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Abstract. We present LSQ: a Linked Dataset describing SPARQL
queries extracted from the logs of public SPARQL endpoints. We ar-
gue that LSQ has a variety of uses for the SPARQL research community,
be it for example to generate custom benchmarks or conduct analyses of
SPARQL adoption. We introduce the LSQ data model used to describe
SPARQL query executions as RDF. We then provide details on the four
SPARQL endpoint logs that we have RDFised thus far. The resulting
dataset contains 73 million triples describing 5.7 million query executions.

1 Introduction

Although there are now hundreds of public SPARQL endpoints available on the
Web — collectively exposing billions of facts and receiving millions of queries per
month — current works suggest that in terms of SPARQL technology, there is still
considerable room for improvement [9,2,1]. Many of these endpoints suffer from
availability and performance issues [2]. In addition, the recent recommendation
of SPARQL 1.1 [6] brings new challenges. Tackling these challenges could benefit
from more data about how users are currently interacting with SPARQL endpoints
and which queries they are sending. Such knowledge may help to focus research
on optimising those queries or query features that are most often used.

Although query logs are available for public SPARQL endpoints through
initiatives like USEWOD [4], the datasets are only accessible after having signed
legal agreements, which limits re-use. Likewise, the format of the raw logs is
ad-hoc in nature, depending on their source. We thus introduce the Linked
SPARQL Queries Dataset (LSQ): a public, openly accessible dataset of SPARQL
queries extracted from endpoint logs.* The current version that we describe in
this paper consists of 73.2 million triples collected from four query logs, which we
have gathered from the maintainers of public endpoints and for which we have
gotten permission to make the logs public. We foresee a number of potential use
cases for such a dataset:

UC1 Custom Benchmarks The LSQ dataset can be used to generate realistic
benchmarks by selecting queries matching ad-hoc desiderata [12].

* The LSQ dataset is available from http://aksw.github.io/LSQ/.
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UC2 SPARQL Adoption The data can be used by researchers to conduct
analyses of features used in real-world SPARQL queries [3,10,11].

UC3 Caching Works on caching [14,8] could benefit from a dataset of real-world
queries by, e.g., analysing real-world sequences of queries.

UC4 Usability Analysis of user behaviour — e.g., errors made, how they refine
queries, etc. — could guide the design of better interfaces.

UC5 Meta-Querying One could find out what are the queries that people are
asking about a resource of interest, be it a product, person, city, etc.

These use cases not only require details about queries, but also query execu-
tions, agents, result sizes, etc. We now describe the LSQ data model, whose goal
is to comprehensively capture all such aspects of query logs.

2 RDF Data Model

Our goal is to create a Linked Dataset describing the SPARQL queries issued to
various public SPARQL endpoints. In Figure 1, we provide an overview of the
core of the schema for the LSQ data-model. Listing 1 provides a comprehensive
example output for a query. The main aspects of the dataset are now presented.’

Queries in the data are typed as a subclass of sp:Query (e.g., sp:Select,
sp:Ask, etc.). We create query instances for each log whereby a query is linked to a
single endpoint from whose log it was extracted. Hence, if the same query with the
same syntax is issued to the same endpoint multiple times, it is represented with
a single instance of sp:Query, linked to multiple instances of lsqv:Execution
for each time the query was run. Each such execution instance provides a time
(dct:issued) and a unique agent IRI computed from a cryptographically-hashed
and salted I.P. address (1sqv:agent).

To help make the dataset as general as possible, we attach a complete
SPIN representation of the query to each query instance [7]. Given that the
SPIN representation may involve an arbitrary level of nesting using a variety
of predicates, to make querying LSQ more convenient and efficient, we provide
shortcut triples to indicate the SPARQL query features used in the query. These
triples link query instances (with the predicate 1sqv:usesFeature) to instances
of sd:Feature. We enumerate a comprehensive list of such feature instances in
our vocabulary, including 1sqv:Filter, lsqv:0ptional, 1sqv:SubQuery, etc.
We also provide shortcuts to the IRIs and literals mentioned in a query so
consumers can easily find all queries about a given resource.

In addition to the query structure, we also provide generic structural statis-
tics [1] about the static query including the number of Basic Graph Patterns
(1sqv:bgps) and the number of triple patterns (1sqv:triplePatterns). We also
provide data-driven statistics [1] (incl. the number of results returned and the
query runtime) about the execution of the query. Since such data are not typically
provided by the logs, we generate these statistics by running the query locally
against an offline copy of the corresponding version of the dataset in question.

® More details are available in the technical report at http://goo.gl/LZehl11.
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Fig.1: LSQ data model (dashed lines indicate sub-classes)

Of course, the resulting statistics may differ to those that occurred during the
original execution logged by the public endpoint. Likewise, these statistics are
computed for a static version of the dataset using Virtuoso 7.1 (16 GB RAM,
6-Core i7 3.40 GHz CPU), where results may vary in other environments. These
data are intended as a guide to query performance/result-size that is provided
“as is” and which a consumer can choose to use or not use as they see fit.
Regarding Linked Data compatibility, we ensure that all query instances and
executions are identified with dereferenceable IRIs. Our data model also re-uses
class and property terms from established external vocabularies, including SPIN,
DC Terms and SPARQL Service Descriptions. LSQ provides external links to
every resource mentioned in a query. A SPARQL endpoint is also provided.

3 LSQ Dataset Statistics

We applied our extraction process over four SPARQL query logs: DBpedia (logs
from 30/04/2010-20/07/2010; a dataset with 232 million triples), Linked Geo
Data (LGD) (24/11/2010-06/07/2011; with 1 billion triples), Semantic Web
Dog Food (SWDF) (16/05/2014-12/11/2014; with 300 thousand triples) and the
British Museum (BM) (08/11/2014-01/12/2014; with 1.4 million triples). Given
that the logs were in different formats (Virtuoso, Sesame and OWLIM), we wrote
scripts to extract and normalise data from each source, mapping them to the
target schema outlined in Section 2. In this section, we give some insights about
the types of queries (and executions) that the resulting LSQ dataset describes.

Query Analysis: Table 1 provides high-level analysis of the queries appearing
in the four logs. While the majority of queries are SELECT (91.6% overall), SWDF
contains a large number of DESCRIBE queries (31.1%). The BM query log contains
a noticeably high ratio of parse errors (77.63%), compared with DBpedia (35.27%),



Listing 1: An example LSQ representation of an SWDF query

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix 1lsqr: <http://lsq.aksw.org/res/> .

@prefix lsqrd: <http://lsq.aksw.org/res/SWDF-> .

@prefix lsqv: <http://lsq.aksw.org/vocab#> .

@prefix sp: <http://spinrdf.org/sp#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

# QUERY INSTANCE META-DATA
1sqrd:g483 1lsqv:endpoint <http://data.semanticweb.org/sparql> ;
sp:text """SELECT DISTINCT ?prop
WHERE {
?0obj rdf:type swdf:SessionEvent .
70bj 7prop 7targetObj
FILTER (isLiteral(7targetObj)) }
LIMIT 150"""

# STRUCTURAL META-DATA

1sqrd:q483 lsqv:bgps 1 ; lsqv:triplePatterns 2 ; 1lsqv:joinVertices 1 ;
1sqv:meanJoinVerticesDegree 2.0 ;
1sqv:usesFeature lsqv:Filter , lsqv:Distinct , lsqv:Limit ;
1lsqv:mentionsSubject "7obj" ;
1lsqv:mentionsPredicate "?prop" , rdf:type ;
1sqv:mentionsObject "?targetObj" , swdf:SessionEvent ;
1sqv:joinVertex lsqr:q483-obj

1sqr:q483-obj 1lsqv:joinVertexDegree 2 ; rdf:type lsqv:Star .

# DATA-SENSITIVE META-DATA
1sqrd:q483 lsqv:resultSize 16 ; lsqv:runTimeMs 6 ;
1sqv:meanTriplePatternSelectivity 0.5007155695730322 ;

# QUERY EXECUTION META-DATA
1sqrd:q483 lsqv:execution 1lsqrd:q483-el , 1lsqrd:q483-e2 , 1lsqrd:q483-e3 , 1lsqrd:q483-e4 .
1sqrd:q483-el lsqv:agent lsqr:A-W1xKEOQQR1hCUBdGRx1QGVRbQRNsN2YUWFSW ;
dct:issued "2014-05-22T17:08:17+01:00"""xsd:dateTimeStamp .
1sqrd:q483-e2 1lsqv:agent 1lsqr:A-W1xKEOQQR1hCUBAGRx1QGVRARBNsN2YUW1pS ;
dct:issued "2014-05-20T14:34:35+01:00"""xsd:dateTimeStamp .
1sqrd:q483-e3 lsqv:agent lsqr:A-W1xKEOQQR1hCUBdGRx1QGVRARBNsN2YUW1pS ;
dct:issued "2014-05-20T14:28:37+01:00"""xsd:dateTimeStamp .
1sqrd:g483-e4 1lsqv:agent 1lsqr:A-W1xKEOQQR1hCUBAGRx1QGVRARBNsN2YUW1pS ;
dct:issued "2014-05-20T14:24:13+01:00"""xsd:dateTimeStamp .

# SPIN REPRESENTATION
1sqrd:q483 a sp:Select ;
sp:distinct true ; sp:limit "150
sp:resultVariables ( [ sp:varName "prop
sp:where (
[ sp:subject [ sp:varName "obj"~"
sp:predicate rdf:type ;
sp:object <http://data.semanticweb.org/ns/swc/ontology#SessionEvent>

xsd:long ;
"~~xsd:string ] ) ;

xsd:string ] ;

[ sp:subject [ sp:varName "obj"~"xsd:string ] ;
sp:predicate [ sp:varName "prop"~“xsd:string ] ;
sp:object [ sp:varName "targetObj"~“xsd:string ]

[ a sp:Filter ;
sp:expression [ a sp:isLiteral ; sp:argl [ sp:varName "targetObj"~"

]

xsd:string ] ]




Table 1: High-level analysis of the queries and query executions in the LSQ
dataset for each log (QE = Query Executions, UQ = Unique Queries, PE =
Parse Errors, RE = Runtime Error, ZR = Zero Results, SEL. = SELECT, CON
= CONSTRUCT, DES = DESCRIBE; percentages are with respect to UQ)

QE UuQ PE RE ZR SEL CON DES ASK
Ne Ne Ne Ne Ne % % % %

DATASET

DBpedia 1,728,041 1,208,789 426,425 69,523 176,257 94.6 0.9 0.1 4.4
LGD 1,656,254 311,126 13,546 50,059 143,574 89.3 23 0.0 8.4
SWDF 1,411,483 99,165 13,645 475 25,674 68.8 0.0 31.1 0.1
BM 879,426 129,989 100,916 0 29073 100 0.0 00 0.0

Overall 5,675,204 1,749,069 554,532 120,057 374,578 91.6 1.2 23 4.9

Table 2: Percentage of unique queries containing different types of joins (a query
may contain multiple join types)

STAR PATH HYBRID SINK No JoIN

DATASET

% % % % %
DBpedia 38.58 8.60 6.79 6.31 61.23
LGD 28.18 9.46 7.57 1.24 72.00
SWDF 10.70 11.25 4.01 0.93 84.25
BM 0.00 0.00 0.00 0.00 100.00
Overall 33.05 8.79 6.62 4.51 66.51

SWDF (13.75%), or LGD (4.35%).% Conversely, while LGD is the lowest in terms
of parse errors, it generates the highest ratio of runtime errors (16.08%), followed
by DBpedia (5.54%), SWDF (0.05%), and BM (0%). Often these are timeouts,
which will, in practice, occur more frequently for larger datasets.

Table 2 shows the popularity of join types as defined previously in [13]. The
idea is to count individual join variables within a BGP as individual joins and
type them depending on how they connect triple patterns. We say that a join
vertex has an “outgoing link” if it appears as a subject of a triple pattern, and
that it has an “incoming link” if it appears as predicate or object. STAR has
multiple outgoing links but no incoming links. PATH has precisely one incoming
and one outgoing link. HYBRID has at least one incoming and outgoing link and
three or more links. SINK has multiple incoming links but no outgoing links. From
Table 2, we see that most queries are STAR (33.1%) or contain no join (66.5%);
again we see the uniformity of BM queries suggesting the influence of one agent.

Table 3 shows the mean values for various query features across all query
logs. These features are often considered, e.g., when designing SPARQL bench-

5 We suspect that for BM, one automated agent is asking a high volume of simple
potentially “invalid” queries to the endpoint; unfortunately the BM log did not
include agent data, so we can neither confirm nor refute this possibility.



Table 3: Comparison of the mean values of different query features across all
query logs (RS = Result Size, TPs = Triple Patterns, JVs = Join Vertices, MJVD
= Mean Join Vertex Degree, MTPS = Mean Triple Pattern Selectivity)

DATASET RS BGPs TPs JVs MJVD MTPS RUNTIME (ms)
DBpedia 87.57 1.81 2.22 040 0.78 0.002 20.26
LGD 161.90 1.75 216 0.37 0.75 0.030 32.28
SWDF 19.65 257 294 0.26 0.35 0.025 11.98
BM 0.00 1.00 1.00 0.00 0.00 0.000 6.78
Overall 122.45 1.74 2.04 0.24 0.45 0.013 26.40

Table 4: Percentage of queries using various specific SPARQL features
DaTaseT UNION OPTIONAL DISTINCT FILTER REGEX SERVICE SuUB-QUERY

DBpedia 4.42 36.20 18.44  23.47 2.90 0.0005 0.00
LGD 9.65 25.10 22.25  31.10 1.25 0.0000 0.01
SWDF 32.71 25.32 45.40 0.95 0.06 0.0012 0.02
BM 0.00 0.00 100.00 0.00 0.00 0.0000 0.00
Overall 7.64 31.78 23.30  23.19 2.22 0.0004 0.01

marks [1,5]. The SWDF queries are generally more complex, on average, in terms
of the number of BGPs and total number of triple patterns. However, they contain
fewer joins among triple patterns and the join vertex degree is also quite low
(e.g., 0.35 for SWDF vs. 0.78 for DBpedia). We also see that slower runtimes
correspond with larger dataset sizes. We again see that the BM queries often
return zero results, suggesting again a high volume of simple, synthetic queries.
Tables 4 and 5 show the percentage use of (groups of) different SPARQL
features [3]; a query is counted in a group if it uses one such feature. We found
that the SPARQL 1.1 features are rarely used; however, in the case of DBpedia
and LGD, this may be due to the age of the logs. The most widely used feature is
OPTIONAL (31.78%), followed by DISTINCT (23.3%) and FILTER (23.19%). Solution
modifiers (i.e., LIMIT, OFFSET, ORDER BY) are also quite often used (18.11%).

Execution and Agent Analysis: Thus far we have analysed unique queries.
We now look at (a) whether the same queries tend to be executed many times
and (b) how many agents are responsible for how many executions.

With respect to the number of times a given query is executed, if we take
the total number of query executions (5,675,204) and the total number of unique
queries (1,749,069) from Table 1, we can see that a given (syntactically identical)
query is executed on average about 3.2 times in the scope of the logs defined.
To compare this distribution for the four logs, Figure 2 provides a Lorenz curve,
which shows what (maximal) ratio of unique queries account for what (minimal)
ratio of query executions. For example, we see that for SWDF, 80% of the unique



Table 5: Percentage of queries using various classes of features

DATASET SOLUTION MOD. AGGREGATES (—)EXISTS BINDING GRAPH

DBpedia 1.036 0.001 0.001 0.000 0.002
LGD 60.443 0.007 0.000 0.000 0.000
SWDF 33.265 2.405 0.001 0.008 0.001
BM 0.000 0.000 0.000 0.000 0.000
Overall 18.117 0.174 0.001 0.001 0.001
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Fig. 2: Lorenz curve for distribution of Fig. 3: Lorenz curve for distribution of
executions per unique query executions per unique agent

queries account for about 10% of the overall executions, or equivalently that the
top 20% most frequently executed queries account for 90% of all executions. On
the other hand, the executions for DBpedia are much more evenly spread. For
LGD, the sharp ascent of the curve suggests that a handful of unique queries are
run a great many times and form the overall majority of executions.

Regarding unique agents, DBpedia had 3,041, LGD had 725 and SWDF had
274; we did not have agent data for BM. Figure 3 presents the Lorenz curve
of how executions are distributed amongst agents, in which we can see a heavy
skew; for example, 90% of the agents with fewest executions are cumulatively
responsible for fewer than 3% of the total executions (2.7% for DBpedia, 0.7%
for LGD, and 0.2% for SWDF). From this curve, we posit that most queries
encountered in these logs are from a few high-volume, automated agents; this
should potentially be taken into account by users of the LSQ dataset (again, our
goal is to provide the queries from real-world logs “as is”).

4 Conclusions and Future Directions

In this paper we presented LSQ, which is (to the best of our knowledge) the
first public Linked Dataset describing SPARQL queries issued to endpoints. We
introduced various use cases for LSQ, detailed our data model, and analysed



the results of RDFising logs from four endpoints. The current version of LSQ
contains 73 million triples describing 5.7 million query executions.

We are currently collecting logs from other SPARQL endpoints (e.g., Bioportal,
Strabon) that will be added into LSQ. We likewise hope to update and extend
logs from current endpoints (esp. DBpedia). We will also link the dataset with
the benchmark generation framework FEASIBLE to ease the development of
benchmarks customised towards specific software applications or algorithms. The
Linked Dataset, a SPARQL endpoint, and complete dumps are all available on
the LSQ homepage — http://aksw.github.io/LSQ/ — along with pointers to
code, a VoID description, example LSQ queries, and various other dataset assets.
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