
ERDoc: A Web Interface for Entity–Relation Modelling
Matías López
DCC UChile

Santiago, Chile
mlopez@dcc.uchile.cl

Sebastián Ferrada
DCC & IDIA UChile. IMFD Chile

Santiago, Chile
sebastian.ferrada@uchile.cl

Aidan Hogan
DCC UChile. IMFD Chile

Santiago, Chile
ahogan@dcc.uchile.cl

ABSTRACT
Computer Science professors at the University of Chile have found
that their students often lack the abilities required to adequately
model a relational database, for example, in the context of capstone
Software Engineering projects. These students have passed an in-
troductory Databases course covering conceptual modelling via
Entity–Relation (ER) diagrams. A possible cause is that modelling
tools found on the Web force students to immediately think in
terms of tables and foreign keys instead of in terms of concepts and
how they connect. In this paper, we present ERDoc: an application
aimed at assisting students and other users through the modelling
process. We define a syntax to allow users to describe entities, their
attributes and relationships; from these descriptions, we automati-
cally and dynamically generate ER diagrams. Both syntactic and
semantic errors are detected and informed to the user. Preliminary
evaluations with professors, teaching assistants and students show
that ERDoc Playground is usable and useful in the task of concep-
tual modelling of databases, and thus has the potential to improve
the conceptual-modelling aptitudes of Computer Science students.

CCS CONCEPTS
• Information systems→ Entity relationship models; Markup
languages; Web applications.

KEYWORDS
Entity-RelationshipDiagrams, Relational DatabaseModelling, Teach-
ing in Databases
ACM Reference Format:
Matías López, Sebastián Ferrada, and Aidan Hogan. 2024. ERDoc: A Web
Interface for Entity–Relation Modelling. In 3rd International Workshop on
Data Systems Education: Bridging education practice with education research
(DataEd ’24), June 9, 2024, Santiago, AA, Chile. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3663649.3664372

1 INTRODUCTION
Entity-Relationship (ER) Diagrams are useful for the conceptual
modelling of databases, especially in Computer Science curric-
ula [15]. ER diagrams allow the definition of the relevant objects
being modelled along with how they interrelate. A high-quality ER
diagram often leads to a well-designed relational schema in 3NF [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DataEd ’24, June 9, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0678-3/24/06
https://doi.org/10.1145/3663649.3664372

Computer Science professors at the Universidad de Chile have
found that students lack conceptual modelling skills. We believe
that this problem is due to a) students tending to immediately think
in terms of tables instead of entities, b) students not seeing the
benefits of conceptual modelling, and c) a lack of publicly available
and open source tools for conceptual modelling when compared
with tools available for designing physical models [5], such as
dbdiagram [1]; MySQL Workbench [2]; pgModeler [3]; etc.

In this paper, we introduce ERDoc Playground: a web application
that allows users to dynamically generate Entity-Relationship (ER)
diagrams by specifying them with a custom language we call ER-
Doc. ERDoc Playground supports basic and advanced features of
ER Diagrams, as specified by Chen [6], namely entities, 𝑛-ary rela-
tionships, and weak entities. Other features like class hierarchies
and aggregation [14] are also supported. Furthermore, ERDoc Play-
ground displays the diagrams in different notations and automat-
ically places the visual elements in a layout. We evaluate ERDoc
Playground on its performance and usability. Results show that
ERDoc Playground performs well with reasonably large diagrams
(hundreds of entities), and users find it intuitive and useful.

Before describing our markup language in Section 3 and ERDoc
Playground itself in Section 4, we review solutions for database
modelling in Section 2. We present our evaluation of ERDoc Play-
ground in Section 5 and give our concluding remarks in Section 6.

2 CURRENT SOLUTIONS
Students and other practitioners have a number of options for
modelling ER diagrams, which we divide into two categories.

Generic drawing solutions. Generic drawing tools – such as Dia-
grams, draw.io, LATEX/tikz, Paint, Powerpoint, Visio, or even free-
hand sketching – can be used to draw ER diagrams using Chen
notation [6]. While a simple and effective solution, we notice that
students tend to spend a lot of time concerned about the minutiae
of the graphical notation, such as the dashed lines, double lines,
arrows, etc. Furthermore, no automated feedback is provided.

Modelling solutions. Other options are rather tailored for mod-
elling tasks, such as creating ER diagrams. Carvalho et al. [5] pro-
vide a survey of 20 highlighted tools selected from more extensive
online lists.1 Some of these tools are commercial, while others are
free. Some are desktop applications, while others are web appli-
cations. Surprisingly, Carvalho et al. [5], in reference to the ER
model, note that “Despite this graphical representation, the physical
data model produces a better comprehension of the relationships”.
Perhaps for this reason, systems that claim to provide functionality
for “ER diagrams” rather support diagramming relational models,
thus conflating conceptual and physical models. In these applica-
tions, one can find tables, attributes, foreign keys, private keys, etc.
1https://www.databasestar.com/data-modeling-tools/

https://doi.org/10.1145/3663649.3664372
https://doi.org/10.1145/3663649.3664372
https://www.databasestar.com/data-modeling-tools/

DataEd ’24, June 9, 2024, Santiago, AA, Chile López, et al.

No graphical distinction is made between entities and relations.
While perhaps sufficient for more experienced database practition-
ers who wish to design and/or document a relational schema, we
claim that such systems, by bypassing conceptual modelling, do
not help students to learn good modelling practices [9].

Conceptual Modelling in Education. Davis [7] designs a 9-step
framework for teaching conceptual modelling, which is centred on
design capture over a two-phase modelling task. She later proves
that active learning methods regarding conceptual modelling are
effective [8]. ChenWorlds [11] is an active learning tool for drawing
ER diagrams, where students read a description and then choose
from the visual alternatives curated by a tutor. MonstER Park [13]
is a gamified learning tool in which students "talk to little monsters"
that help them build an ER diagram and provide feedback.

Novelty. We see the need for a system based on the classical
notion of Entity–Relation diagrams [6] to help students apply con-
ceptual modelling practices for database design. The goal is a system
that, unlike Chen Worlds and MonstER Park, is not too concerned
with the visual notation of the ER diagram (arrows, lines, etc.), but
rather with the concepts being modelled. The system should be
available online, avoiding the need to install specialised software.
It should further detect and help users to resolve both syntactic
and semantic errors. We describe ERDoc: a system that satisfies
these criteria. The system consists of the ERDoc syntax and lan-
guage, used to define the ER diagram, and ERDoc Playground, a
Web interface for defining, validating and visualising ER diagrams.

3 ERDOC LANGUAGE
ERDoc is a markup language for defining classical ER diagrams [6],
including entities with their attributes and keys; relationships with
attributes, cardinality, and participation constraints; as well as other
features such as weak entities, class hierarchies, and aggregations.

ERDoc was designed to be succinct, borrowing notation style
from Java, Python, and dbdiagram [1]. Figure 1 presents a small
ERDoc document that specifies two entities and a relationship
between them. Each entity is written starting with the entity
keyword, followed by the name of the entity; the names of the
attributes of the entity then go between curly braces, one per line.
Attributes that are part of the primary key of the entity use the
key modifier next to the attribute’s name. For relationships, the
relation keyword is used, followed by the relationship name. The
names of the participating relationships are listed in parenthesis,
separated by commas. Each entity can optionally have maximum
cardinality (1 or N) and participation (!, interpreted as at-least-one)
constraints. The default value is N (zero or more). Figure 2a shows
an ER diagram corresponding to the ERDoc document of Figure 1.
A more complete example, featuring relationships with attributes,
weak entities, and class hierarchies, can be found in Figure 3.

The complete grammar of ERDoc is presented in Figure 4, and a
detailed explanation of each feature can be found in the docs: https://
erdoc.dcc.uchile.cl/docs. Using the grammar’s syntax and semantics,
an ERDoc parser and a linter are implemented to detect syntactic
and semantic errors, respectively. Examples of semantic errors are
entities without key attributes, duplicate entities, relationships, etc.,

entity Employee {
e_id key
name }

entity Department {
d_number key
d_name }

relation Works_for(Employee N, Department 1!)

Figure 1: ERDoc document declaring two entities and a rela-
tionship among them in the ERDoc language.

relationships involving undefined entities, weak entities without a
weak relation, circular dependencies between weak entities, etc.

4 ERDOC PLAYGROUND
To help students learn and apply conceptual database modelling,
and to facilitate the creation of ER diagrams, we have developed
ERDoc Playground: a web application that leverages the ERDoc
language to dynamically generate ER diagrams. The produced ER
diagrams use Chen’s original visual notation [6]. For displaying car-
dinality and participation constraints, ERDoc Playground supports
three notations: Chen’s, min/max, and arrow notation [12]. The ER
diagrams corresponding to the ERDoc document in Figure 1 using
the different notations are found in Figure 2. A demo of ERDoc
Playground can be found at https://erdoc.dcc.uchile.cl.

4.1 User Interface
In Figure 5 we present the main UI of ERDoc Playground. On
the left-hand side of the UI there is a text editor to write ERDoc
documents. The application dynamically generates an ER diagram
corresponding to the user input, which the user can run in two
modes: with an automatic layout that positions elements for the
user as they are added, or a manual layout that offers the user full
control of positioning. The editor features syntax highlighting for
the keywords in the ERDoc language. Both parser and linter enable
users to get live semantic and syntactic error reporting on the
ERDoc document as it is input. Below the text editor, there are two
drawers. The top drawer lists all the errors in the ERDoc document,
while the bottom drawer offers sample ERDoc documents to load.

On the right-hand side of the UI, the automatically generated ER
diagram is displayed. Users can reposition the visual elements of
the diagram (boxes, bubbles, etc.) by dragging them. Guiding lines
are presented to better align new elements with existing elements
both vertically and horizontally during manual layout. On the top-
right of this panel, there is a button to open the configuration
menu, where users can select the desired notation and the type
of visualisation the edges of the diagram follow: straight lines or
orthogonal paths (composed of vertical and horizontal segments).

The navigation bar at the top of the UI includes a switch to toggle
the automatic layout of the diagram (see Section 4.2), buttons to
load and save the state of the application (ERDoc document and ER
diagram) as a JSON file, and buttons to export the diagram to image
formats such as PDF, JPEG, and PNG. Here, users can also change
the language of the application and visit the documentation.

https://erdoc.dcc.uchile.cl/docs
https://erdoc.dcc.uchile.cl/docs
https://erdoc.dcc.uchile.cl

ERDoc: A Web Interface for Entity–Relation Modelling DataEd ’24, June 9, 2024, Santiago, AA, Chile

(a) Arrow Notation. (b) Min/max notation. (c) Chen’s notation.

Figure 2: ER diagram resulting from the document of Figure 1 with different notations.

Figure 3: Large ER diagram with arrow notation.

The documentation (https://erdoc.dcc.uchile.cl/docs) contains
sections about every ER diagram feature supported in ERDoc, where
each section includes examples with their resulting ER diagrams.

4.2 Implementation
We now detail the implementation of ERDoc Playground, starting
with the parsing and generation of the diagram, moving on to the
methods used for automatically laying out the diagram, and finally
summarising the architecture, languages, and environment used.

Parsing & diagram generation. To generate ER diagrams in real-
time, the application parses the content of the text editor and checks
for syntactic and semantic errors upon each user input. To encour-
age users to resolve these errors, the diagram is not generated until
all syntactic and semantic errors are fixed. If there are no errors,
the application then generates the corresponding ER diagram.

ER diagrams are internally represented as a graph containing
a set of different types of nodes and edges (e.g., there is a specific
node type to represent nodes, another for attributes, etc.). The
process of generating the ER diagram is done by parsing the ERDoc
input to its corresponding in-memory graph representation. This
representation is then rendered considering the current selected
notation. For example, the Employee entity in Figure 1 is internally
represented as three nodes (one for the entity and one for each
attribute) and two edges (connecting the entity with each attribute).

Automated layouts. Elements of the ER diagram, if placed in a
default position, will overlap. On the other end, the user may not
wish to concern themselves with manually placing elements, at
least initially. Thus we offer an Auto Layout feature, which can be
toggled on and off. When Auto Layout is on, a layout algorithm
will be executed every time the diagram changes.

Adapting layout algorithms for ER diagrams in Chen notation is
challenging because of the diverse ways in which the position of
one node may depend on another. For example, when defining an
aggregation, the relation and associated nodes are expected inside
the boundary of the aggregation box; when defining a sub-class
hierarchy, it is expected that the classes are presented as a tree; etc.

Our Auto Layout method first groups related elements (e.g., an
entity and its attributes, a relationship and its entities, an aggre-
gation and its relation, a sub-class hierarchy and its entities, etc.)
into higher-level structures. For each such structure, we apply a
different layout algorithm as we believe best suits the situation:
a) To position the attributes of an entity or relationship, we use
a radial layout, which renders neighbouring nodes surrounding a
central node, balancing the edges’ angles. b) We render class hierar-
chies in a tree-like visualisation using a layer-based layout, which
positions the nodes in hierarchies, obtaining a visualisation where
edges tend to point in the same direction. c) For the higher-level
arrangement of entity, relationship, aggregation, and hierarchical
structures, we use a force-directed layout, which simulates spring
forces on the edges of the diagram, and repelling forces between the
nodes, resulting in a visualisation with minimal overlaps between
the structures. The user can also adjust element positions by hand.

Architecture, Languages & Environment. The application uses a
typical client-server architecture. The front end runs on the client
side and includes most of the application logic (parser, linter, visu-
aliser, etc.). It uses TypeScript and React.js2 to implement the user
interface. The parser of ERDoc is written using PeggyJS3, a parser
generator for JavaScript. Graph layout is implemented on top of the
ELK.js4 library. A lightweight back end is implemented in Next.js5
using TypeScript, and runs in a PM26 environment, which enables
multiple instances to launch.

Demo & Source Code. An online demo of ERDoc Playground
running on a Universidad de Chile server is available at https:
//erdoc.dcc.uchile.cl. The system is open source, with code available
on GitHub at https://github.com/matias-lg/er.

2https://react.dev
3https://peggyjs.org/
4https://github.com/kieler/elkjs
5https://nextjs.org/
6https://pm2.keymetrics.io/

https://erdoc.dcc.uchile.cl/docs
https://erdoc.dcc.uchile.cl
https://erdoc.dcc.uchile.cl
https://github.com/matias-lg/er
https://react.dev
https://peggyjs.org/
https://github.com/kieler/elkjs
https://nextjs.org/
https://pm2.keymetrics.io/

DataEd ’24, June 9, 2024, Santiago, AA, Chile López, et al.

ERDocument := ERExpression MultilineDivider ERDocument | ERExpression
ERExpression := WeakEntityExpression | EntityExpression | RelationshipExpression | AggregationExpression
EntityExpression := 'ENTITY' EntityIdentifier ExtendsDecl? '{' EntityAttributeList '}'
ExtendsDecl := 'EXTENDS' EntityIdentifier
EntityAttributeList := EntityAttribute MultilineDivider EntityAttributeList | EntityAttribute
EntityAttribute := AttributeIdentifier CompositeDecl? 'key'?
CompositeDecl := ':' '[' AttributeIdentifierList ']'
AttributeIdentifierList := AttributeIdentifier ',' AttributeIdentifierList | AttributeIdentifier
WeakEntityExpression := 'ENTITY' EntityIdentifier WeakDecl '{' WeakEntityAttributeList '}'
WeakDecl := 'DEPENDS ON' DependenciesList
DependenciesList := RelationshipIdentifier ',' DependenciesList | RelationshipIdentifier
WeakEntityAttributeList := WeakEntityAttribute MultilineDivider WeakEntityAttributeList | WeakEntityAttribute
WeakEntityAttribute := AttributeIdentifier CompositeDecl? 'pkey'?
RelationshipExpression := 'RELATION' RelationshipIdentifier '(' ParticipatingEntitiesList ')' RelationshipAttributesDecl?
RelationshipAttributesDecl := '{' RelationshipAttributesList '}'
RelationshipAttributesList := AttributeIdentifier MultilineDivider RelationshipAttributesList | AttributeIdentifier
ParticipatingEntitiesList := ParticipatingEntity ',' ParticipatingEntitiesList | ParticipatingEntity
ParticipatingEntity := ParticipatingLabeledEntity | ParticipatingSingleEntity
ParticipatingLabeledEntity := EntityIdentifier ':' '[' ParticipatingSingleEntityList ']'
ParticipatingSingleEntityList := ParticipatingSingleEntity ',' ParticipatingSingleEntityList | ParticipatingSingleEntity
ParticipatingSingleEntity := EntityIdentifier EntityConstraintsDecl?
EntityConstraintsDecl := EntityCardinality '!'?
AggregationExpression := AggregationIdentifier '(' RelationshipIdentifier ')' EmptyCurlyBlock?
EmptyCurlyBlock := '{' '}'
EntityIdentifier, AttributeIdentifier, RelationshipIdentifier := id

Figure 4: Grammar of the ERDoc Language.

Figure 5: User Interface of ERDoc Playground.

5 EVALUATION
In this section, we present initial experiments we conducted to
evaluate the performance and usability of ERDoc Playground.

5.1 Performance Evaluation
The goal of this part of the evaluation is to verify that ERDoc Play-
ground can generate ER diagrams in real-time with little latency.

We run all the experiments in Node.js (version 18.17.1) on a
machine with a 6-core AMD Ryzen™ 5 3600 CPU and 16 GB of
RAM. The machine runs a 64-bit Ubuntu 22.04 OS. As input, we
generate multiple ERDoc documents, each with a varying number
of elements (entities, relationships, and aggregations).7 The number
of attributes for entities and relationships was randomly chosen
(between 1 and 4). The generated ERDoc documents include class
hierarchies as well. The largest ERDoc Document generated con-
sists of 139 entities (including sub-classes), 20 relationships, and
5 aggregations; we estimate that, in the context of a learning tool,
users may not need to create larger ER diagrams.

7Available at https://github.com/matias-lg/er/tree/perf-report/src/eval/reports.

Figure 6: Execution time of Auto Layout.

For each ERDoc document, we measure the time it takes to
execute the parser, linter, and graph generator as a whole. This
process takes less than 6𝑚𝑠 , even for larger documents.

Then, for each ERDoc document, we measure the time taken
by the Auto Layout (see Section 4.2) on the corresponding graphs
generated by the previous step. Results in Figure 6 show that time
increases with the number of elements in the document, and is
usually below 400𝑚𝑠 . Note that the increase is not linear, as time
also depends on the composition of the elements in the document.

Overall, the performance evaluation shows that the complete
process of generating an ER diagram from user input takes less than
500 𝑚𝑠 for documents with hundreds of elements. Thus, ERDoc
Playground can generate small-to-moderate scale ER diagrams in
near real-time, without evident latency, as users write their ERDoc
document in the text editor. For larger diagrams, the layout algo-
rithm would likely become a bottleneck, as the layout algorithms
take time proportional to the number of edges in the graph. In this
case, the user may choose to switch to manual layout.

https://github.com/matias-lg/er/tree/perf-report/src/eval/reports

ERDoc: A Web Interface for Entity–Relation Modelling DataEd ’24, June 9, 2024, Santiago, AA, Chile

5.2 User Evaluation
We conducted two usability surveys of ERDoc. The first survey
was aimed at professors, teaching assistants and graduates from
the Databases course. Users were asked (in Spanish) to use ER-
Doc to model a university database consisting of three entities,
two relationships, and one weak entity. The requirements were
phrased directly in ER terms, specifying the entities, relationships,
etc., required. The survey indicated an approximate duration of 15
minutes, and subjects were encouraged to read ERDoc’s documen-
tation pages. The surveys were conducted online. The subjects had
no previous experience with ERDoc. After the task was completed,
we applied the System Usability Scale (SUS) [4] questionnaire, trans-
lated to Spanish by the authors. In addition to the SUS responses,
we requested the ERDoc document produced by the subjects for the
task and left a field for free-form comments. The form (in Spanish)
we used can be found here: https://forms.gle/L8LRywdth5pJgxzi9.
The second survey was aimed at current students of the Databases
course, where ERDoc was used in the context of an ER lab. After
the lab submission deadline, students were requested to fill out a
SUS questionnaire, optionally leaving free-form comments.

The detailed SUS results for both surveys are presented in Table 1.
The first survey had 21 participants, of which 3 were previous

course professors, 5 were teaching assistants, 3 were lab assistants,
and 10 were students who had graduated from the Databases course.
ERDoc Playground obtained an average SUS score of 83.45, with a
standard deviation of 12.73. A SUS score higher than 68 is consid-
ered as above average [10]. Thus, the obtained score indicates a good
perception of the usability of the application. Most subjects success-
fully completed the modelling task, submitting an ERDoc document
that resembles the original database model. One subject submitted
an empty ERDoc model. All of the non-empty ERDoc document
submissions were syntactically correct and managed to correctly de-
clare the model’s entities and attributes, including key declarations
and partial keys for weak entities. All the errors found in the sub-
missions were related to cardinality and participation constraints in
relationships, where subjects confused a one-to-many relationship
with a many-to-one. There were nine completely correct ERDoc
documents and eleven with errors in relationship constraints.

The second survey had 22 participants, all active students of the
Databases course. Similarly to the initial survey, ERDoc Playground
scored 84.40 (average) with a standard deviation of 14.70.

In the free-form comments, multiple users commend the respon-
siveness of the application and the real-time generation of the
diagrams. Users mention that the syntax of ERDoc is intuitive and
simple. They further requested a number of features, such as the
ability to customise the colours, fonts, etc., used in the diagram.
Students mentioned that the system was easy and intuitive to learn.

6 CONCLUDING REMARKS
We presented ERDoc: a syntax and language for describing ER
diagrams, and an online system for helping users to design and
generate ER diagrams. Based on the survey responses and the per-
formance evaluation, we can conclude that ERDoc Playground is
perceived as usable by users. With a low (sub-second) runtime of its
main features (ER diagram generation, auto layout), it allows users
to create small-to-moderate scale ER diagrams (with up to hundreds

Table 1: SUS questionnaire scores. Scores range from 1 to 5.
Lower scores are better for even-numbered items, whereas
higher scores are better for odd-numbered items.𝑚1 and 𝑠1
denote mean and standard deviation, respectively, for the
initial evaluation of ERDoc Playground. Likewise,𝑚2 and 𝑠2
denote the mean and standard deviation of the evaluation
during the ER lab from the Databases course.

Question 𝑚1 𝑠1 𝑚2 𝑠2

1 I think I would like to use this system
frequently.

4.10 0.83 4.23 0.81

2 I found the system unnecessarily complex 1.57 0.60 1.55 0.80
3 I thought the system was easy to use. 4.62 0.59 4.32 0.99
4 I think that I would need the support of

a technical person to be able to use this
system.

1.48 0.81 1.77 1.67

5 I found the various functions in this sys-
tem were well integrated.

4.71 0.56 4.50 0.60

6 I thought there was too much inconsis-
tency in this system.

1.57 0.81 1.32 0.72

7 I would imagine that most people would
learn to use this system very quickly.

4.10 0.89 4.23 0.87

8 I found the system very cumbersome to
use.

1.67 0.80 1.50 0.80

9 I felt very confident using the system. 4.24 0.89 4.45 0.86
10 I needed to learn a lot of things before I

could get going with this system.
2.10 1.18 1.73 1.08

of elements) in real-time as they write in the text editor. We have
further used ERDoc in laboratories on ER for our Databases course,
with positive feedback from both students and teaching teams.

For future work, the graph layout module could be improved,
creating more aesthetically-pleasing diagrams, though this would
need to be balanced with the need for the layout to be generated
in sub-second time. We could also offer better customisation of
the look and feel of the application and the diagrams. We could
provide support for mapping the ER specification to a relational
model (though this is something we typically ask students to do).
Finally, though the students, in general, found ERDoc to be useful,
we could conduct more in-depth experiments to determine whether
or not it has actually improved their conceptual modelling skills.

ACKNOWLEDGMENTS
This work was partly funded by ANID - Millennium Science Initia-
tive Program - Code ICN17_002. López and Hogan were funded in
part by FONDECYT Grant No. 1221926. We are also grateful to all
those who participated in our usability studies.

REFERENCES
[1] [n. d.]. DBDiagrams. http://dbdiagram.io. [Online; accessed 26-April-2024].
[2] [n. d.]. MySQL Workbench. https://dev.mysql.com/doc/workbench/en/. [Online;

accessed 26-April-2024].
[3] [n. d.]. pgModeler. https://pgmodeler.io/. [Online; accessed 26-April-2024].

https://forms.gle/L8LRywdth5pJgxzi9
http://dbdiagram.io
https://dev.mysql.com/doc/workbench/en/
https://pgmodeler.io/

DataEd ’24, June 9, 2024, Santiago, AA, Chile López, et al.

[4] John Brooke. 1996. SUS: a “quick and dirty” usability scale. Usability evaluation
in industry 189, 3 (1996), 189–194.

[5] Gonçalo Carvalho, Sergii Mykolyshyn, Bruno Cabral, Jorge Bernardino, and
Vasco Pereira. 2022. Comparative Analysis of Data Modeling Design Tools. IEEE
Access 10 (2022), 3351–3365. https://doi.org/10.1109/ACCESS.2021.3139071

[6] Peter Pin-Shan Chen. 1976. The entity-relationship model—toward a unified
view of data. ACM transactions on database systems (TODS) 1, 1 (1976), 9–36.

[7] Karen C. Davis. 2014. Teaching Conceptual Design Capture. In Advances in
Conceptual Modeling. Vol. 8697. Springer International Publishing, Cham, 247–256.
https://doi.org/10.1007/978-3-319-14139-8_26

[8] Karen C. Davis. 2018. Teaching Physical Database Design. In Advances in
Conceptual Modeling. Vol. 11158. Springer International Publishing, Cham, 165–
175. https://doi.org/10.1007/978-3-030-01391-2_22

[9] Kamal Hingorani, Dexter Gittens, and Nicholas Edwards. 2017. Reinforcing Data-
base Concepts By Using Entity Relationships Diagrams (ERD) and Normalization
Together for Designing Robust Databases. Issues in Information Systems 18, 1

(2017), 148–155.
[10] Jeff Sauro. 2011. Measuring Usability with the System Usability Scale (SUS).

https://measuringu.com/sus/
[11] Natalya Keberle and Ivan V Utkin. 2012. Teaching Conceptual Modeling in ER:

Chen Worlds.. In ICTERI. 222–227.
[12] Raghu Ramakrishnan and Johannes. Gehrke. 2003. Database Management Systems.

McGraw-Hill Education. https://books.google.cl/books?id=JSVhe-WLGZ0C
[13] Johannes Schildgen. 2020. MonstER Park-The Entity-Relationship-Diagram

Learning Game.. In ER Forum/Posters/Demos. 150–157.
[14] John Miles Smith and Diane C. P. Smith. 1977. Database abstractions: aggregation

and generalization. ACM Trans. Database Syst. 2, 2 (jun 1977), 105–133. https:
//doi.org/10.1145/320544.320546

[15] Li Yang and Li Cao. 2016. The effect of MySQL Workbench in teaching entity-
relationship diagram (ERD) to relational schema mapping. International Journal
of Modern Education and Computer Science 8, 7 (2016), 1.

https://doi.org/10.1109/ACCESS.2021.3139071
https://doi.org/10.1007/978-3-319-14139-8_26
https://doi.org/10.1007/978-3-030-01391-2_22
https://measuringu.com/sus/
https://books.google.cl/books?id=JSVhe-WLGZ0C
https://doi.org/10.1145/320544.320546
https://doi.org/10.1145/320544.320546

	Abstract
	1 Introduction
	2 Current Solutions
	3 ERDoc Language
	4 ERDoc Playground
	4.1 User Interface
	4.2 Implementation

	5 Evaluation
	5.1 Performance Evaluation
	5.2 User Evaluation

	6 Concluding Remarks
	Acknowledgments
	References

