LSQ dataset can also be used
to identify and study fragments that are commonly used
in practice and can be evaluated efficiently using dedi-
cated algorithms.

– The aforementioned analyses by Han et al. [41]
and Bonifati et al. [21, 22] suggest that well-
designed patterns, queries of bounded treewidth,
etc., make for promising fragments.

– In the context of probabilistic Ontology-Based
Data Access (OBDA), Schoenfisch and Stucken-
schmidt [84] analyse the ratio of safe queries—
whose evaluation is tractable in data complexity—
versus unsafe queries—whose evaluation is #P-
hard; they show that over 97.9% of the LSQ
queries are safe, and can be efficiently evaluated.

– Song et al. [86] use LSQ to analyse how nested
OPTIONAL clauses affect query response times;
they propose a way to approximate solutions for
deeply-nested well-designed patterns.

– Martens and Trautner [58] later take the property
paths extracted by Bonifati et al. [21] from LSQ
and other sources, defining simple transitive ex-

16In fact, these logs were gathered directly from OpenLink, though
we include discussion since similar analysis could have been applied
to the LSQ logs, and LSQ logs where used in other analyses.



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

pressions that subsume almost all property path
expressions seen in practice, while allowing more
efficient evaluation than the general case.

– Cheng and Hartig [26] introduce a monotonic ver-
sion of the OPTIONAL operator to SPARQL called
OPT+; a possible downside of the operator is an
increase in query result sizes, where they use the
LSQ dataset to study how OPTIONAL and OPT+
behave for real-world queries.

– Building upon the work of Martens and Traut-
ner [58], Figueira et al. [36] specifically study the
containment problem for restricted classes of Con-
junctive Regular Path Queries (CRPQs), which
are akin to BGPs with property paths; aside from
complexity results, they show the coverage of the
different classes for logs that include LSQ [24].

UC6: Meta-Querying A handful of works have also
used LSQ in the context of meta-querying, where
queries are found based on the resources they contain.

– Rico et al. [72] observe that analogous DB-
PEDIA properties are often defined in two dis-
tinct namespaces—e.g., dbo:birthPlace and
dbp:birthPlace—where they propose methods
to automatically expand SPARQL queries to cap-
ture solutions involving analogous properties; they
show that only 0.2% of the DBPEDIA queries in
LSQ mention properties from both namespaces.

– Varga et al. [93] provide an RDF-based metamodel
for BI 2.0 systems, which allows for capturing the
schema of a dataset, as well as previous queries
that have been posed against that dataset by other
users; the authors propose to re-use parts of the
LSQ vocabulary in their model; they further in-
stantiate their model using LSQ to retrieve queries
asked about countries.

Other use cases A number of works have used LSQ
(mostly for evaluation) in contexts that were not origi-
nally anticipated by the aforementioned use cases.

– Georgala et al. [39] propose a method to predict
temporal relations between events represented by
RDF resources following Allen’s interval algebra;
they use LSQ to validate their approach consider-
ing query executions as events.

– Darari et al. [29] present a theoretical framework
for augmenting RDF data sources with complete-
ness statements, which allows for reasoning about
the completeness of SPARQL query results; they
evaluate their method using LSQ.

– Fafalios and Tzitzikas [34] present a query evalua-
tion strategy, called SPARQL-LD, that combines
link traversal and query processing at SPARQL
endpoints; they provide a method for checking
if a SPARQL query can be answered through
link traversal, and analyse a large corpus of real
SPARQL query logs—including LSQ—for find-
ing the frequency and distribution of answerable
and non-answerable query patterns; they also use
LSQ to evaluate their approach.

– Singh et al. [85] use the LSQ vocabulary for pro-
viding a benchmark for Question Answering over
Linked Data. The authors use the LSQ vocabulary
to represent the SPARQL query related features
prior to generating the benchmark.

– Thost and Dolby [90] present QED: a system for
generating concise RDF graphs that are sufficient
to produce solutions from a given query, which can
be used for benchmarking, for compliance testing,
for training query-by-example models, etc.; they
apply their system over LSQ queries to generate
datasets from DBPEDIA.

– Aebeloe et al. [1] present a decentralised archi-
tecture based on blockchain that allows users to
propose updates to faulty or outdated data, tracing
back their origin, and query older versions of the
data. They use LSQ queries for their evaluation.

Discussion Per Table 6, we see that the original ver-
sion of LSQ has been used in a wide variety of research
works for a variety of purposes. Complementing other
SPARQL query logs such as Wikidata’s [57], we be-
lieve that LSQ 2.0, with its extended set of queries, will
likewise serve as a useful resource to help align the
theory and practice of SPARQL research.

8. Conclusions and Future Directions

In this paper, we have described the Linked SPARQL
Queries v.2 (LSQ 2.0) dataset, which represents queries
in logs as RDF, allowing clients to quickly find real-
world queries that may be of interest to them. We have
described a number of use cases for LSQ, including the
generation of custom benchmarks, the analysis of how
SPARQL is used in practice, the evaluation of caching
systems, the exploration of techniques to improve the
usability of SPARQL services, the targeted optimisa-
tion of queries with characteristics commonly found
in real workloads, as well as the ability to find queries
relating to specific resources. We then described the



18 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

model and vocabulary used to represent LSQ, including
static features of queries, a SPIN representation, prove-
nance encoding the agents and endpoints from which
the query originate, as well as runtime statistics gen-
erated through local executions of the queries against
their corresponding dataset. We then discussed how
LSQ is published, thereafter describing the datasets
and queries featured in the current version of LSQ. Fi-
nally we discussed how LSQ has been used for research
purposes since its initial release in 2015.

As discussed in Section 7, since its initial release,
LSQ has been adopted by a variety of research works
for a variety of purposes. In terms of future directions,
we will look to continue adding further logs with fur-
ther queries to the dataset. Looking at how LSQ has
been adopted in the literature has also revealed ways
in which the metadata for LSQ could be extended in a
future version, such as to add information about mono-
tonicity and satisfiability [41], or information about
(hyper)treewidth [21, 22], for example. It may also
be useful to provide a canonical version of the query
string [76]; this could perhaps be leveraged, for exam-
ple, when evaluating caching methods. Another useful
feature would be to add questions in natural language
that verbalise each query, which could be used, for ex-
ample, in order to create datasets for training and testing
question answering systems, as well as enabling users
to find relevant queries through keyword search; given
the large number of queries in the dataset, an automated
approach may be applicable [64].

As discussed by Martens and Trautner [59], query
logs allow to bridge the theory and practice of SPARQL.
They serve an important role, ensuring that the research
conducted by the community is guided by the require-
ments and trends that emerge in practice. We thus be-
lieve that LSQ (2.0) will continue to serve an important
role in SPARQL research in the coming years.

Acknowledgements We thank the OpenLink Soft-
ware team for hosting the DBpedia SPARQL endpoint
and for making the logs available to us. Hogan was
supported by Fondecyt Grant No. 1181896 and by
ANID – Millennium Science Initiative Program – Code
ICN17_002. Buil-Aranda was supported by Fondecyt
Iniciación Grant No. 11170714 and by ANID – Millen-
nium Science Initiative Program – Code ICN17_002.
This work was also partially supported by the German
Federal Ministry of Education and Research (BMBF)
within the EuroStars project E!114681 3DFed under
the grant no 01QE2114, project RAKI (01MD19012D)
and project KnowGraphs (No 860801).

References

[1] C. Aebeloe, G. Montoya, and K. Hose. ColChain: Collabora-
tive Linked Data Networks. In The Web Conference (WWW),
pages 1385–1396. ACM / IW3C2, 2021.

[2] U. Akhtar, M. A. Razzaq, U. U. Rehman, M. B. Amin, W. A.
Khan, E.-N. Huh, and S. Lee. Change-Aware Scheduling for
Effectively Updating Linked Open Data Caches. IEEE Access,
6:65862–65873, 2018.

[3] U. Akhtar, A. Sant’Anna, and S. Lee. A Dynamic, Cost-Aware,
Optimized Maintenance Policy for Interactive Exploration of
Linked Data. Applied Sciences, 9(22):4818, 2019.

[4] R. Al-Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim,
and M. Sahli. Accelerating SPARQL queries by exploit-
ing hash-based locality and adaptive partitioning. VLDB J.,
25(3):355–380, 2016.

[5] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. De-
scribing Linked Datasets with the VoID Vocabulary. W3C
Interest Group Note, Mar. 2011. https://www.w3.org/TR/void/.

[6] J. M. Almendros-Jiménez and A. Becerra-Terón. Discov-
ery and diagnosis of wrong SPARQL queries with ontology
and constraint reasoning. Expert Systems with Applications,
165:113772, 2021.

[7] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified
Stress Testing of RDF Data Management Systems. In Inter-
national Semantic Web Conference (ISWC), pages 197–212.
Springer, 2014.

[8] G. Aluç, M. T. Özsu, and K. Daudjee. Workload Matters: Why
RDF Databases Need a New Design. PVLDB, 7(10):837–840,
2014.

[9] G. Aluç, M. T. Özsu, and K. Daudjee. Building self-clustering
RDF databases using Tunable-LSH. VLDB J., 28(2):173–195,
2019.

[10] O. Ambrus, K. Möller, and S. Handschuh. Konduit VQB: a
Visual Query Builder for SPARQL on the Social Semantic
Desktop. In Visual Interfaces to the Social and Semantic Web
(VISSW). ACM Press, 2010.

[11] M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse engineering
SPARQL queries. In World Wide Web Conference (WWW),
pages 239–249. ACM, 2016.

[12] M. Arias-Gallego, J. D. Fernández, M. A. Martínez-Prieto, and
P. de la Fuente. An Empirical Study of Real-World SPARQL
Queries. In Usage Analysis and the Web of Data (USEWOD).
CEUR-WS.org, 2011.

[13] D. Arroyuelo, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-
Ledesma, and A. Soto. Worst-Case Optimal Graph Joins in
Almost No Space. In SIGMOD International Conference on
Management of Data, pages 102–114. ACM, 2021.

[14] A. Azzam, C. Aebeloe, G. Montoya, I. Keles, A. Polleres,
and K. Hose. WiseKG: Balanced Access to Web Knowledge
Graphs. In The Web Conference (WWW), pages 1422–1434.
ACM / IW3C2, 2021.

[15] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, and
A. Polleres. SMART-KG: Hybrid Shipping for SPARQL
Querying on the Web. In The Web Conference (WWW), pages
984–994, 2020.



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[16] S. Bail, S. Alkiviadous, B. Parsia, D. Workman, M. van Harme-
len, R. S. Gonçalves, and C. Garilao. FishMark: A Linked Data
Application Benchmark. In Joint Workshop on Scalable and
High-Performance Semantic Web Systems (SSWS+HPCSW),
pages 1–15, 2012.

[17] F. Benedetti and S. Bergamaschi. A model for visual build-
ing SPARQL queries. In Symposium on Advanced Database
Systems (SEBD), pages 19–30, 2016.

[18] A. Bigerl, F. Conrads, C. Behning, M. A. Sherif, M. Saleem,
and A.-C. Ngonga Ngomo. Tentris – A Tensor-Based Triple
Store. In International Semantic Web Conference (ISWC),
pages 56–73. Springer, 2020.

[19] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark.
IJSWIS, 5(2):1–24, 2009.

[20] A. Bonifati, S. Dumbrava, G. Fletcher, J. Hidders, M. Hofer,
W. Martens, F. Murlak, J. Shinavier, S. Staworko, and
D. Tomaszuk. Threshold Queries in Theory and in the Wild.
CoRR, abs/2106.15703, 2021.

[21] A. Bonifati, W. Martens, and T. Timm. An Analytical Study of
Large SPARQL Query Logs. PVLDB, 11(2):149–161, 2017.

[22] A. Bonifati, W. Martens, and T. Timm. DARQL: Deep Anal-
ysis of SPARQL Queries. In WWW Posters & Demos, pages
187–190. ACM, 2018.

[23] A. Bonifati, W. Martens, and T. Timm. Navigating the Maze of
Wikidata Query Logs. In World Wide Web Conference (WWW),
pages 127–138. ACM, 2019.

[24] A. Bonifati, W. Martens, and T. Timm. An analytical study of
large SPARQL query logs. VLDB J., 29(2-3):655–679, 2020.

[25] S. Campinas. Live SPARQL Auto-Completion. In ISWC
Posters & Demos, pages 477–480. CEUR-WS.org, 2014.

[26] S. Cheng and O. Hartig. OPT+: A Monotonic Alternative
to OPTIONAL in SPARQL. Journal of Web Engineering,
18(1):169–206, 2019.

[27] A. Clemmer and S. Davies. Smeagol: a “specific-to-general”
Semantic Web query interface paradigm for novices. In
Database and Expert Systems Applications (DEXA), pages
288–302. Springer, 2011.

[28] O. Curé, H. Naacke, M. A. Baazizi, and B. Amann. HAQWA:
a Hash-based and Query Workload Aware Distributed RDF
Store. In ISWC Posters & Demos. CEUR-WS.org, 2015.

[29] F. Darari, W. Nutt, G. Pirrò, and S. Razniewski. Completeness
management for RDF data sources. ACM Transactions on the
Web (TWEB), 12(3):18, 2018.

[30] A. Davoudian, L. Chen, H. Tu, and M. Liu. A Workload-
Adaptive Streaming Partitioner for Distributed Graph Stores.
Data Science and Engineering, 6(2):163–179, 2021.

[31] I. Dellal, S. Jean, A. Hadjali, B. Chardin, and M. Baron. On
addressing the empty answer problem in uncertain knowledge
bases. In International Conference on Database and Expert
Systems Applications (DEXA), pages 120–129. Springer, 2017.

[32] A. A. Desouki, F. Conrads, M. Röder, and A.-C. N. Ngomo.
SYNTHG: Mimicking RDF Graphs Using Tensor Factoriza-
tion. In International Conference on Semantic Computing
(ICSC), pages 76–79, 2021.

[33] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell,
V. Emonet, F. Belleau, and A. Droit. Bio2RDF Release 3: A
larger, more connected network of Linked Data for the Life
Sciences. In ISWC Posters & Demos, pages 401–404. CEUR-
WS.org, 2014.

[34] P. Fafalios and Y. Tzitzikas. How many and what types of
SPARQL queries can be answered through zero-knowledge
link traversal? In ACM/SIGAPP Symposium on Applied Com-
puting (SAC), pages 2267–2274. ACM, 2019.

[35] J. D. Fernández, J. Umbrich, A. Polleres, and M. Knuth. Evalu-
ating query and storage strategies for RDF archives. Semantic
Web, 10(2):247–291, 2019.

[36] D. Figueira, A. Godbole, S. N. Krishna, W. Martens, M. Niew-
erth, and T. Trautner. Containment of simple conjunctive
regular path queries. In International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), pages
371–380, 2020.

[37] G. Fokou, S. Jean, A. Hadjali, and M. Baron. Handling failing
RDF queries: from diagnosis to relaxation. Knowl. Inf. Syst.,
50(1):167–195, 2017.

[38] R. Frosini, A. Calì, A. Poulovassilis, and P. T. Wood. Flexible
query processing for SPARQL. Semantic Web, 8(4):533–563,
2017.

[39] K. Georgala, M. A. Sherif, and A.-C. N. Ngomo. An efficient
approach for the generation of Allen relations. In European
Conference on Artificial Intelligence (ECAI), pages 948–956.
IOS Press, 2016.

[40] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL
knowledge base systems. J. Web Semant., 3(2-3):158–182,
2005.

[41] X. Han, Z. Feng, X. Zhang, X. Wang, G. Rao, and S. Jiang. On
the statistical analysis of practical SPARQL queries. In Inter-
national Workshop on Web and Databases (WebDB), page 2.
ACM, 2016.

[42] D. Hernández, A. Hogan, C. Riveros, C. Rojas, and E. Zerega.
Querying Wikidata: Comparing SPARQL, Relational and
Graph Databases. In International Semantic Web Conference
(ISWC), pages 88–103. Springer, 2016.

[43] A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards
Fuzzy Query-Relaxation for RDF. In European Semantic Web
Conference (ESWC), pages 687–702. Springer, 2012.

[44] F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RDF-
GL: A SPARQL-Based Graphical Query Language for RDF.
In Emergent Web Intelligence: Advanced Information Re-
trieval, pages 87–116. 2010.

[45] K. Hose and R. Schenkel. WARP: Workload-aware replication
and partitioning for RDF. In Data Engineering meets the
Semantic Web (DESWEB@ICDE), pages 1–6. IEEE Computer
Society, 2013.

[46] K. Janowicz, P. Hitzler, B. Adams, D. Kolas, and C. Vardeman.
Five stars of Linked Data vocabulary use. Semantic Web,
5(3):173–176, 2014.

[47] X. Jian, Y. Wang, X. Lei, L. Zheng, and L. Chen. SPARQL
Rewriting: Towards Desired Results. In SIGMOD Interna-
tional Conference on Management of Data, pages 1979–1993,
2020.

[48] H. Knublauch, J. A. Hendler, and K. Idehen. SPIN – Overview
and Motivation. W3C Member Submission, 22 February 2011.
Available at http://www.w3.org/Submission/spin-overview/.

[49] M. Knuth, O. Hartig, and H. Sack. Scheduling refresh queries
for keeping results from a SPARQL endpoint up-to-date. In
On The Move to Meaningful Internet Systems (OTM), pages
780–791. Springer, 2016.

[50] T. Lampo, M. Vidal, J. Danilow, and E. Ruckhaus. To Cache
or Not To Cache: The Effects of Warming Cache in Complex
SPARQL Queries. In On The Move to Meaningful Internet
Systems (OTM), pages 716–733. Springer, 2011.



20 Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[51] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney,
D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik, and J. Zhao.
PROV-O: The PROV Ontology. W3C Recommendation, Apr.
2013. https://www.w3.org/TR/prov-o/.

[52] J. Lehmann and L. Bühmann. AutoSPARQL: Let Users Query
Your Knowledge Base. In European Semantic Web Conference
(ESWC), pages 63–79. Springer, 2011.

[53] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer,
and C. Bizer. DBpedia – A large-scale, multilingual knowledge
base extracted from Wikipedia. Semantic Web, 6(2):167–195,
2015.

[54] A. M. Loustaunau and A. Hogan. Predicting SPARQL query
dynamics. In A. L. Gentile and R. Gonçalves, editors, K-
CAP ’21: Knowledge Capture Conference, Virtual Event, USA,
December 2-3, 2021, pages 161–168. ACM, 2021.

[55] M. Luczak-Roesch, S. Aljaloud, B. Berendt, and L. Hollink.
USEWOD – Usage Analysis and the Web of Data, 2016.

[56] F. Maali, I. A. Hassan, and S. Decker. Scheduling for SPARQL
Endpoints. In Scalable Semantic Web Knowledge Base Systems
(SWSS), pages 19–28. CEUR-WS.org, 2014.

[57] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and
A. Bielefeldt. Getting the Most Out of Wikidata: Semantic
Technology Usage in Wikipedia’s Knowledge Graph. In Inter-
national Semantic Web Conference (ISWC), pages 376–394.
Springer, 2018.

[58] W. Martens and T. Trautner. Evaluation and Enumeration Prob-
lems for Regular Path Queries. In International Conference on
Database Theory (ICDT), pages 19:1–19:21. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2018.

[59] W. Martens and T. Trautner. Bridging Theory and Practice
with Query Log Analysis. SIGMOD Record, 48(1):6–13, 2019.

[60] M. Martin, J. Unbehauen, and S. Auer. Improving the per-
formance of semantic web applications with sparql query
caching. In Extended Semantic Web Conference, pages 304–
318. Springer, 2010.

[61] K. Möller, T. Heath, S. Handschuh, and J. Domingue. Recipes
for Semantic Web Dog Food - The ESWC and ISWC Metadata
Projects. In International Semantic Web Conference (ISWC),
pages 802–815. Springer, 2007.

[62] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo.
DBpedia SPARQL Benchmark – Performance Assessment
with Real Queries on Real Data. In International Semantic
Web Conference (ISWC). Springer, 2011.

[63] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine
for RDF. PVLDB, 1(1):647–659, 2008.

[64] A. N. Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D. Ger-
ber. Sorry, I don’t speak SPARQL: translating SPARQL
queries into natural language. In D. Schwabe, V. A. F. Almeida,
H. Glaser, R. Baeza-Yates, and S. B. Moon, editors, World
Wide Web Conference (WWW), pages 977–988. ACM, 2013.

[65] A. Pacaci, A. Bonifati, and M. T. Özsu. Regular Path Query
Evaluation on Streaming Graphs. In SIGMOD International
Conference on Management of Data, pages 1415–1430. ACM,
2020.

[66] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris. Graph-
Aware, Workload-Adaptive SPARQL Query Caching. In SIG-
MOD International Conference of Management of Data, pages
1777–1792. ACM, 2015.

[67] J. Pérez, M. Arenas, and C. Gutiérrez. Semantics and com-
plexity of SPARQL. ACM Trans. Database Syst., 34(3):16:1–
16:45, 2009.

[68] F. Picalausa and S. Vansummeren. What Are Real SPARQL
Queries Like? In Semantic Web Information Management
(SWIM), page 7. ACM, 2011.

[69] J. Potoniec. Learning SPARQL Queries from Expected Results.
Computing and Informatics, 38(3):679–700, 2019.

[70] E. Prud’hommeaux and A. Seaborne. SPARQL 1.0 Query Lan-
guage. W3C Recommendation, 15 January 2008. Available at
https://www.w3.org/TR/rdf-sparql-query/.

[71] M. Röder, P. T. S. Nguyen, F. Conrads, A. A. M. da Silva, and
A.-C. N. Ngomo. Lemming – Example-based Mimicking of
Knowledge Graphs. In International Conference on Semantic
Computing (ICSC), pages 62–69, 2021.

[72] M. Rico, N. Mihindukulasooriya, and A. Gómez-Pérez. Data-
Driven RDF Property Semantic-Equivalence Detection Using
NLP Techniques. In International Conference on Knowledge
Engineering and Knowledge Management (EKAW), pages 797–
804. Springer, 2016.

[73] L. Rietveld and R. Hoekstra. Man vs. Machine: Differences
in SPARQL Queries. In Usage Analysis and the Web of Data
(USEWOD). CEUR-WS.org, 2014.

[74] L. Rietveld and R. Hoekstra. YASGUI: Feeling the Pulse
of Linked Data. In Knowledge Engineering and Knowledge
Management (EKAW), pages 441–452. Springer, 2014.

[75] T. Safavi, C. Belth, L. Faber, D. Mottin, E. Müller, and
D. Koutra. Personalized knowledge graph summarization:
From the cloud to your pocket. In International Conference
on Data Mining (ICDM), pages 528–537. IEEE, 2019.

[76] J. Salas and A. Hogan. Canonicalisation of Monotone
SPARQL Queries. In International Semantic Web Conference
(ISWC), pages 600–616. Springer, 2018.

[77] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N.
Ngomo. LSQ: The Linked SPARQL Queries Dataset. In
International Semantic Web Conference (ISWC), pages 261–
269. Springer, 2015.

[78] M. Saleem, A. Hasnain, and A.-C. N. Ngomo. LargeRDF-
Bench: A billion triples benchmark for SPARQL endpoint
federation. Journal of Web Semantics, 48:85–125, 2018.

[79] M. Saleem, Q. Mehmood, and A. N. Ngomo. FEASIBLE: A
Feature-Based SPARQL Benchmark Generation Framework.
In International Semantic Web Conference (ISWC), pages 52–
69. Springer, 2015.

[80] M. Saleem, Q. Mehmood, C. Stadler, J. Lehmann, and A. N.
Ngomo. Generating SPARQL Query Containment Bench-
marks Using the SQCFramework. In ISWC Posters & Demos.
CEUR-WS.org, 2018.

[81] M. Saleem and A. N. Ngomo. HiBISCuS: Hypergraph-Based
Source Selection for SPARQL Endpoint Federation. In Eu-
ropean Semantic Web Conference (ESWC), pages 176–191.
Springer, 2014.

[82] M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari,
Q. Mehmood, and A. N. Ngomo. How Representative Is a
SPARQL Benchmark? An Analysis of RDF Triplestore Bench-
marks. In World Wide Web Conference (WWW), pages 1623–
1633. ACM, 2019.

[83] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte,
and T. Tran. FedBench: A Benchmark Suite for Federated
Semantic Data Query Processing. In International Semantic
Web Conference (ISWC), pages 585–600. Springer, 2011.



Claus Stadler et al. / LSQ 2.0: A Linked Dataset of SPARQL Query Logs 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[84] J. Schoenfisch and H. Stuckenschmidt. Analyzing real-world
SPARQL queries and ontology-based data access in the context
of probabilistic data. Int. J. Approx. Reasoning, 90:374–388,
2017.

[85] K. Singh, M. Saleem, A. Nadgeri, F. Conrads, J. Z. Pan,
A.-C. N. Ngomo, and J. Lehmann. Qaldgen: Towards mi-
crobenchmarking of question answering systems over knowl-
edge graphs. In International Semantic Web Conference
(ISWC), pages 277–292. Springer, 2019.

[86] Z. Song, Z. Feng, X. Zhang, X. Wang, and G. Rao. Efficient
approximation of well-designed SPARQL queries. In Inter-
national Conference on Web-Age Information Management
(WAIM), pages 315–327. Springer, 2016.

[87] C. Stadler, J. Lehmann, K. Höffner, and S. Auer. LinkedGeo-
Data: A core for a web of spatial open data. Semantic Web,
3(4):333–354, 2012.

[88] T. Stegemann and J. Ziegler. Investigating learnability, user
performance, and preferences of the path query language
SemwidgQL compared to SPARQL. In International Semantic
Web Conference (ISWC), pages 611–627. Springer, 2017.

[89] H. Thakkar, Y. Keswani, M. Dubey, J. Lehmann, and S. Auer.
Trying Not to Die Benchmarking: Orchestrating RDF and
Graph Data Management Solution Benchmarks Using LIT-
MUS. In International Conference on Semantic Systems (SE-
MANTiCS), pages 120–127. ACM, 2017.

[90] V. Thost and J. Dolby. QED: out-of-the-box datasets for
SPARQL query evaluation. In European Semantic Web Con-
ference (ESWC), pages 491–506. Springer, 2019.

[91] P. Vandenbussche, G. Atemezing, M. Poveda-Villalón, and
B. Vatant. Linked Open Vocabularies (LOV): A gateway to
reusable semantic vocabularies on the Web. Semantic Web,
8(3):437–452, 2017.

[92] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. B.
Aranda. SPARQLES: Monitoring public SPARQL endpoints.
Semantic Web, 8(6):1049–1065, 2017.

[93] J. Varga, O. Romero, T. B. Pedersen, and C. Thomsen. An-
alytical metadata modeling for next generation BI systems.
Journal of Systems and Software, 144:240–254, 2018.

[94] H. Vargas, C. B. Aranda, A. Hogan, and C. López. RDF
Explorer: A Visual SPARQL Query Builder. In International
Semantic Web Conference (ISWC), pages 647–663. Springer,
2019.

[95] R. D. Virgilio, A. Maccioni, and R. Torlone. Approximate
querying of RDF graphs via path alignment. Distributed and
Parallel Databases, 33(4):555–581, 2015.

[96] A. Viswanathan, G. de Mel, and J. A. Hendler. Feature-
based reformulation of entities in triple pattern queries. CoRR,
abs/1807.01801, 2018.

[97] M. Wang, K. Chen, G. Xiao, X. Zhang, H. Chen, and S. Wang.
Explaining similarity for SPARQL queries. World Wide Web,
pages 1–23, 2021.

[98] M. Wang, J. Liu, B. Wei, S. Yao, H. Zeng, and L. Shi. Answer-
ing why-not questions on SPARQL queries. Knowledge and
Information Systems, pages 1–40, 2019.

[99] G. T. Williams and J. Weaver. Enabling Fine-Grained HTTP
Caching of SPARQL Query Results. In International Semantic
Web Conference (ISWC), pages 762–777. Springer, 2011.

[100] H. Wu, T. Fujiwara, Y. Yamamoto, J. T. Bolleman, and A. Ya-
maguchi. BioBenchmark Toyama 2012: an evaluation of the
performance of triple stores on biological data. J. Biomedical
Semantics, 5:32, 2014.

[101] X. Zhang, M. Wang, M. Saleem, A.-C. N. Ngomo, G. Qi, and
H. Wang. Revealing Secrets in SPARQL Session Level. In
International Semantic Web Conference (ISWC), pages 672–
690. Springer, 2020.


