
Certain Answers for SPARQL with Blank Nodes

Daniel Hernández, Claudio Gutierrez, and Aidan Hogan

IMFD Chile & Department of Computer Science, University of Chile

Abstract. Blank nodes in RDF graphs can be used to represent values
known to exist but whose identity remains unknown. A prominent ex-
ample of such usage can be found in the Wikidata dataset where, e.g.,
the author of Beowulf is given as a blank node. However, while SPARQL
considers blank nodes in a query as existentials, it treats blank nodes in
RDF data more like constants. Running SPARQL queries over datasets
with unknown values may thus lead to counter-intuitive results, which
may make the standard SPARQL semantics unsuitable for datasets with
existential blank nodes. We thus explore the feasibility of an alternative
SPARQL semantics based on certain answers. In order to estimate the
performance costs that would be associated with such a change in seman-
tics for current implementations, we adapt and evaluate approximation
techniques proposed in a relational database setting for a core fragment
of SPARQL. To further understand the impact that such a change in se-
mantics may have on query solutions, we analyse how this new semantics
would affect the results of user queries over Wikidata.

1 Introduction

Incomplete information poses a major challenge for data management on the
Web. Web data may be incomplete for a variety of reasons: the missing informa-
tion may be unknown to those who created the dataset, it may be suppressed
for privacy reasons, it may not yet have been added to the dataset, it may be a
gap left after integrating other datasets, and so forth. A fundamental question
for exploiting data on the Web is then how to define the semantics for (and
process) queries over incomplete datasets. An important notion of incomplete-
ness is that of unknown values. To take a literary example, we know that the
poem “Beowulf” was written by somebody, but nobody knows who. One option
is to simply omit authorship, but we would then lose valuable information that
“Beowulf” has some author. Various works have then been proposed to deal
with incomplete information [20,10,11], amongst which are recent works propos-
ing query rewritings to provide sound answers over databases with unknown
values [19,11,8,12]; such works have focused on relational settings.

On the other hand, there is a strong need for methods to deal with incomplete
information and unknown values in a Semantic Web setting. In RDF, blank nodes
can be used either to represent a resource for which no IRI is defined, or as an
existential to represent an unknown value [15]. The RDF standard specifically
defines blank nodes with an existential semantics [14]. However, SPARQL [13]

does not follow the standard existential semantics of blank nodes in RDF data.
As a result, when SPARQL queries are run over datasets where blank nodes are
used as existentials to represent unknown values, the results can be unintuitive
(or arguably incorrect [11]). We now provide such an example taken from the
Wikidata [22] knowledge-base, which publishes data associated with Wikipedia
as RDF and provides a public SPARQL query interface on the Web.

Example 1. Take the following RDF triples from Wikidata [22]1 and the follow-
ing two SPARQL queries, which we will denote Q1 (above) and Q2 (below):

w:NicoleSimpson w:killedBy _:b .
w:NicoleSimpson w:gender w:Female .
w:ReevaSteenkamp w:killedBy w:OscarPistorius .
w:ReevaSteenkamp w:gender w:Female .
w:OJSimpson w:gender w:Male .
w:OscarPistorius w:gender w:Male .

SELECT ?victim WHERE
{ ?victim w:killedBy ?person .

?person w:gender w:Male . }

SELECT ?victim WHERE
{ ?victim w:killedBy ?person .

FILTER NOT EXISTS
{ ?person w:gender w:Male . } }

In the data, the blank node (:b) denotes that Nicole Brown Simpson (a victim of
homicide) has a killer, but that her killer is unknown. For Q1, SPARQL dictates
a single solution – {?victim/w:ReevaSteenkamp} – which can be considered
a certain answer ; here the (unknown) killer of Nicole Simpson may have been
male, but uncertain answers of this form are not returned. On the other hand,
for Q2, SPARQL again dictates a single solution – {?victim/w:NicoleSimpson}
– but this answer is uncertain by the same reasoning: we do not know that the
killer of Nicole Simpson was not male; :b could refer to a male in the data. ut

These two examples highlight a key problem in the current SPARQL seman-
tics when dealing with unknown values. In the first query only certain answers
are returned: answers that hold no matter to whom the unknown value(s) re-
fer(s). In the second query uncertain answers are returned: answers that may
or may not hold depending on whom the unknown value(s) refer(s) to. The
key premise of this paper is to then ask: should users be offered a choice to only
return certain answers? Is such a choice important? And what would be its cost?

Regarding cost, unfortunately, query evaluation under certain answer se-
mantics incurs a significant computational overhead; for example, considering
queries expressed in the standard relational algebra, if we consider only “com-
plete databases” without unknown values, the data complexity of the standard
query evaluation problem is AC0; on the other hand, the analogous complexity
with unknown values under certain answer semantics leaps to coNP-hardness [1].

One can thus hardly blame the design committee of the SPARQL language
for choosing to initially overlook the issue of unknown values: not only would
the complexity of query evaluation have escalated considerably under something
well-founded like a certain-answer semantics, the cost and complexity of correctly
implementing the new standard would likewise have jumped considerably. Still,

1 While the example uses real data, for readability, we use fictitious IRIs. In reality,
Wikidata uses internal identifiers, such as w:Q268018 to represent Nicole Simpson.

in this paper, we propose that it is time to revisit the issue of evaluating SPARQL
queries in the presence of unknown values (blank nodes) in the data.

In terms of need, a recent study of blank nodes suggests that 66% of websites
publishing RDF use blank nodes, with the most common use-cases being to
represent resources for which no IRI has been defined (e.g., for representing
RDF lists), or to represent unknown values [15]. The methods proposed in this
paper specifically target datasets using blank nodes in the second sense; such
datasets include Wikidata [22], as illustrated in Example 1.

In terms of cost, work by Guagliardo and Libkin [11] offers promising re-
sults in terms of the practical feasibility of approximating certain answers in the
context of relational databases, returning only (but not all) such answers. Perfor-
mance results suggest that such approximations have reasonable runtimes when
compared with standard SQL evaluation. Furthermore, their implementation
strategy is based on query rewriting over off-the-shelf query engines, obviating
the need to build special-purpose engines, minimising implementation costs.

In this paper, we thus tackle the question: should users be given a choice
of certain semantics for SPARQL? Along these lines, we adapt the methods of
Guagliardo and Libkin [11] in order to propose and evaluate the first approach
(to the best of our knowledge) that guarantees to return only certain answers
for a fragment of SPARQL (capturing precisely the relational algebra) over RDF
datasets with existential blank nodes, further developing a set of concrete rewrit-
ing strategies for the SPARQL setting. We evaluate our rewriting strategies for
two popular SPARQL engines – Virtuoso and Fuseki – offering comparison of per-
formance between base queries and rewritten queries (under various strategies),
and a comparison of our SPARQL and previous SQL results [11]. We further
conduct an analysis of Wikidata user queries to see if a certain answer seman-
tics would really affect the answers over real-world queries and data, performing
further experiments to ascertain costs in this setting.

2 Related Work

The conceptual problem of evaluating queries over data with unknown values
is well-known in the relational database literature from as far back as the 70’s,
where Codd presented an extension of the relational model to allow nulls to
encode unknown values [7]. Work on querying data with unknown values has
continued throughout the decades, mostly in the context of relational databases
(e.g., [17,19]), but also in various semi-structured settings (e.g., [9,2]).

A recent milestone has been the development of methods for approximating
certain answers, where the current work is inspired by the proposal of Guagliardo
and Libkin [11] of a method to (under-)approximate certain answers for SQL.
Their goal is to trade completeness of certain answers against efficiency, ensuring
that only (but not necessarily all) certain answers are returned in the presence
of unknown values. We thus adapt their techniques for the SPARQL setting
over RDF graphs with unknown values and propose SPARQL-specific rewriting

strategies. In the experimental section, we provide a high-level comparison of our
results for SPARQL with those published by Guagliardo and Libkin for SQL.

We are not the first work to explore a certain answer semantics for SPARQL.
Ahmetaj et al. [2] define a certain answer semantics for SPARQL, but their fo-
cus is on supporting OWL 2 QL entailment for queries based on well-designed
patterns [21], and in particular on complexity results for query evaluation, con-
tainment and equivalence. Arenas and Perez [5] also consider a certain answer
semantics for SPARQL towards studying conditions for monotonicity : a seman-
tic condition whereby answers will remain valid as further data is added to the
system; as such, certain answers in their work are concerned with an open world
semantics. However, determining if a query is weakly monotonic – i.e., monotonic
disregarding unbound values – is undecidable. Hence Arenas and Ugarte [6] later
propose a syntactic fragment of SPARQL that closely captures this notion of
weak monotonicity. In contrast to such works, we maintain SPARQL’s negation
features [3] with a closed world semantics. In many contexts, users are interested
in writing SPARQL queries with respect to what the present dataset does/does
not contain; where, e.g., as we discuss later, many of the use-case queries for the
Wikidata SPARQL service use non-monotonic features, such as difference.

To our knowledge, this is the first work to investigate a certain answer se-
mantics for SPARQL considering existential blank nodes in RDF data.

3 Preliminaries

RDF and incomplete information: We assume three pairwise disjoint sets: B of
blank nodes, C of constants, and V of attribute names (considered to represent
variables when we later speak of queries). We will henceforth refer to blank
nodes as simply “blanks”. We denote blanks as ⊥1,⊥2,⊥3, etc.; constants with
lowercase a, b, c, etc.; and attribute names with uppercase X,Y, Z, etc.

We define a tuple to be a function (a mapping) µ : V → (C ∪ B); for
simplicity, we will denote the mapping µ with domain {X,Y } where µ(X) = a
and µ(Y) = b simply as XY 7→ (a, b), or even as the tuple (a, b) if the attributes
X and Y are clear from the context. A relation R is determined by a set of tuples
with the same domain (we need not consider empty relations).

An RDF graph G (or simply a graph) then corresponds to an instance of a
single ternary relation with fixed attributes S, P,O, called subject, predicate and
object, where P can only map to C (i.e. no blanks can occur as predicate), while
S and O can map to values from C∪B. Here C represents both IRIs and RDF
literals; such a distinction of RDF constants is not exigent for us.

In this model, features for encoding incomplete information – specifically un-
known values – are introduced by the semantics of blanks. Here the set B of
blanks appearing in the data are interpreted as existentially-quantified variables
in a manner consistent with the RDF semantics [14]; this is how, e.g., Wiki-
data uses blanks to represent unknown values. Blanks are synonymous with
marked nulls in a relational setting: nulls that can appear in various locations.
Hence RDF graphs with blanks correspond to (ternary) relations with marked

nulls, which have been called naive tables, v-tables, or e-tables by various au-
thors (see [16]); here we will refer to them as v-tables. We say a v-table/graph
is complete/ground when no nulls/blanks are used. With this correspondence
established, we may henceforth use terms such as graph/table or blank/null
interchangeably as best fits the particular context.

The semantics of a v-table is then defined as follows. A valuation is a mapping
v : C ∪ B → C such that v(c) = c for every c ∈ C. Valuations are extended
to tuples, relations and databases in the natural way. For instance, applying a
valuation v to a graph G, denoted v(G), results in the complete graph derived
by replacing every blank ⊥i in G by v(⊥i). The semantics of a v-table JRK is
then given as the ground relations {v(R) : v is a valuation}.

A core SPARQL algebra: We now define an algebra for the fragment of SPARQL
considered, focusing on set semantics. We first define queries for ground graphs
where unknown values will be treated later: A query is a combination of the fol-
lowing algebraic operations: selection (σθ), renaming (ρX/Y), projection (πX̄),
natural join (on), union (∪) and difference (\). Attribute names (V) are then
synonymous with variables in SPARQL. The condition θ of a selection σθ(R) is
a Boolean combination (∧,∨,¬) of terms of the form X = Y or X = c, where
X and Y refer to the attributes of R and c ∈ C. We refer to this fragment
as “SRPJUD” capturing the initials of the operations allowed; this fragment
corresponds directly to the relational algebra but will be applied to graphs in a
SPARQL setting. The correspondence between SRPJUD operators and syntactic
SPARQL features is shown in Table 1. Note however that union and difference
in SRPJUD follow the relational algebra in that – unlike standard SPARQL –
R ∪ S and R \ S assume that the relations R and S have the same attributes.
Thus, SRPJUD does not support generating unbound variables through UNION

as supported by SPARQL for attributes not in both R and S. However the dif-
ference operator in SRPJUD and the outer-difference operator in SPARQL can
be mutually expressed using other SRPJUD operators. Taking difference, R \ S
is a particular case of the outer difference R − S when the attributes of R and
S are the same. Conversely, letting X̄ denote the set of common attributes of R
and S, the outer-difference R− S can be expressed as (1) R on (πX̄(R) \ πX̄(S))
when X̄ is non-empty or (2) R when X̄ is empty.

Finally, given a query Q expressed in SRPJUD and a graph G, we write Q(G)
to denote the result of evaluating Q over the graph G following standard con-
ventions for the relational algebra. Our focus will then be on answering queries
in the core SRPJUD fragment over graphs with unknown values. We leave sup-
port for the following features of SPARQL for future work: (1) Bag semantics.
(2) SPARQL unbounds as created by either SPARQL UNION or OPT. (3) Other
features such as property paths, solution modifiers, aggregations, other filter ex-
pressions, named graphs, etc. These latter SPARQL features (e.g., aggregation)
can, however, be defined syntactically on top of the core SRPJUD algebra.

Certain and possible answers: We now define a certain- and possible-answer
semantics for SPARQL where unknown values are present in the RDF data in
the form of blanks. Let Q be a query and G be a graph with blanks. Then a

Table 1. Mapping between SPARQL and SRPJUD

{ X p Y } ↔ ρS/X(ρO/Y (πS,O(σP=p(G))))
P . Q ↔ P on Q SELECT X̄ WHERE P ↔ πX̄(P)

P MINUS Q ↔ P −Q SELECT (X AS Y) WHERE P ↔ ρX/Y (P)
P UNION Q ↔ P ∪Q P FILTER θ ↔ σθ(P)

widely used definition of certain answers are the answers µ of Q(G) such that
µ ∈ Q(v(G)) for every valuation v. Another more general definition of certain
answers – first defined by Lipski [20] and called certain answers with nulls by
Libkin [18] – states that µ is a certain answer of Q(G) iff v(µ) ∈ Q(v(G)) for
every valuation v; this semantics allows for returning unknown values in answers.

Example 2. Consider an RDF graph G with {(a, b, c), (a, d,⊥1)} and a query
π{P,O}(G). Under certain answer semantics, {(b, c)} is returned. Under certain
answer semantics with nulls, {(b, c), (d,⊥1)} is returned; here ⊥1 is interpreted
as stating that for all valuations, there exists some constant there. ut

A complementary notion is that of a possible answer : a tuple µ is a possible
answer of Q(G) if there exists a valuation v such that v(µ) ∈ Q(v(G)).

Example 3. Consider again the graph G from Example 2 but instead consider a
query π{S,O}(σP=b(G))\π{S,O}(σP=d(G)). Under both certain answer semantics
an empty result will be returned since there is a valuation µ such that µ(⊥1) = c.
Here (a, c) will be considered a possible rather than a certain answer. ut

Given a queryQ and an RDF graphG, then we write cert(Q,G) and poss(Q,D)
to denote respectively the sets of certain and possible answers, defined as follows:

cert(Q,G) =
⋂
{µ | v(µ) ∈ Q(v(D)) for all valuations v},

poss(Q,G) =
⋃
{µ | v(µ) ∈ Q(v(G)) for all valuations v}.

Note that the former definition captures certain answers with nulls, which we use
here; also, note that cert(Q,G) ⊆ poss(Q,G): certain answers are also possible.

4 Approximating certain answers

The problem of query evaluation under certain answers is coNP-hard (data com-
plexity); without unknown values the analogous problem is in AC0. Likewise the
definition of the semantics does not directly suggest a practical query answering
procedure. Hence in this section we explore an algebra that allows for approxi-
mating certain/possible answers based on the notion of maybe tables.

4.1 Unification

We first define the notion of unification, which joins tuples with unknown val-
ues. We say that µ1 and µ2 unify, denoted µ1 ⇑ µ2, iff for every common at-
tribute X that they share, it holds that µ1(X) = µ2(X) or µ1(X) ∈ B or
µ2(X) ∈ B; in other words, µ1 ⇑ µ2 holds iff there is a valuation v such that
v(µ1(X)) = v(µ2(X)) for every common attribute X. The unification of two
tuples (µ1

aµ2)(X) is defined as µ1(X) if µ2(X) is ⊥, or µ2(X) otherwise. Unifi-
cation allows to extend the standard operators join, semijoin and anti-semijoin
to include the semantics of nulls by replacing the concept of joinable tuples and
joins of tuples by the notion of unifiable tuples and unifications of tuples:

P on⇑ Q = {µ1
aµ2 | µ1 ∈ P, µ2 ∈ Q, and µ1 ⇑ µ2},

P n⇑ Q = {µ1 ∈ P | ∃µ2 ∈ Q : µ1 ⇑ µ2},
P n⇑ Q = {µ1 ∈ P | @µ2 ∈ Q : µ1 ⇑ µ2}.

Such operators will be essential to defining an approximation of certain answers,
but they do not appear in SRPJUD and cannot be expressed in this fragment
since it does not contain any means to distinguish blanks from constants. Hence
to rewrite a SRPJUD query, we need a built-in predicate of the form bk(X) in
the target algebra, which evaluates to true for a tuple µ if µ(X) ∈ B, or false
otherwise. We can now represent Pn⇑Q as πX̄(σθ⇑(P on ρX̄/X̄′(Q))) and Pn⇑Q
as P − (P n⇑ Q), where X̄ denotes the attributes/variables of P , X̄ ′ denotes
fresh variables, and θ⇑ will be rewritten to (X = Y ∨ bk(X) ∨ bk(X ′))).

Translating P on⇑ Q to SRPJUD is more difficult. One option is to use the
active domain: the set of all possible values to which blanks can be evaluated [17];
however, this would cause obvious practical problems. Hence we will rather use
two non-SRPJUD features of SPARQL to implement unification: the ternary
conditional operator, which allows for returning one of two values based on a
condition (denoted IF(·, ·, ·) in SPARQL); and the bind operator, which can
bind a new value to the relation (denoted BIND(·, ·) in SPARQL). From these,
we derive a new operator ifθ,X,Y,Z(µ), which returns µ∪{Z 7→ (µ(X))} if µ |= θ,
or µ ∪ {Z 7→ (µ(Y))} otherwise. The operator thus creates a new attribute Z
and assigns it the value of X if the condition θ is true, otherwise it assigns
it the value of Y . We call SRPJUD extended with these unification operators
SRPJUD⇑. Returning to Pon⇑Q, we can first apply a Cartesian product and then
unify the results with the ternary conditional operator. More formally, assume
that P and Q contain one shared attribute X. We can now express P on⇑ Q
as ρX′′/X(πX′′,Ȳ (ifbk(X′),X,X′,X′′(σθ⇑(P on ρX/X′(Q))))), where Ȳ denotes the
non-shared attributes of P and Q and θ⇑ is as before. In this case, P on ρX/X′(Q)
denotes a Cartesian product since there are no shared attributes. This process
extends naturally to performing unifications over multiple attributes.2

2 Note that given two blank nodes on either side, this approach chooses the left blank
node arbitrarily and drops the other. This may lead to losing certain answers, which
we accept as part of the under-approximation.

4.2 Approximations

We wish to under-approximate certain answers to guarantee that all answers
returned are certain while maximising the certain answers returned. But if we
consider under-approximating results to a query P−Q, intuitively for P we must
under-approximate certain answers, while for Q we should over -approximate
possible answers to Q to ensure we remove everything from P that might match
under some valuation in Q. Note that Q might itself be a query of the form
R− S; etc. Hence, to under-approximate certain answers for SRPJUD, we need
a way to over-approximate possible answers [11]: given a query Q in SRPJUD, we
will rewrite it to a pair of queries (Q+,Q?) in SRPJUD⇑, under-approximating
certain answers and over-approximating possible answers for Q, respectively.

The first operator we define is the selection operator, where we must take care
of inequalities involving blanks; we adopt the rewriting proposed by Guagliardo
and Libkin [11], and shown by them to have good performance.

Definition 1. We define the translation of a SRPJUD query Q to a pair of
approximation queries (Q+, Q?) in SRPJUD⇑ recursively as follows:

G+ = G, G? = G,

(P ∪Q)+ = P+ ∪Q+, (P ∪Q)? = P ? ∪Q?,

(P on Q)+ = P+ on Q+, (P on Q)? = P ? on⇑ Q?,

(P −Q)+ = P+ n⇑ Q?, (P −Q)? = P ? −Q+,

(σθ(P))+ = σθ∗(P
+), (σθ(P))? = σ¬(¬θ)∗(P

?),

(πX̄(P))+ = πX̄(P+), (πX̄(P))? = πX̄(P ?),

(ρX/Y (P))+ = ρX/Y (P+), (ρX/Y (P))? = ρX/Y (P ?),

where θ∗ denotes the translation defined inductively as follows, noting that X
and Y are attributes and a is some constant:

(X = Y)∗ = (X = Y), (X 6= Y)∗ = (X 6= Y) ∧ ¬ bk(X) ∧ ¬ bk(Y),

(X = a)∗ = (X = a), (X 6= a)∗ = (X 6= a) ∧ ¬ bk(X),

(θ1 ∨ θ2)∗ = θ∗1 ∨ θ∗2 , (θ1 ∧ θ2)∗ = θ∗1 ∧ θ∗2 . ut

4.3 Relation to certain/possible answers

To state formally the relation of certain/possible answers with the corresponding
approximation queries given in Definition 1, we require a notion of a subset of
answers under unification. Importantly, the following definition is used to ensure
that any tuple that unifies with a possible answer (e.g., (⊥1,⊥1)) will unify with
an answer in the over-approximation (e.g., (⊥1,⊥2)).

Definition 2. Given P and Q, we state that P ⊆⇑ Q iff for each tuple µ ∈ P ,
there exists µ′ ∈ Q such that ν(µ′) = µ for some valuation ν. ut

Lemma 1. Let Q be a SRPJUD query and let (Q+, Q?) be the approximation
queries for Q as defined in Def. 1. Then, for any RDF graph G, it holds that
Q+(G) ⊆ cert(Q,G) and Q?(G) ⊇⇑ poss(Q,G) .

Proof. Follows from induction on the structure of the query, following similar
techniques as used for Lemmas 1 and 2 of [11]. ut

Computing exact certain/possible answers has a high complexity, where Def-
inition 1 directly leads to a rewriting strategy for approximating certain/possible
answers. For example, to under-approximate the certain-answers of a SRPJUD
query Q, we can rewrite it to the SRPJUD⇑ Q? and execute that query; further-
more, evaluating queries in SRPJUD⇑ remains tractable in data complexity per
the class of base queries SRPJUD (and unlike computing exact certain answers).

5 SPARQL Rewriting Strategies

We now explore alternatives in SPARQL to express the rewriting of Definition 1.
All such alternatives are equivalent; in practice however, these strategies can
exhibit major performance variations when applied over SPARQL query engines.

The base case in the SPARQL translation is G, which refers to a ternary
relation with fixed attributes S, P and O. The basic unit of querying in SPARQL
is a triple pattern, e.g., XpY (X ∈ V, Y ∈ V, p ∈ C). In RDF, the P attribute
cannot take blanks, and hence we do not need to consider unification on that
attribute directly. A basic graph pattern Q in SPARQL is a join over triple
patterns T1 on · · · on Tk where each Ti (1 ≤ i ≤ k) is a triple pattern.

The most complex case to consider is the difference operator P−Q, where cer-
tain answers are under-approximated by the unification anti-semijoin P+ n⇑Q?

(where Q? is itself over-approximated). The direct application of the translation
rules produces complex queries that can be rewritten to a “friendlier” form for
SPARQL engines, as now described. First, given a difference P −Q we say that
X is a correlated attribute of the difference if X is shared by P and Q. In the
following we will assume that P − Q is a difference with at least a correlated
variable and that Q is a basic graph pattern.

CNF/DNF rewritings: In the difference P − Q, let Q = T1 on T2 (a com-
mon case). The base translation evaluating the required unification in Q is then
given as (T1 on T2)? = βX̄,X̄1,X̄2

(σΘ⇑(U1 on U2)) where U1 and U2 are the
respective results of replacing shared variables (X̄) in T1 on T2 by fresh vari-
ables (denoted X̄1 and X̄2), where Θ⇑ is a conjunction of the standard unifiable
condition applied to each pair of renamed variables X1 and X2 for X (i.e.,∧
X∈X̄(X1 = X2∨bk(X1)∨bk(X2))), and where, the operator βX̄,X̄1,X̄2

extends
the solution for each X ∈ X̄ using the function ifbk(X2),X1,X2,X(·). These defini-
tions then extend naturally (but verbosely) to the case where Q is T1on⇑ · · ·on⇑Tk.
This implies taking the Cartesian product of all triple patterns, filtering by a con-
junction of unification conditions σθ⇑ , and then selecting constants over blanks.

The aforementioned unification condition Θ⇑ is in conjunctive normal form
(CNF): θ1 ∧ · · · ∧ θn where for 1 ≤ i ≤ n, each term θi is a disjunctive clause.

An alternative solution is to rewrite the unification condition to its equivalent
disjunctive normal form (DNF) φ1∨· · ·∨φm per a standard conversion. The result
is potentially exponential in size; though this does not affect the data complexity,
it may have a significant effect on performance in practice. However, this DNF
conversion leads to further rewritings that may lead to better performance. First,
we can express disjunctions using union (∪) or using disjunctive (∨) selection
conditions. Second, since this expression falls on the right-hand side of an anti-
semijoin operator, we can also express it as a sequence of such operators. Thus,
for the translation of (P −Q)+ into P+ n⇑ Q?, we can consider:

P+ n⇑ Q? = P+ n⇑ σ∧
1≤j≤m θj (Q′) , (CNF)

P+ n⇑ Q? = P+ n⇑ σ∨
1≤j≤m φj

(Q′) , (DNF1)

P+ n⇑ Q? = P+ n⇑
⋃

1≤j≤m
σφj

(Q′) , (DNF2)

P+ n⇑ Q? = P+ n⇑ σφ1
(Q′) · · ·n⇑ σφm

(Q′) . (DNF3)

where Q′ denotes the rewriting of join variables X̄ in Q to produce Cartesian
products on all join patterns and the subsequent application of βX̄,X̄1,...,X̄k

to
perform unification over those variables. Note, however, that in the cases of
DNF2 and DNF3, some terms in the disjunction will not require a Cartesian
product; for example, when we rewrite P − (T1 on T2) to DNF, a disjunctive
term on the right of the anti-semijoin will be (T1 on T2) itself (the others will
cover the case that join variables in T1 or T2 are bound to blanks). This suggests
that these options may be more efficient despite a potential exponential blow-up.

Removing explicit unification: Given a base query of the form P −Q, if the join
variables of Q do not correlate with P , we do not need to perform unification
on them. Consider a query Xpa − (XpY on Y pb). This can be rewritten to
Xpan⇑ (if bk(Y2),Y1,Y2,Y (σθ⇑(XpY1 on Y2pb))). However since Y does not appear
on the left of the difference, we can simplify to Xpan⇑ (σθ⇑(XpY1 on Y2pb)).

Converting anti-semijoins to difference: Given a base query of the form P −Q,
we can consider cases where the correlating variable(s) of P and Q may or may
not yield blanks on either side. In particular, if Q returns a tuple with blanks
for all correlating variables, then the entire difference P − Q must be empty.
On the other hand, if P returns a tuple with blanks for all correlating variables
and Q is non-empty, then that tuple is removed from P . Finally, in cases where
we know that the correlating variable(s) of P and Q cannot yield blanks3, we
can convert the anti-semijoin to standard difference. These ideas yield possible
optimisations when we know more about which attributes can yield nulls.

Options for difference: The SPARQL standard provides several ways for ex-
pressing difference. Here we consider two: the operators MINUS and FILTER NOT

3 In standard relational settings, this might be if the correlating variables is a primary
key of a table, for example. In RDF, we may detect such a case for subjects or objects
of a given property that do not give blanks in a given dataset, for example.

EXISTS (FNE). The SPARQL standard states that solutions of (P MINUS Q) are
the solutions µ1 of P such that there does not exist a solution µ2 of Q where
dom(µ1)∩ dom(ν2) is not empty and µ1 is joinable with µ2. On the other hand,
the solutions of P FNE Q are all solutions µ1 of P such that there does not exist
any solution µ2 for µ1(Q), where µ1(Q) denotes the result of substituting in
Q each variable X in dom(µ1) by µ1(X). If P − Q has at least one correlated
variable, then P MINUSQ and P FNEQ are equivalent and can be interchanged.

6 Evaluation

Our evaluation presents an initial cost–benefit analysis of a certain answer se-
mantics for SPARQL by addressing the following research questions: RQ1: How
do the proposed SPARQL query rewriting strategies compare in terms of per-
formance with the base query, with themselves, with similar results in an SQL
setting, and for different SPARQL implementations? RQ2: Does a certain answer
semantics significantly change query results in a real-world setting?

6.1 Evaluation Setting

In this section, we describe the SPARQL query engines selected, the machines
and configurations used, as well as the datasets and queries. Supporting material
can be found online: https://users.dcc.uchile.cl/∼dhernand/revisiting-blanks.

Engines and machines: The query rewriting strategy allows certain answers
to be approximated on current SPARQL implementations. We test with two
popular engines, with the added benefit of being able to cross-check that the
solutions generated by both produce the same answers: Virtuoso (v.7.2.4.2) and
Fuseki (v.2.6.0). The machine used is an AMD Opteron Processor 4122, 24GB
of RAM, and a single 240 GB Kingston SUV400S SSD disk; Virtuoso is set with
NumberOfBuffers = 1360000 and with MaxDirtyBuffers = 1000000; Fuseki is
initialised with 12GB of Java heap space.

Rewriting strategies: We consider various strategies: [B|CNF|DNF1,...,3] where B

denotes base queries, CNF queries in conjunctive normal form, and DNF queries
in disjunctive normal form; we denote these variations as Γ in the following.
[Γ @|Γ−] These queries use either FNE (@) or MINUS (−) in SPARQL. [Γ |Γ ∗]
Rather than use isBlank to check if a node is blank or not, in case an engine
cannot form an index lookup to satisfy such a condition, we also try adding a
triple (X,a,:Blank) to the data for each blank X and a triple pattern to check
for that triple in the query (denoted Γ ∗); this does not apply to base queries. In
total, this leads to 18 possible combinations. Rather than present results for all,
we will highlight certain configurations in the results.

6.2 TPC–H experiments

To address RQ1, we follow the experimental design of Guagliardo & Libkin [11]
who provide experiments for PostgreSQL using the TPC-H benchmark. Their

https://users.dcc.uchile.cl/~dhernand/revisiting-blanks

104 105

100

101

102

103
V
ir
tu

o
so

T
im

e
(s
)

Blank Rate 1

104 105

100

101

102

103

Blank Rate 2

104 105

100

101

102

103

Blank Rate 4

104 105

100

101

102

103

Blank Rate 8

104 105

100

101

102

103

Scale Factor

F
u
se
k
i

T
im

e
(s
)

104 105

100

101

102

103

Scale Factor

104 105

100

101

102

103

Scale Factor

104 105

100

101

102

103

Scale Factor

B@ B− CNF@ DNF@
2 DNF@

3 DNF@∗
3 DNF−

3 DNF−∗
3

Fig. 1. Unification results for Virtuoso and Fuseki, varying scales and blank rates

results compare the performance of approximations for certain answers with re-
spect to four queries with negations. For this, they modified the TPC-H generator
to produce nulls in non-primary-key columns with varying probabilities (1–5%)
to generate more/less unknown values. They also use scale factors of 1, 3, 6, and
10, corresponding to PostgreSQL databases of size 1GB, 3GB, 6GB and 10GB,
respectively. We follow their setting as closely as possible to facilitate comparison
later. We wrote a conversion tool (similar to the Direct Mapping [4]) to represent
TPC-H data as RDF, and convert the TPC-H SQL queries to SPARQL.

Unifications: We first evaluate the proposed rewriting strategies of unifications
in the difference operator for SPARQL. The base format of the queries used
is P − (Q on R) where each P , Q, and R is a triple pattern. We then generate
between 1,000 and 10,000 triples matching each triple pattern to perform tests at
various scales. For the data matching the join variable on Q and R, we generate
blanks with a rate of 1, 2, 4 and 8%. These experiments allow us to estimate the
costs of unifications in difference without other query operators interfering.

Figure 1 presents performance results. For clarity, we present only a selection
of configurations: CNF is equivalent to DNF1 in this case and we only show the
aforementioned [·@/·∗] variations for the base query and DNF3 (other variations
performed analogously). The first row pertains to Virtuoso while the second
pertains to Fuseki. All eight sub-plots are presented with log–log axes (base 10) at
the same scale permitting direct comparison across plots (comparing horizontally
across engines and comparing vertically across blank rates). The y-axis maximum
represents a timeout of 25 minutes (reached in some cases by Fuseki).

(RQ1) The performance of the rewritten queries is (as could be expected)
worse than the two base queries for all blank rates, scale factors and engines. In
the case of Virtuoso, the base queries generally run in under one second; how-
ever, the fastest rewritten queries take at least a second and there is at least an
order of magnitude difference between the base query and the fastest rewritten

query. Looking at Fuseki, the fastest base query is slower than Virtuoso, but
does generally tend to execute within one second (except at the larger scales).
However, we see a number of rewriting strategies in the case of Fuseki where the
difference is within half-an-order of magnitude of the fastest base case. Other-
wise, we see that the choice of strategy is generally not sensitive to the blank
rates considered (i.e., lines generally maintain the same ordering across plots),
nor is it sensitive to scale (i.e., lines do not generally cross within plots).

Queries: The previous experiments looked at “atomic” unifications. We now
run the four TPC-H queries used by Guagliardo and Libkin [11] considering
a blank rate of 5%, four scale factors, and two engines. We employ a timeout
of 10 minutes. We also choose one base query (B@) to be compared against the
rewritten queries for approximating certain answers. Fuseki repeatedly times out
for these experiments hence here we rather focus on the results of Virtuoso.

In Table 2, we present a comparison of the performance results for Virtu-
oso’s fastest rewritten query and the results as presented by Guagliardo and
Libkin [11]. More specifically, for a blank rate of 5%, the table shows the range
of relative performance between the base query and the best rewritten query
execution for that query; since Guagliardo and Libkin do not present absolute
runtimes, our comparison is limited to relative performance. Note that due to
differences in how SPARQL and SQL treat inequalities over nulls/blanks, Q3

did not need rewriting for Virtuoso. For Q2 in PostgreSQL, the actual results
drop below the presented numeric precision, returning almost instantaneously
for PostgreSQL once a null is found (which confirms that the results are empty).

(RQ1) We see that for Q1, Virtuoso performs better in relative performance
than PostgreSQL, for Q2 PostgreSQL performs (much) better, for Q3 there is
little difference, while for Q4 Virtuoso initially performs better than PostgreSQL
but then at SF≥3, Virtuoso begins to throw an error stating that an internal
limit of 2097151 results has been reached (we could not resolve this). Aside from
this latter issue, these results show that Virtuoso with our rewriting strategies
is competitive with PostgreSQL under SQL-based rewritings for relative perfor-
mance between base and rewritten queries. Furthermore, unlike in the previous
experiments, we observe that in the case of Q1 and Q2, Virtuoso is now some-
times faster for the rewritten queries than the base queries: by removing uncer-
tain answers, the number of intermediary solutions to be processed is reduced.

(RQ2) We observe three of the four base queries returning uncertain answers
in SPARQL that do not hold under some valuations: for Q1, 59% of answers are
uncertain; for Q2, all answers are uncertain; whilst for Q4, 7% of answers are
uncertain; we further highlight that these results are present for a blank rate
of 5%. These results suggest that for queries with negation, evaluation under
standard SPARQL semantics may in some cases return a significant ratio of
uncertain/unsound answers even for modest levels of blanks in the dataset; this
is to be expected given that, e.g., even a single blank tuple returned from the
right-side of a difference can render all results uncertain (as per Q2),

Table 2. Ranges of average relative performance
for scale factor (SF) 1, 3, 6 and 10 on a fixed
blank rate of 5%.

Q. SF=1 SF=3 SF=6 SF=10

Virtuoso
Q1 0.95–0.96 0.95–0.96 0.97–0.99 0.94–0.95
Q2 0.76–1.07 0.73–0.99 0.89–1.06 0.55–0.77
Q3 1.00–1.00 1.00–1.00 1.00–1.00 1.00–1.00
Q4 1.55–1.56 error error error

PostgreSQL (G&L [11])
Q1 1.01–1.03 0.99–1.01 0.98–1.01 1.00–1.02
Q2 0.00–0.00 0.00–0.00 0.00–0.00 0.00–0.00
Q3 1.01–1.04 1.01–1.04 0.99–1.02 1.00–1.06
Q4 1.75–1.86 1.80–1.93 2.05–2.25 3.54–3.89

Table 3. Numbers of Wikidata
use-case queries (from a total of
446) that could be affected by a
certain answer semantics

Feature A B C D

MINUS 13 9 9 2
FILTER NOT EXISTS 23 15 10 1
OPTIONAL w/!BOUND 5 1 0 0
!= 7 5 3 0

Total 47 29 21 3

6.3 Wikidata survey

Since the previous experiments are based on a synthetic benchmark converted
from a relational setting, we performed an analysis of the user-contributed
SPARQL queries on the Wikidata Query Service, which offers a more native
Semantic Web setting.4 As previously described, Wikidata uses blanks to rep-
resent unknown values; our goal now is to determine whether or not a choice of
certain answer semantics could impact a current, real-world setting.

(RQ2) We first inspect the 446 queries to see which could potentially be af-
fected by a certain answer semantics. We provide a summary in Table 3 according
to the query features that may cause uncertain answers, with columns helping
to indicate why queries with such features do not give uncertain answers in this
context: A applies no assumptions, counting queries using the pertinent feature;
B counts the queries that could still give uncertain answers knowing that Wiki-
data only uses blanks in a single object position; C counts the queries that could
give uncertain answers further knowing which predicates have blanks; finally, D
counts the queries whose solutions do change under certain answers. Hence, we
see that 10.5% of the queries contain features that could cause uncertain an-
swers, 6.5% of queries could cause uncertain answers even though Wikidata only
uses blanks in a single object position, 4.7% of queries could cause uncertain
answers knowing which predicates have blank values and which do not, while
finally 0.6% of queries actually return uncertain answers.

We provide some statistics on the three Wikidata queries generating un-
certain answers in Table 4. First for performance, we run the original query
(T1) and a rewritten version for certain answers (T2) over both a local Virtu-
oso index of Wikidata, as well as the public Wikidata Query Service (running
Blazegraph). (RQ1) While the performance of the first query is comparable un-
der both standard and certain answer semantics for Virtuoso, the latter times
out on Blazegraph. On the other hand, the second query is faster on Virtuoso
for certain answer semantics, possibly because it is anticipated that all answers
will be discarded. This is not the case for Blazegraph, where the rewritten query

4 https://www.wikidata.org/wiki/Wikidata:SPARQL query service/queries/examples

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

Table 4. Query execution times (ms) for the three Wikidata queries with uncertain
answers, and ratio of uncertain answers to total answers

Local (Virtuoso) Public (Blazegraph)
Uncertain/Total

T1 T2 T2/T1 T1 T2 T2/T1

Q1 144464 142989 0.99 53012 to – 20/5487
Q2 7038 521 0.07 1013 2045 2.02 42/42
Q3 1266326 1419269 1.12 to to – 12/27221

takes twice the time. In Virtuoso Q3 takes slightly longer in the rewritten query.
Blazegraph times out in all runs of Q3. We also look at the ratio of uncertain
answers the queries would return. (RQ2) The ratio for Q1 and Q3 are relatively
low, but on the other hand, for Q2, the ratio is 100%: all answers are uncertain.

For space reasons, we refer to the webpage for further analysis of the Wikidata
queries, including more details on the queries returning uncertain answers.

7 Conclusions

In this paper, we have looked at the semantics of SPARQL with respect to RDF
graphs that use blank nodes as existential variables encoding unknown values. In
particular, we have investigated the feasibility of approximating certain answers
in SPARQL, proposing various rewriting strategies. Our initial results suggest
that querying for certain/possible answers generally does incur a significant cost,
but that at least for Virtuoso, query answering is still feasible (and in some cases
faster than under standard semantics). We showed that the relative performance
results for Virtuoso under certain answer semantics are competitive with results
published for PostgreSQL. In general, we saw that although some queries are exe-
cuted faster under certain semantics with current SPARQL implementations, for
others there can be a significant performance cost. It is important to highlight,
however, that experiments were run using off-the-shelf SPARQL implementa-
tions; dedicated SPARQL implementations for approximating certain answers
may further improve on the performance observed here.

Regarding the question of whether or not offering users a choice of certain an-
swer semantics is important, we performed an analysis of 446 Wikidata queries,
where although 10.5% use negation and inequality features that could cause un-
certain answers in principle, only 0.6% of the queries return uncertain answers
in practice. However, Wikidata only uses unique blanks (acting similar to un-
marked nulls) in the object position. It would be interesting to do similar studies
for other datasets using existential blanks, though we are not immediately aware
of such a dataset that has a set of SPARQL queries to analyse.

In summary, though the results here confirm that certain answers can be
effectively approximated using even off-the-shelf SPARQL implementations, the
practical motivation for such a SPARQL semantics remains speculative.

Acknowledgements The work was also supported by the Millennium Institute
for Foundational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the representation
and querying of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187, 1991.

2. Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus, and Se-
bastian Skritek. Towards reconciling SPARQL and certain answers. In World Wide
Web (WWW), pages 23–33, 2015.

3. Renzo Angles and Claudio Gutierrez. The multiset semantics of SPARQL patterns.
In International Semantic Web Conference (ISWC), pages 20–36. Springer, 2016.

4. Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan Sequeda. A
Direct Mapping of Relational Data to RDF. W3C Recommendation, 2012.

5. Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In
Principles of Database Systems (PODS), pages 305–316. ACM, 2011.

6. Marcelo Arenas and Mart́ın Ugarte. Designing a query language for RDF: marrying
open and closed worlds. In Principles of Database Systems (PODS), pages 225–236.
ACM, 2016.

7. Edgar F. Codd. Understanding relations. SIGMOD Rec., 6(3):40–42, July 1974.
8. Marco Console, Paolo Guagliardo, and Leonid Libkin. Approximations and refine-

ments of certain answers via many-valued logics. In Knowledge Representation and
Reasoning (KR), pages 349–358. AAAI Press, 2016.

9. Claire David, Leonid Libkin, and Filip Murlak. Certain answers for XML queries.
In Principles of Database Systems (PODS), pages 191–202. ACM, 2010.

10. Amélie Gheerbrant, Leonid Libkin, and Tony Tan. On the complexity of query an-
swering over incomplete XML documents. In International Conference on Database
Theory (ICDT), pages 169–181, 2012.

11. Paolo Guagliardo and Leonid Libkin. Making SQL queries correct on incomplete
databases: A feasibility study. In Principles of Database Systems (PODS), pages
211–223. ACM, 2016.

12. Paolo Guagliardo and Leonid Libkin. Correctness of SQL queries on databases
with nulls. SIGMOD Record, 46(3):5–16, 2017.

13. Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query lan-
guage. W3C Recommendation, March 2013.

14. Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recom-
mendation, February 2014.

15. Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. Everything
you always wanted to know about blank nodes. J. Web Sem., 27:42–69, 2014.

16. Hans-Joachim Klein. On the use of marked nulls for the evaluation of queries
against incomplete relational databases. In Workshop on Foundations of Models
and Languages for Data and Objects. Kluwer, 1998.

17. Leonid Libkin. Certain answers as objects and knowledge. In Knowledge Repre-
sentation and Reasoning (KR). AAAI Press, 2014.

18. Leonid Libkin. SQL’s three-valued logic and certain answers. In International
Conference on Database Theory (ICDT), pages 94–109, 2015.

19. Leonid Libkin. SQL’s three-valued logic and certain answers. ACM Trans. Database
Syst., 41(1):1:1–1:28, 2016.

20. Witold Lipski, Jr. On relational algebra with marked nulls preliminary version. In
Principles of Database Systems (PODS), pages 201–203. ACM, 1984.

21. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

22. Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Commun. ACM, 57(10):78–85, 2014.

	Certain Answers for SPARQL with Blank Nodes

