

- Cryptographic PRNGs are required for virtually every cryptographic application.
- There exist provably-secure PRNGs under number-theoretic assumptions [BM84,BBS86,G00].
 - Not the most popular ones: efficiency is an issue.

- Most popular PRNGs use block ciphers or hash functions as the underlying primitive
- Standardized PRNGs
 - The ANSI X9.17 PRNG
 - The FIPS 186 PRNG

There have been no security proofs (under any reasonable assumption) that these PRNGs are secure.

- There is extensive literature on the theory of PRNGs [Y82,BM84,BBS86,HILL89].
- Results on block-cipher-based PRNGs focus on provably-secure design [ARV99] and generic forward security techniques [BY01,AB00].
- Previous analyses [KSWH98,G98,B01]
 identified weaknesses but were mostly ad-hoc.

- Analysis framework more suitable for PRNGs as used in practice
- Analysis of the ANSI X9.17 and FIPS186 PRNGs
 - Formalize assumptions on primitives
 - Suggest guidelines on secure usage
 - Identify improvements

A PRNG GE = (K, G) is a pair of stateful algorithms

 $G: current\ state \rightarrow next\ state \times output$

PRNGs as used in practice

PRNGs are extended so G takes additional inputs

 $G: key \times current \ state \times auxiliary \ input \rightarrow next \ state \times output$

PRNGs: Theory vs. Practice

PRNGs used in cryptography

States are assumed hidden at all times

PRNGs used in practice

- Take "auxiliary inputs" (e.g. timestamps)
- May leak out current state over time
- Are based on secret-key or keyless primitives

Towards a security definition (1)

Attacker Capabilities

Outputs Inputs hidden hidden known known chosen

key Gnext current state state

output

10

Towards a security definition (2)

Attacker Viewpoint

 $G: key \times current \ state \times auxiliary \ input \rightarrow next \ state \times output$

Attack Name	key	current state	aux input	next state
Chosen Input Attack	hidden	known	chosen	known
Chosen State Attack	hidden	chosen	known	known
Known Key Attack	known	hidden	known	hidden

$$Adv_{\mathcal{GE},m}^{\text{prg-cia}}(t) = \max_{A} \{2 \Pr[A \text{ wins }] - 1\}$$

We want $Adv_{GE,m}^{prg\text{-cia}}(t)$ "small" for "large" t

$$Adv_{\mathcal{GE},m}^{\text{prg-csa}}(t) = \max_{A} \{ 2 \Pr[A \text{ wins}] - 1 \}$$

We want $Adv_{\mathcal{GE},m}^{prg-csa}(t)$ "small" for "large" t

A wins if
$$d=b$$

$$Adv_{GE,m}^{prg-kka}(t) = \max_{A} \{2 Pr[A \text{ wins}] - 1\}$$

We want $Adv_{GE,m}^{prg-kka}(t)$ "small" for "large" t

- Insecure under any attack if key is known.
- Insecure under an attack where both the input and current state may be chosen.

ANSI PRNG: Security results (2)

ANSI PRNG is secure under Chosen Input
Attack and Chosen State Attack assuming the
underlying block cipher is a pseudorandom
permutation (PRP).

Theorem: Let \mathcal{GE} be the ANSI X9.17 PRNG based on a function family F. Then

$$Adv_{GE,m}^{prg-csa}(t) \le 2 \cdot Adv_F^{prp}(t,3m) + m \cdot (13m-2) \cdot 2^{-n-1}$$

$$Adv_{GE,m}^{prg-cia}(t) \le 2 \cdot Adv_F^{prp}(t,3m) + ((4m-1)^2 + m^2 + 1) \cdot 2^{-n-1}$$

where m is the number of n-bit output blocks.

- Throughput can be doubled by outputting intermediate states as part of PRNG output
 - Secrecy of intermediate states is unnecessary
 - Intermediate states are pseudorandom
- "Good" randomness is better used on key (rather than on state)

- Insecure under any attack where state is known.
- Insecure under any attack if the input may be chosen [KSWH98].

FIPS PRNG: Towards an Analysis

We need reasonable assumptions on H

- Collision Resistance? does not suffice
- Random Oracle? overkill

$$H_s(x) = H_K(s+x)$$
 can be seen as secret-key hash function if s is secret

Assume \hat{H}_s is a PRF family

- Similar assumptions have been made before [BGR95,BCK96a,BCK96b,ARV99].
- No known attacks seem to contradict this assumption,

FIPS PRNG: Security results

FIPS PRNG is secure under Known Key
Attack assuming the underlying primitive (in the alternative view) is a PRF.

Theorem: Let $G\mathcal{E}$ be the FIPS 186 PRNG based on the function family \hat{H} . Then

$$Adv_{\mathcal{GE},m}^{prg-kka}(t) \leq 2 \cdot Adv_{\hat{H}}^{prf}(t,m) + m \cdot (m-1) \cdot 2^{-n-1}$$

where m is the number of n-bit output blocks.

Other Considerations

- Most other PRNGs used in practice bear similarities with the two PRNGs analyzed
- Preserving security even under a break-in (Forward Security) seems desirable.

But <u>neither the ANSI nor the FIPS PRNG</u> are forward-secure.

Conclusions

- We propose a framework more suitable for PRNGs as used in practice
- ANSI X9.17 PRNG
 - Secure if either state or inputs are not chosen
 - Randomness is better used in key
 - Throughput can be doubled by outputting state
- FIPS 186 PRNGs
 - Secure if states are hidden and inputs are not chosen
- For both, we formalize assumptions needed on primitives.