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Abstract
Simultaneous Broadcast protocols allow different parties to broadcast values in parallel while

guaranteeing mutual independence of the broadcast values. In this work, we study various def-
initions of independence proposed in the literature by Chor, Goldwasser, Micali and Awerbuch
(FOCS 1985), Chor and Rabin (PODC 1987) and Gennaro (IEEE Trans. on Parallel and Dis-
tributed Systems, 2000), and prove implications and separations among them.

In summary, we show that each definition (generalized to allow arbitrary input distribu-
tions) is characterized by a class of “achievable” input distributions such that there is a single
protocol that simultaneously meets the definition for all distributions in the class, while for any
distribution outside the class no protocol can possibly achieve the definition. When comparing
sets of achievable distributions, the definition of Gennaro is the most stringent (followed by the
Chor and Rabin one, and Chor, Goldwasser, Micali and Awerbuch as the most relaxed) in the
sense that it is achievable for the smallest class of distributions. This demonstrates that the
definitions of Gennaro, and Chor and Rabin are of limited applicability.

Then, we compare the definitions when restricted to achievable distributions. This time
the results of our comparison rank the definitions in the opposite order, with the definition of
Chor, Goldwasser, Micali and Awerbuch as the strongest one (followed by Chor and Rabin, and
then Gennaro) in the sense that security according to the stronger definitions implies security
according to the weaker ones. We also give examples showing that the implications are strict,
i.e., there are input distributions such that a protocol can meet the weaker definition, but
fail to satisfy the stronger. The separation between the definitions of Gennaro and Chor and
Rabin is particularly strong, as we show that there is a single protocol that is simultaneously
secure according to Gennaro under any achievable input distribution, but does not satisfy the
definition of Chor and Rabin for any non-trivial distribution. In particular, the separation holds
for the special case of the uniform input distribution originally considered by the authors in
their papers.
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1 Introduction

Broadcast channels allow one or more senders to efficiently transmit messages to be received by all
parties connected to a (physical or virtual) communication network. Broadcast is a fundamental
communication primitive, both in the design of network communication protocols, and in the area
of secure multiparty computation. The main security property characterizing broadcast communi-
cation is consistency: the messages received by all players as a result of a broadcast transmission
operation are guaranteed to be the same. The problem of achieving consistency when implement-
ing broadcast on top of a point to point network (commonly known as the Byzantine agreement
problem) is central not only in cryptography, but also to the area of fault-tolerant distributed com-
putation, and it has received enormous attention (e.g., [LSP82, PSL80, FM85, CR93, CKPS01]).
In secure multiparty computation, it is often desirable that the broadcast channel satisfies some
additional properties, besides consistency. In applications where multiple senders can broadcast
messages at the same time (e.g., when running in parallel many copies of a broadcast protocol with
different senders), it is often important to enforce the simultaneous transmission of the messages,
so that no sender can decide its broadcast message based on the values broadcast by the other
players. This independence property plays a fundamental role in the secure multiparty computation
protocol of [CGMA85] as well as many important applications (like contract bidding, coin flipping,
and electronic voting schemes, as exemplified in [CR87, DDN01, Gen00]) where broadcast is used
in a more or less direct way.
The concept of simultaneous broadcast (also called independent broadcast) was first put forward by
Chor et al. [CGMA85] who proposed a simulation-based definition, and presented protocols that
securely implement simultaneous broadcast on top of a network which allows regular broadcast
transmission operations, not necessarily satisfying the simultaneity property. The protocols in
[CGMA85] require (for each simultaneous broadcast operation) a number of rounds that is linear
in the number of parties. Given the importance of the simultaneous broadcast primitive, subsequent
research efforts [CR87, Gen00] focused on reducing the round complexity, obtaining simultaneous
broadcast protocols that run in logarithmically many [CR87] or even constant [Gen00] number of
rounds (the latter result achieved in the common random string model.) Unfortunately, a close
inspection of [CGMA85, CR87, Gen00] reveals that the definitions of simultaneous broadcast used
in the three papers are quite different. Although, at first sight, all three definitions may appear
appealing and intuitive, the technical differences among them bring up the following questions:
what is the relation between the different definitions? Are they equivalent? Are they increasingly
stronger or weaker? Or are they perhaps incomparable, in the sense that no one implies the other?
Motivated by the efficiency improvement achieved by [CR87, Gen00] over the original linear round
protocol of [CGMA85], we investigate and compare the definitions proposed in these three papers.
(More precisely, we compare their straightforward generalizations to arbitrary input distributions1.)
Informally, our findings rank the original definition [CGMA85] as the strongest, and the most recent
definition [Gen00] as the weakest. Technically, we prove implications and separations showing
that the original definition [CGMA85] is strictly stronger (in a precise sense to be defined) than
the definition of [CR87], which, in turn, is strictly stronger than the latest definition of [Gen00].
The comparison is not so straightforward because not all definitions are achievable for any input
distribution, and for any pair of definitions (say, definition A and B) it may be possible to find
a protocol Π and a distribution D such that Π is satisfies definition A but not definition B on

1 At the time the definitions were suggested, a prime application of simultaneous broadcast was distributed coin
flipping. Apparently influenced by that, the definitions of [CR87, Gen00] were implicitly understood to be used with
uniform input distributions even though no such restriction was stated on the original papers.
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input drawn according to D. So, it may seem that the definitions are incomparable. In order to
properly rank the definitions, we first characterize the class of achievable input distributions for
each definition. Our characterization is tight: for each definition A, we give a class of distributions
D(A) such that

• definition A can be achieved in a strong sense: there exists a single protocol Π that satisfies
A for any distribution in D(A)

• the class D(A) cannot be extended even in a weak sense: for any distribution outside D(A),
no protocol can possibly satisfy definition A.

It turns out that the class of distributions associated to the three definitions form a monotonically
decreasing sequence. Let Sb, CR and G stand for the definitions given in [CGMA85], [CR87]
and [Gen00] respectively, and let D(Sb), D(CR) and D(G) be the corresponding classes of input
distributions. We show that

D(Sb) ⊃ D(CR) ⊃ D(G).

Armed with this characterization of the input distributions associated to each definition, we prove
implications and separations between the three definitions as follows.
We prove that definition Sb implies definition CR in the sense that for any protocol Π, if Π is
Sb-Independent for every distribution D ∈ D(CR) (i.e., for any distribution for which definition
CR is achievable at all), then Π is also CR-Independent for every such distribution. Moreover, we
give a simple example showing the reverse implication does not hold true, i.e., there exists a class
of input distributions (such that Sb-Independence is achievable) and a protocol Π such that Π is
CR-Independent but not Sb-Independent for every distribution in that class. We conclude that
CR-independence is strictly weaker than Sb-Independence.
Next we prove that definition CR implies definition G in the sense that for any protocol Π, if Π is
CR-Independent for any distribution D ∈ D(G), then Π is also G independent for any such input
distribution. Moreover, we prove that the reverse implication is not true, i.e., there is a protocol Π
that satisfies G-Independence for any distribution in D(G), but it does not satisfy CR-Independence
for any nontrivial distribution (including the uniform). We conclude that G-independence is strictly
weaker than CR-Independence.
We remark that while the relation between Sb-Independence and CR-Independence was to be ex-
pected because Sb resorts to a general secure multiparty computation definitional framework, the
relation between CR-Independence and G-Independence was not as clear. In particular, [Gen00]
seemed to suggest that the use of statistical notion of independence makes definition G stronger than
CR, which uses a computational notion of closeness between distributions. Our results show that
when restricted to an appropriate class of distributions, the relation between the two definitions is
opposite to the one suggested in [Gen00].
We also remark that while simulation-based definitions are usually stronger than other definitions,
and in many other cases in cryptography definitions have been made stronger and stronger over
time, to culminate with a definition based on the simulation paradigm, the simultaneous broad-
cast problem studied in this paper represents an interesting case in which the reverse process has
occurred: the original and strong simulation-based definition has been made weaker and weaker
over time in order to achieve greater efficiency. We leave it as an open problem to find a constant-
round protocol (i.e., as efficient as the one of [Gen00]) for simultaneous broadcast that achieves the
stronger notion of CR-Independence [CR87] or even (and preferably) Sb-Independence [CGMA85].
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Figure 1: Our results. An arrow ∆=⇒ from definition A to B means that any protocol that achieves definition
A under all distributions in ∆ also achieves definition B under the same distributions. A broken arrow 6∆=⇒
from A to B indicates that the implication A

∆=⇒ B is false.

Using Arbitrary Input Distributions: The question of whether security can be achieved under
input distributions other than the uniform is not only of theoretical interest (comparing definitions)
but of very practical relevance. In many applications (like electronic voting or contract bidding), the
parties’ input are not necessarily uniform or independent from each other – some partial knowledge
of the inputs may have leaked. More general input distributions allow us to capture these cases.
As a consequence, whether or not a definition of security can be achieved under more general input
distributions can determine whether or not a given solution suffices for a particular application
(e.g. whether the protocols suggested in [CR87, Gen00] guarantee security in scenarios with partial
knowledge of the inputs, like voting). Given that the original definitions in [CR87, Gen00] did not
explicitly excluded non-uniform input distributions, we see this contribution as useful in practice.
Our characterization of the distributions associated to the definitions of [CR87] and [Gen00] show
that those definitions are of limited applicability, as they can be achieved only for a restricted class
of input distributions.

1.1 Related Work

In [DDN01], Dolev et al. introduce the notion of malleability of protocols, and present definitions
for non-malleable message encryption, string commitment and zero-knowledge proofs. Loosely
speaking, a protocol run by honest party P on private input x is non-malleable if no corrupted
player P ′ can use (transform) the execution of the protocol to generate a valid execution of the same
protocol under some input x′ related to x. Therefore, non-malleability does guarantee some form
of independence of the private values used in different protocols. The results of [DDN01], however,
focus mostly on two-party protocols so their definitions do not capture the subtleties underlying
the definition of independence of parallel broadcast protocols with more than two players. Along
the same line, also in the two party setting, Liskov et al. [LLM+01] study mutually independent
commitments whose goal is to ensure the “independence” of the committed values. They give
definitions which seem to capture – in a strong sense – this property. Their definitions, however,
do not immediately extend to the multiparty case.
Organization: The paper is organized as follows. Section 2 presents some notation and termi-
nology, and Section 3 describes the system model, including the definition of parallel broadcast.
In Section 4, we present the definitions of independence existing in the literature, and in Section 5,
a characterization of the sensible input distributions that can be associated to the definitions is
made. Then, Section 6 presents implications and separations between the notions, and Section 7
concludes with some open problems.
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2 Preliminaries

Notation: Let n be a positive integer, and [n] denote the set {1, . . . , n}. For any set S ⊂ [n] and
any vector x = (x1, . . . , xn), we denote by xS the |S|-dimensional vector formed by the elements
of x whose index are in S, that is, xS = (xi)i∈S . Also, let G and B two disjoint sets such that
G ∪ B = [n] and w, z two n-dimensional vectors. Then, we let wG t zB denote the n-dimensional
vector formed by combining the elements of w with indexes in G with the elements of z with indexes
in B. When clear from context, we may drop the subindex G or B, as in wG t z. In such case, by
convention, we assume the coordinates for z are in the set G = [n] \G.
Probability Distributions, Ensembles and Classes of Distributions: A probability dis-
tribution D is a function from strings to non-negative reals such that

∑
x∈{0,1}∗ D(x) = 1. For any

distribution D over {0, 1}n we write d R← D to denote the process of selecting an n-dimensional
vector d from {0, 1}n according to distribution D. We also denote by DB, for any B ⊂ [n], the
distribution induced by selecting a vector in D and taking only the coordinates in set B. For
simplicity, we write Di instead of D{i}. We also extend the t notation to distributions. Given two
distributions D and R over n-bit strings, for any set B ⊂ [n], we say an n-bit vector x is drawn
from distribution DB tRB if x is formed by first drawing xB from DB and then drawing xB from

RB. Notice that for any distribution D and set B, X def= DB t DB is not necessarily equal to D
since XB is independent from XB while DB and DB may be dependent.
A probability ensemble indexed by N is a sequence ∆ = {D(k)}k∈N of probability distributions.
For each value of the security parameter k, probability distribution D(k) assigns positive probability
only to n-bit strings. We sometimes abuse notation by using D(k) to refer to the random variable
that ranges over {0, 1}n and that follows the corresponding distribution D(k). As with distributions,
given a probability ensemble D = {D(k)} and a set B ⊂ [n], we let DB = {D(k)

B }k∈N denote the
ensemble consisting of the induced distributions D(k)

B . A class of probability ensembles (or simply,
class of distributions) Φ = {∆〈`〉}`∈D is a collection of probability ensembles ∆〈`〉 indexed by some
(possibly uncountable) set D.
Algorithms and their probabilities: For any (probabilistic) algorithm A, A(x) denotes the
probability distribution of all possible outputs of running algorithm A on input x. If P is a predi-
cate, A,B are (probabilistic) algorithms, and x, y are values, then Pr [ a← A(x), b← B(y), . . . :
P (a, b, . . .) ] denotes the probability that predicate P on input a, b, . . . is true given that a, b, . . .,
are the output of the ordered execution of algorithm A on input x, B on input y, and so on. A
function µ(k) is negligible in the security parameter k if there exists a constant c > 0 and infinitely
many positive values of k such that µ(k) < k−c. A probability is overwhelming if it is larger than
1− µ(k) where µ(k) is a negligible function.

3 Parallel Broadcast

In this section, we describe some of the basic elements used in this work. We first describe the
network model and then we formalize the concept of parallel broadcast.

3.1 The Model

We consider a network of n probabilistic, polynomial-time (PPT) parties (also called players)
P1, P2, . . . , Pn, where n ∈ N is some fixed constant. Each pair of players is connected by a point-
to-point communication channel. We assume there is a probabilistic, polynomial-time adversary A
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that statically corrupts some fixed fraction of the players (say, up to t of them) and is able to read all
communication channels. The network is partially synchronous, which means parties have perfectly
synchronized clocks which “tick” at discrete instants. The time interval between the i-th tick and
the (i+1)-th tick is called the i-th round. Messages sent in one round are guaranteed to be delivered
in the next round. The adversary is allowed rushing, which means that the network delivers the
messages addressed to corrupted players instantly, so the adversary obtains those messages before
deciding and sending out the messages of corrupted players for the same round. A protocol in this
network is the collection of programs executed by these players.
We remark that our choice of network and adversary model is made mostly to fix ideas, since the
model is rather orthogonal to the main focus of the paper, the definition of independence. Towards
this end, we formalize the notion of parallel broadcast in the next section.

3.2 Parallel Broadcast

Intuitively, a parallel broadcast protocol is a broadcast protocol that allows all parties to broadcast
values at the same time. Notice that, here, the term “parallel” refers to the property that multiple
broadcast senders are allowed in the same protocol execution. The simplest instantiation of a
parallel broadcast protocol is the protocol that performs n sequential executions of a standard
(single-sender) broadcast protocol, where in the i-th execution party Pi acts as the sender.
Formally, assume each player Pi has an input bit xi, and a security parameter k. (Henceforth, for
simplicity, we consider the broadcast messages as bits). Consider a protocol Π run by the parties, at
the end of which each honest party Pi outputs an n-dimensional vector Bi = (Bi,1, Bi,2, . . . , Bi,n) ∈
{0, 1}n. Protocol Π is said to implement parallel broadcast if it satisfies the following two properties:
(1) Consistency: For any adversary A, every honest parties Pi and Pj , Bi = Bj with over-

whelming probability.
(2) Correctness: For any adversary A, every honest parties Pi and Pj , Bi,j = xj with over-

whelming probability.
The notion of parallel broadcast was introduced by Pease et al. in [PSL80] where it was called
interactive consistency.
For every protocol that implements parallel broadcast it is possible to associate a single value to
each party as the value announced by the party.

Definition 3.1 Assume parties P1, . . . , Pn run some parallel broadcast protocol Π on input vector
x under some polynomial-time adversary A. Then, for each i ∈ {1, . . . , n}, we define the value
“announced” by party Pi as the i-th bit output by any honest party Pk, namely Wi

def= Bk,i.2

By the consistency property, the n-dimensional vector W = (W1, . . . ,Wn) is well-defined with
overwhelming probability. For notational convenience, we let AnnouncedΠ

A(x) denote vector W
“announced” by the parties after running protocol Π under adversary A on input x ∈ {0, 1}n.
Similarly, AnnouncedΠ

A(X ) denotes the induced distribution on AnnouncedΠ
A(x) when x is chosen

according to some distribution X .

We remark that a parallel broadcast protocol does not necessarily guarantees independence of
any sort – the announced values can be correlated even if the inputs are not. For example, the
simplest instantiation described before (where n single-sender broadcasts are executed sequentially)
satisfies both consistency and correctness but breaks independence: a dishonest last sender Pn could

2By convention, if a corrupted party P contributes with an invalid input or no input at all, honest parties assign
the default value 0 as the bit “announced” by P .
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discard its own input and broadcast one of the values previously heard (say, the one broadcast by
party Pi). In this case, the i-th and n-th entry in the vector of announced values will always be the
equal, no matter the inputs. More sophisticated parallel protocols like the expected constant-round
interactive consistency protocol of Ben-Or and El-Yaniv [BOEY03] do not guarantee independence
either.

4 Simultaneous Broadcast: Notions of Independence

Informally, a protocol Π is said to implement simultaneous broadcast (SB) if Π implements parallel
broadcast where the values announced are “independent” of each other. Intuitively, the indepen-
dence property sought must guarantee that no group of corrupted parties may announce values
which may somehow depend on the values announced by any subset of the uncorrupted parties. In
this section, we review some of the notions of independence previously proposed in the literature.

4.1 Chor, Goldwasser, Micali and Awerbuch’s definition

In their seminal paper [CGMA85], Chor et al. define simultaneous broadcast as a network property
that can be emulated starting from a network which provides a broadcast channel. Loosely speaking,
Chor et al. show how to build a “compiler” that transforms protocols in a simultaneous broadcast
network into protocols in a regular (non-simultaneous) broadcast network such that whatever an
adversary can do in the latter network, there exists some adversary that can do the same in the
former network.
Extracting a Simulation-based definition: We adapt the definition of [CGMA85] to the
framework of secure function evaluation of [Can00] as follows. The case in which the parties
have access to a simultaneous broadcast network is cast as the “ideal” process of Canetti’s frame-
work [Can00]. There, all parties have access to a trusted third party which computes the function
fSB(x) = (x, . . . ,x). In the notation of [Can00], we call this protocol Ideal(fSB). On the other
hand, to capture a regular (non-broadcast) network, we consider a “real” process in which a pro-
tocol Π is executed in a partially synchronous network under adversary A. Here, ExecΠ

A(k, z,x)
denotes the (n + 1)-dimensional vector formed by the output of adversary A and the parties after
executing protocol Π in the real process with inputs z and x respectively, and Exec

Ideal(fSB)
S (k, z,x)

denotes the corresponding vector of outputs after Ideal(fSB) is executed with ideal adversary S in
the ideal process (see Appendix B for details). Independence is then captured by requiring that Π
securely implements fSB in the sense of [Can00]. Thus, we obtain the following definition

Definition 4.1 [Sb-Independence] Protocol Π achieves Sb-independence if for any PPT adversary
A corrupting up to t < n parties, there exists a PPT simulator S such that, the ensembles (indexed
by k ∈ N, x ∈ {0, 1}n, and z ∈ {0, 1}∗),

ExecΠ
A

def=
{
ExecΠ

A(k, z,x)
}

Exec
Ideal(fSB)
S

def=
{
Exec

Ideal(fSB)
S (k, z,x)

}
are computationally indistinguishable.

Using input distributions: We also consider an alternative simulation-based definition which
explicitly involves input distributions. This new definition, described next, is called (All,Sb)-
Independence and it is shown to be equivalent to Sb-Independence in Appendix A.1.
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Definition 4.2 [(∆,Sb)-Independence] Let ∆ be a class of input distribution ensembles over n-bit
strings. Protocol Π achieves (∆,Sb)-independence if for any PPT adversary A corrupting up to
t < n parties, there exists a PPT simulator S such that for every distribution ensemble D ∈ ∆, the
ensembles (indexed by k ∈ N, and z ∈ {0, 1}∗)

XExecΠ
A

def=
{
x R← D(k) :

(
x, ExecΠ

A(k, z,x)
)}

(1)

XExec
Ideal(fSB)
S

def=
{
x R← D(k) :

(
x, Exec

Ideal(fSB)
S (k, z,x)

)}
(2)

are computationally indistinguishable. In this case, we say Π is Sb-Independent under class ∆.
If ∆ = All, the class of all input distributions over n-bit strings, then we say Π achieves (All,Sb)-
Independence.

4.2 Chor and Rabin’s definition

Chor and Rabin [CR87] proposed another definition of independence. Intuitively, their definition
seems to come from the following idea. Let A be an adversary not corrupting party Pi. Any
computable information on the n − 1 bits announced by any party other than Pi can be cast as
a (polynomial-time) predicate R on those bits. After fixing the adversary, whether or not this
predicate is true defines an event. Then, if the bit output by Pi is probabilistically independent of
any such event, then the output of Pi is effectively oblivious (unaffected) by the actions of adversary,
thus guaranteeing some independence. A formal definition follows, slightly generalized to consider
input distributions. The definition of [CR87], which was presented in a different but equivalent
formulation (see Section A.2), is obtained as a special case when the input distribution is uniform.

Definition 4.3 (CR-Independence) Let D be an input distribution over {0, 1}n. A protocol Π
achieves CR-independence under input distribution D if, for any adversary A, all honest party Pi,
all polynomial-time predicate R, the quantity∣∣∣Pr [Wi = 0 ] · Pr

[
R(W{i})

]
− Pr

[
Wi = 0 ∧ R(W{i})

]∣∣∣ (3)

is negligible (in the security parameter k) when W← AnnouncedΠ
A(D(k)).

4.3 Gennaro’s definition

The third definition of independence considered here was presented by Gennaro in [Gen00].3 Loosely
speaking, a protocol achieves independence under this definition if the bit announced by each
corrupted party is not correlated with the bits announced by all the honest parties. In [Gen00], it
is (implicitly) assumed the inputs to the parties follow the uniform distribution. Below, we slightly
generalize the definition of [Gen00] to consider arbitrary input distributions.

Definition 4.4 (G-Independence) Let D be an input distribution over {0, 1}n. A protocol Π
achieves G-independence under input distribution D if, for all adversaries A corrupting a subset
B of parties (where |B| = t < n), for each corrupted party Pi, for all bit bi ∈ {0, 1}, and for all
vectors r, s ∈ {0, 1}n−t that occur with non-zero probability as DB, the quantity∣∣Pr

[
Wi = bi | WB = r

]
− Pr

[
Wi = bi | WB = s

]∣∣ (4)

is negligible (in the security parameter k) when W← AnnouncedΠ
A(D(k)).

3 A different definition was originally described in a preliminary version [Gen95]. Since such definition evolved
into the one of [Gen00], we do not considered it in this work.
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A related, simpler definition: The idea behind the definition of [Gen00] is that, the probability
that a corrupted party Pi outputs a bit bi in the probability space where honest parties end up
outputting a vector r must be about the same for any vector r. This approach may lead to technical
difficulties when proving properties of the definition over arbitrary distributions, since the definition
may involve conditioning over possibly negligible events. To overcome this problem, we define a
related (and possibly stronger) definition which implies Definition 4.4. The new definition, called
G∗∗-Independence, is presented and shown to imply G-Independence in Appendix A.3. The fact
that this new definition implies G-Independence will suffice to show implications and separations
with respect to the other notions considered in this work.

5 The Role of the Input Distributions

The original definition of [CGMA85], although informal, is based on a general simulation paradigm
and is arguably the strongest: a simultaneous broadcast protocol is a protocol that securely com-
putes a function f(x1, . . . , xn) that on input n values x1,. . . , xn (provided by the n protocol
participants) returns to each player the vector x = (x1, . . . , xn) containing all the input values.
Part of the power of this definition comes from the fact that security is required for any fixed input
(x1, . . . , xn). This allows to model arbitrary input probability distributions, partial information
about the inputs, etc.
In contrast, the definitions proposed in [CR87, Gen00] consider a specific input distribution and
are statistical in nature: motivated by coin flipping applications, the definitions of [CR87, Gen00]
consider the execution of the protocol when the input values x1, . . . , xn are chosen independently
and uniformly at random, and propose a formalization of the intuitive requirement that

• the value broadcast by any honest party is independent from all other broadcast values [CR87],
or

• the value broadcast by any corrupted party is independent from the values broadcast by all
honest parties [Gen00].

Moreover, the notion of independence used in [CR87] is computational (i.e., it is only required that
no polynomial time observer can detect dependencies), while the notion considered in [Gen00] is
information theoretic. Both definitions can be generalized to arbitrary input distributions, but the
generalization immediately highlights the limitations of the definitions in [CR87, Gen00]: if the
input values x1, . . . , xn are strongly correlated, then the desired (correct) output also need to be
correlated, and no protocol can possibly achieve the definition. In other words, there are probability
distributions for which no protocol can possibly achieve the definitions in [CR87, Gen00]. At the
same time, there are trivial distributions (e.g., any singleton distribution that concentrates all
probability on a single input vector) for which any protocol vacuously satisfies the definition of
[CR87, Gen00]. In other words, there are distributions for which the definitions of [CR87, Gen00]
are not meaningful.
In this section, we formalize this intuition and for each definition of independence, we identify the
largest class of distributions under which the definition is “achievable”. More precisely, for each
notion of independence, we prove there is a class of distributions under which the definition of
independence can be realized – there exist a protocol that achieves the notion under such a class –
but whose complement is not achievable in a strong sense: no protocol achieves the notion even for
a single distribution outside the class. For any definition N ∈ {CR,G}, we say a protocol Π achieves
(∆,N)-independence if Π achieves N-independence under every distribution in class ∆. We start
by describing the input distributions for CR-Independence in next section.
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5.1 Distributions for CR-Independence

Computationally independent distributions: Let X = {X (k)}k∈N be a distribution ensem-
ble such that every distribution X (k) is the product of n arbitrary but independent distributions
X1, . . . , Xn over {0, 1}, that is, X (k) = X1 ×X2 × · · · ×Xn. Ensembles with distributions of this
form are called independent. Let Φn = {X 〈`〉}`∈D be the class of all independent n-dimensional
ensembles, indexed by some (possibly uncountable) set D. Let ΨC,n be the class that contains
all distributions ensembles computationally close to some distribution ensemble in Φn, that is, for
each D ∈ ΨC,n there exist a distribution ensemble X in Φn such that D is computationally close to
X . If D ∈ ΨC,n we say D is a computationally independent distribution ensemble. Note that the
ensembles for the uniform and all singleton distributions are indeed independent.
Achieving CR-Independence: It is possible to show that, if the input distributions are computa-
tionally independent then CR-independence can be achieved. The proof of this result is postponed
until Section 6.2.

Claim 5.1 Under the assumption that enhanced trapdoor permutations exist (cf. [Gol01, Sec. C.1]),
there exists a protocol that achieves (ΨC,n,CR)-independence.

Conversely, unless the input distribution D is computationally independent, no protocol can achieve
independence according to Definition 4.3.

Lemma 5.2 Let Π be any parallel broadcast protocol and let D 6∈ ΨC,n be an input distribution
ensemble. Then, Π does not achieve CR-independence under input distribution D.

Proof of Lemma 5.2: The proof uses the distinguisher that comes from D not being computa-
tionally independent to build a polynomial-time computable relation R and an adversary A that
breaks the CR-independence of any protocol which runs on input distribution D. Details follow.

Suppose n ≥ 2 (otherwise the result holds vacuously). Let D be the input distribution ensemble
not in ΨC,n and, for some arbitrary index i ∈ [n], consider the induced ensembles Di and D{i}

def=
D[n]\{i}. (Observe that all distributions over 1-bit are independent and Di must be in Φ1.) For
distribution D{i} there are two cases depending on whether D{i} ∈ ΨC,n−1 or not.

Let’s analyze the first case, where D{i} ∈ ΨC,n−1. Since D 6∈ ΨC,n, we know D is not com-
putationally close to any distribution in Φn. This means that, for every distribution X ∈ Φ,
there exists a probabilistic polynomial-time adversary T and a constant c > 0 such that (w.l.o.g.)
Pr

[
T (D(k)) = 1

]
− Pr

[
T (X (k)) = 1

]
> k−c for infinitely many values of the security parame-

ter k. Take X = X ′ t Di where X ′ is the ensemble in Φn−1 which is computationally close to
D{i}. We want to prove that, in this case, Π cannot be CR-independent under input distribu-
tion D: There must exist an adversary A, a polynomial-time predicate R, and a bit b such that∣∣∣Pr [Wi = b ] · Pr

[
R(W{i})

]
− Pr

[
Wi = b ∧ R(W{i})

]∣∣∣ is non-negligible. Indeed, it suffices to
consider the trivial adversary A, which corrupts no party, and the predicate R defined by the ex-
ecution of adversary T under the randomness that gives the “best” distinguishing advantage. Fix
some arbitrary party i ∈ [n], bit b ∈ {0, 1} and security parameter k. In what follows, we write Tr to
denote running machine T with randomness fixed to the (sufficiently long) string r ∈ {0, 1}∗. Then,
for all bit b, for all Z{i} ∈ {0, 1}n−1, we define a predicate R on Z{i} as Rb(Z{i})

def= Tr(Z{i} t b),

where r is the value of τ that maximizes the difference Pr
[
Tτ (D(k)) = 1

]
− Pr

[
Tτ (X (k)) = 1

]
.

In what follows, we prove that, independently of protocol Π, there is a bit b such that adversary
A and relation Rb violate the CR-independence of Π under input distribution D. For simplicity, let

11



D and X denote the random variables corresponding to to distributions D(k)

{i}
and X (k)

{i}
respectively.

Then, for b ∈ {0, 1}, we have

pb
def= Pr

[
Wi = b ∧ Rb(W{i})

]
− Pr [Wi = b ] · Pr

[
Rb(W{i})

]
= Pr [Tr(D t b) | Di = b ] · Pr [Di = b ]− Pr [Di = b ] Pr [ Tr(D t b) ]

and, therefore

p0 + p1 = Pr [Tr(D) ]− (Pr [Di = 0 ] · Pr [Tr(D t 0) ] + Pr [ Di = 1 ] · Pr [Tr(D t 1) ]) (5)

Now, let us consider the probability that T outputs 1 under distribution X ∈ Φn. Since X is the
product of independent distributions

Pr [Tr(X ) ] = Pr [Xi = 0 ] · Pr [Tr(X t 0) ] + Pr [ Xi = 1 ] · Pr [Tr(X t 1) ] (6)

Subtracting Equation (6) from Equation (5), and using that Xi = Di and triangular inequality we
obtain

|p0|+ |p1| ≥ k−c + Pr [Di = 0 ] · (Pr [Tr(X t 0) ]− Pr [Tr(D t 0) ])

+ Pr [Di = 1 ] · (Pr [Tr(X t 1) ]− Pr [Tr(D t 1) ]) ≥ k−c′ .

for some constant c′ > 0. Notice that the last inequality above follows from D{i} ∈ ΨC,n−1.
For the second case, D{i} 6∈ ΨC,n−1, we can apply the above argument on distribution D{i}

instead, and inductively on n if necessary. This is possible if we pick i so the resulting distribution
D{i} is not computationally independent. (If that is not possible, the first case above applies and
the result holds.) The base case occurs when a distribution of the form Dj1×Dj2 is reached. Then,
Dj1 is clearly computationally close to itself and the first case above applies. This concludes the
proof.

5.2 Distributions for G-Independence

Locally Independent distributions: We say distribution ensemble D is locally independent
if for all subset B ⊂ [n], all string u ∈ {0, 1}|B|, and all string w ∈ {0, 1}n−|B| that occurs with
non-zero probability as DB, the quantity∣∣∣Pr

[
D(k)

B = u | D(k)

B
= w

]
− Pr

[
D(k)

B = u
]∣∣∣

is negligible in the security parameter k. We denote by ΨL,n the class of all locally independent
distribution ensembles.
Achieving G-Independence: It is possible to show that G-independence can be achieved under
locally independent inputs. Again, the proof of this result is postponed until Section 6.2.

Claim 5.3 Under the assumption that enhanced trapdoor permutations exist (cf. [Gol01, Sec. C.1]),
there exists a protocol that achieves (ΨL,n,G)-independence.

On the other hand, the following result shows that no protocol is G-independent under input
distributions which are not locally independent.
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Lemma 5.4 Let Π be any parallel broadcast protocol and D 6∈ ΨL,n be an input distribution.
Then, Π does not achieve G-independence under input distribution D.

Proof of Lemma 5.4: Fix a parallel broadcast protocol Π. Let D be a distribution not in
ΨL,n. Then, by definition, there exist a subset B ⊂ [n], |B| = t, a string u ∈ {0, 1}t, and a string
w ∈ {0, 1}n−t, such that∣∣∣Pr

[
D(k)

B = u | D(k)

B
= w

]
− Pr

[
D(k)

B = u
]∣∣∣

is not negligible. To prove the result it suffices to choose an arbitrary index i ∈ B, and an
adversary A that works as follows: A corrupts parties in B and announces 1 for (corrupted)
party Pi only when xB = u. Also, with overwhelming probability, since x R← D(k) we know that
WB = AnnouncedΠ

A(x)B follows distribution D(k)

B
. Then,∣∣Pr

[
Wi = 1 | WB = w

]
− Pr [Wi = 1 ]

∣∣
=

∣∣∣Pr
[
D(k)

B = u | D(k)

B
= w

]
− Pr

[
D(k)

B = u
]∣∣∣

is not negligible either. The result then follows by Proposition C.1.

5.3 Distributions for Sb-Independence

In this section, we show that Sb-Independence can be achieved under any input distribution. We
first notice that Sb-Independence under class Singleton and (All,Sb)-Independence are equivalent
(this follows from Proposition A.1). Then, we recall the results by Yao and (independently) by
Goldreich et al. [Yao86, GMW87] which present protocols that securely implement any function.
In particular, these protocols securely implement fSB. By observing that such protocols work for
any fixed input, we then have

Corollary 5.5 [Yao86, GMW87] Under the assumption that enhanced trapdoor permutations ex-
ist (cf. [Gol01, Sec. C.1]), there exists a protocol that achieves Sb-independence for any input
distribution.

5.4 Relations between Distributions

We introduce some notation first. Let Singleton be the class of all singleton input distribution
ensembles. That is, for each string α ∈ {0, 1}n, the distribution Dα = {D(k)

α }k∈N is in Singleton if
for every k, D(k)

α assigns probability one to the string α. Let Uniform be the class whose only element
is the uniform distribution ensemble, and let All be the class of all input distribution ensembles over
n-bit strings. For notational convenience, in the rest of the paper, we denote by D(N) the class of
distributions associated to definition N, that is, D(CR) def= ΦC,n, D(G) def= ΦL,n, and D(Sb) def= All.
The following claim shows that the input distributions under which G, CR, and Sb are achievable are
strictly contained in the same order. All classes also contain the class of all singleton distributions
and the class of the uniform distribution. The proofs are easy and therefore omitted.

Claim 5.6 Singleton,Uniform ⊂
6= D(G) ⊂

6= D(CR) ⊂
6= D(Sb).
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6 Implications and Separations

In this section, we compare the definitions of independence of [CR87, Gen00] with the simulation-
based definition. We say a distribution is trivial for notion N if every protocol achieves N-
independence under that input distribution. Also, a class is trivial for notion N if every protocol
achieves N-Independence under all distributions in the class. Our first implication shows that any
protocol that achieves Sb-Independence must achieve CR-Independence for all achievable distribu-
tions.

Lemma 6.1 For every protocol Π, if Π achieves (D(CR),Sb)-Independence then Π also achieves
(D(CR), CR)-Independence.

Proof of Lemma 6.1: Assume parallel broadcast protocol Π is not CR-independent for some input
distribution D ∈ D(CR). Then, there exists an adversary A, honest party P`, and a polynomial-
time predicate R such that the quantity defined in Definition 4.3 is not negligible under input
distribution D. We show how to transform A, R and D, into an adversary A′, and an algorithm T
such that Π is not (D(CR),Sb)-independent. Details follow.

First, since Π is not CR-independent under input distribution D ∈ D(CR), there must exist an
adversary A (corrupting players in B ⊂ [n]), an honest party Pi, and a polynomial-time computable
predicate R such that there exists constant c > 0 and infinitely many values of k for which (w.l.o.g.)

Pr
[
W` = 1 ∧ R(W{`})

]
− Pr [W` = 1 ] · Pr

[
R(W{`})

]
≥ k−c (7)

Now, let adversary A′ be identical to A. We build distinguisher T from predicate R as follows:

Distinguisher T (1k, z,x, τ) : From transcript τ extract unique W

Output 1 if
(
W` = 1 and R(W{`}) = 1

)
and 0 otherwise.

Algorithm T is polynomial-time since R is so. It remains to prove that T successfully distinguishes
ensembles XExecΠ

A′ and XExec
Ideal(fSB)
S (as defined in equations (1) and (2)) when the input

distribution is D.
Let S be an ideal process adversary (simulator). We denote by S(xB; z) the |B|-dimensional

vector given by simulator S to function fSB (in the ideal world) as the input corresponding to
corrupted parties. String z is the auxiliary input of S. Let Pr1 [E ] be the probability of event E

under the case x R← D(k) and W ← AnnouncedΠ
A(x), and Pr0 [E ] be the probability of event E

under the choice x R← D(k) and W← xB t S(xB). Then,4

p1
def= Pr

[
x R← D(k) : T (1k, z,x,ExecΠ

A′(k, z,x)) = 1
]

= Pr1
[
W` = 1 ∧ R(W{`}) = 1

]
p0

def= Pr
[
x R← D(k) : T (1k, z,x,Exec

Ideal(fSB)
S (k, z,x)) = 1

]
= Pr0

[
x` = 1 ∧ R(xB\{`} t S(xB; z)) = 1

]
At this point, we use that D is computationally independent. Let X def= D{`} t D`. By a hy-
brid argument, we assume X ∈ Φn. Then, there exists a negligible function ε(k) such that

4In the rest of the proofs in this paper, for simplicity, we assume that W` = x` with probability one for all
uncorrupted P`. The cases when the equality holds with overwhelming probability are analogous, although slightly
more involved.
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|Pr
[
F (D(k)) = 1

]
− Pr

[
F (X (k)) = 1

]
| < ε(k) for any probabilistic polynomial-time distinguisher

F , in particular F (Z) def= (Z` = 1 ∧ R(ZB\{`} t S(ZB; z)) = 1). Therefore,

p0 < Pr
[
u R← X (k) : u` = 1 ∧ R(uB\{`} t S(uB; z)) = 1

]
+ ε(k)

= Pr
[
u{`}

R← D(k)
B : R(uB\{`} t S(uB; z)) = 1 | u` = 1

]
· Pr

[
u`

R← D(k)
` : u` = 1

]
+ ε(k)

= Pr0
[
R(xB\{`} t S(xB; z)) = 1

]
· Pr0 [W` = 1 ] + ε(k)

< Pr1
[
R(W{`})

]
· Pr0 [W` = 1 ] + ε(k)

We justify last inequality as follows: (a) if Pr1
[
R(W{`})

]
< Pr0

[
R(W{`})

]
then it suffices to

consider the negated predicate R instead of R, and (b) any adversary A cannot use the simulator
S’s strategy otherwise A would contradict Equation (7) since D ∈ D(CR). Also, by the correctness
of Π, Wi = xi for all honest i ∈ B. Combining the above equations with Equation (7), we obtain

p1 − p0 > Pr1
[
W` = 1 ∧ R(W{`}) = 1

]
− Pr1

[
R(W{`})

]
· Pr1 [W` = 1 ]− ε(k) > k−c′

for some constant c′ > 0 and infinitely many values of k.

Similarly, all protocols that achieve CR-Independence under all distributions for which G-Indepen-
dence is achievable must indeed achieve G-Independence under the same class.

Lemma 6.2 For every protocol Π, if Π achieves (D(G),CR)-Independence then Π also achieves
(D(G),G)-Independence.

Proof of Lemma 6.2: Let Π be a parallel broadcast protocol. Assume Π is not G-Independent
under some distribution D. We want to prove that there exist a distribution D′ under which Π is not
CR-Independent. By Proposition A.7, if Π does not achieve G-Independence under distribution D,
then Π is not G∗∗-Independent. Therefore, there exists an polynomial-time adversary A corrupting
set B ⊂ [n], a string z ∈ {0, 1}∗, i ∈ B, and vectors w ∈ {0, 1}B, r, s ∈ {0, 1}B such that the
quantity∣∣∣Pr

[
W←AnnouncedΠ

A(k,z)(w t r) : Wi = 1
]
− Pr

[
W←AnnouncedΠ

A(k,z)(w t s) : Wi = 1
]∣∣∣

is not negligible. By a hybrid argument, we can assume r and s differ on a single bit, the `-th one,
so rB\{`} = sB\{`}. W.l.o.g. r` = 0 and s` = 1.

We build a new adversary A′ identical to A and fix the honest player P`. We also define
the predicate R(Z`)

def= (Zi
?= 1). Now, consider the distribution D′ that assigns some non-

negligible probability p` to the event D′(k)
` = 1, and probability one to D′(k)

{`}
= (w t rB\{`}).

Notice that D′(k) is in D(G) but it is not trivial. Let PrD′ [E ] the probability of event E when
W← AnnouncedΠ

A(k,z)(D′(k)). Since P` is honest PrD′ [W` = 1 ] = Pr
[
D′(k)

` = 1
]

= p`. Then,

PrD′

[
R(W{`}) = 1

]
= (1− p`) · Pr

[
W← AnnouncedΠ

A(k,z)(w t r) : Wi = 1
]

+ p` · Pr
[
W← AnnouncedΠ

A(k,z)(w t s) : Wi = 1
]
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and

PrD′

[
W` = 1 ∧ R(W{`}) = 1

]
= PrD′ [W` = 1 ∧ Wi = 1 ]

= p` · Pr
[
W← AnnouncedΠ

A(k,z)(w t s) : Wi = 1
]

Putting it all together,∣∣∣PrD′ [W` = 1 ] · PrD′

[
R(W{`}) = 1

]
− PrD′

[
W` = 1 ∧ R(W{`}) = 1

]∣∣∣
= p` · (1− p`) ·

∣∣∣Pr
[
W← AnnouncedΠ

A(k,z)(w t r) : Wi = 1
]

− Pr
[
W← AnnouncedΠ

A(k,z)(w t s) : Wi = 1
]∣∣∣

which is not negligible.

6.1 Separations

At this point, we look into whether the definitions are equivalent when restricted to achievable input
distributions. Proposition 6.3 shows this is not the case. We prove that there are distributions for
which the definition of [CR87] always holds no matter the protocol, but that this cannot happen
with Sb-Independence.

Proposition 6.3 The class Singleton is trivial for CR independence but not trivial for Sb indepen-
dence.

Proof of Proposition 6.3: The proof follows easily from the definition of CR independence –
under a fixed input all probabilities collapse to either 0 or 1 with overwhelming probability, for any
protocol. Then, consider a protocol that does not achieve Sb-Independence (we know such protocol
exist). Since (Singleton,Sb)-Independence is equivalent to Sb-Independence, it follows that such
protocol cannot achieve Sb-Independence under class Singleton.

It is also possible to show that the definitions of [CR87] and [Gen00] are not equivalent, but instead
that G-independence is strictly weaker than CR-independence.

Lemma 6.4 There exists a protocol ΠG which achieves (D(G),G)-independence but does not
achieve CR-independence for any input distribution in D(G). In particular, ΠG is G-Independent
for the uniform distribution, but not CR-Independent for the uniform distribution.

Proof: We show a protocol implementing parallel broadcast that, even though it satisfies Defi-
nition 4.4 (i.e., the notion of simultaneous broadcast of [Gen00]), it violates Definition 4.3 (i.e.,
the definition of independence of [CR87]). The “flawed” protocol ΠG uses a subprotocol Θ which
essentially performs a simultaneous broadcast unless two corrupted parties misbehave in a very
controlled manner – by setting some auxiliary input bit to 1. In such case, protocol Θ reveals some
information about the honest parties’ inputs to two corrupted parties. The leakage of information
is done in such a way that the output of each single corrupted party is not correlated to the outputs
of honest parties, but the combined outputs are.
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We describe protocol Θ first. Protocol Θ is a n-party protocol that securely implements function
g(v) on input v = (v1, . . . , vn) defined as

g(v) def=



First, parse each vi as (xi, bi)
Pick r

R← {0, 1} and set L ← { i : bi = 1 }
If |L| = 2 then set `1, `2 ∈ L, `1 < `2, otherwise set `1, `2 ← 0
Compute y

R←
⊕

i6∈{`1,`2} xi

Set wi ←


r if |L| = 2 and i = `1

r ⊕ y if |L| = 2 and i = `2

xi if i 6= `1, `2

Set w← (w1, . . . , wn) and output the n-dimensional vector (w,w, . . . ,w)

For simplicity, we write the input vector v as v = (x,b), where x,b ∈ {0, 1}n. We first notice that
a protocol that securely implements function g can be built using known techniques (cf. [BGW88,
GMW87, CCD88]) as long as t < dn/2e.

Claim 6.5 There exist a protocol Θ that securely implements g (in the sense of [Can00]).

We now describe protocol ΠG. On private input xi ∈ {0, 1}, each party Pi sets up an auxiliary bit
bi ← 0. Then, all parties call subprotocol Θ on input ((x1, b1), (x2, b2), . . . , (xn, bn)). Let Wi be
the vector obtained as the output of protocol Θ by party Pi. Each party Pi outputs Wi as the final
protocol result.

We show that protocol ΠG is not CR-Independent under any non-trivial input distribution.
Indeed, there exists an adversary A∗ such that, when protocol ΠG is executed on any input x under
adversary A∗, the sum (mod 2) of the announced bits is always zero. Adversary A∗ corrupts only
two parties and instructs them to set their auxiliary bits to 1. The next claim follows directly from
the definition of g.

Claim 6.6 Assume parties have inputs chosen according to some arbitrary distribution D ∈ D(G).
There exists an adversary A∗ such that the execution of protocol ΠG on input x ∈ D under adversary
A∗ defines a vector of announced bits W satisfying

⊕
i Wi = 0.

The attack works for any non-trivial distribution, i.e., any distribution that is not statistically
close to a singleton. For any such distribution, there must exists and index i such that 1/poly <
Pr [Wi = 0 ] < 1 − 1/poly. The above claim gives an adversary and a polynomial-time predicate
we can use to correlate the output of the corrupted parties with the output of an honest party Pi,
namely R(Z{i})

def= (⊕j 6=iZj = 0). Notice that the predicate holds if and only if Pi announces 0.
We now show that protocol ΠG achieves G-Independence for any non-trivial, locally independent

input distribution D. Indeed, for any adversary A that succeeds on attacking the G-Independence of
ΠG underD, we exhibit a distinguisher Q that contradicts the security of Θ (Claim 6.5). We proceed
as follows. Assume ΠG is not G-Independent. By Proposition A.7, ΠG is not G∗∗-Independent.
Then there is an adversary A which corrupts parties in B, an auxiliary input τ , and a corrupted
party Pi, for which there are vectors w ∈ {0, 1}B, r, s ∈ {0, 1}B, such that∣∣∣Pr

[
W← AnnouncedΠG

A(k,τ)(w t r) : Wi = 1
]

−Pr
[
W← AnnouncedΠG

A(k,τ)(w t s) : Wi = 1
]∣∣∣

is not negligible. By a hybrid argument, we can assume r and s differ in a single bit, the `-bit, so
r` 6= s`, and w.l.o.g, r` = 0 and s` = 1.
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The above adversary gives us a procedure to guess the input bit used by honest party P` in
protocol Θ as long as the inputs vector for the remaining parties is equal to w t rB\{`}. Indeed,
starting from A we show how to build an adversary A′ for Θ, such that for any ideal-process
adversary S for Ideal(g), there exist a distinguisher Q, an auxiliary input z′, an input vector
v′ = (x′,b′), such that the quantity∣∣∣Pr

[
Q(1k, z′,v′,ExecΘ

A′(k, z′,v′)) = 1
]
− Pr

[
Q(1k, z′,v′,Exec

Ideal(g)
S (k, z′,v′)) = 1

]∣∣∣
is not negligible. Adversary A′ is simple. It corrupts the same parties as B, and works as follows.
On input (xB,bB), A′ simply discards bB and then simulates A. We now set b′ = 0 and z′ = τ .
For simplicity, for any vector x ∈ {0, 1}n, denote

qreal,x
def= Pr

[
Q(1k, z′, (x,b′),ExecΘ

A′(k, z′, (x,b′))) = 1
]

,

qideal,x
def= Pr

[
Q(1k, z′, (x,b′),Exec

Ideal(g)
S (k, z′, (x,b′))) = 1

]
It remains to show a distinguisher algorithm Q that works with good probability. Our algorithm

Q takes as input a security parameter k ∈ N, an auxiliary string z ∈ {0, 1}∗, a vector v = (x,b) ∈
{0, 1}n × {0, 1}n, and a string Z drawn either from distribution ExecΘ

A′(k, z,v) or distribution
Exec

Ideal(g)
S (k, z,v). Thus, on input (1k, z, (x,b), Z), algorithm Q first extract the corrupted set

B and the unique vector W = (W1, . . . ,Wn) of announced values from transcript Z. Then, it
simply outputs 1 if (Wi = W`), and 0 otherwise. Let xr = w t r and xs = w t s. By definition of
distinguisher Q and adversary A′, in the real model we have that

qreal,xs = Pr
[
W← AnnouncedΠG

A(k,τ)(x
s) : Wi = 1

]
qreal,xr = Pr

[
W← AnnouncedΠG

A(k,τ)(x
r) : Wi = 0

]
In the ideal model, on the other hand, the adversary S has access only to xB = w, and therefore

qideal,xr = 1− Pr [S(w; τ)i = 1 ] and qideal,xs = Pr [S(w; τ)i = 1 ]

Combining the above equations, we obtain

|qreal,xs − qideal,xs |+ |qreal,xr − qideal,xr | ≥ |qreal,xs − qreal,xr − (qideal,xr + qideal,xs)|

=
∣∣∣Pr

[
W←AnnouncedΠG

A(k,τ)(x
s) : Wi = 1

]
− Pr

[
W←AnnouncedΠG

A(k,τ)(x
r) : Wi = 1

]∣∣∣
which is not negligible by the G∗∗-Independence. Therefore, for either input x′ = xs or input

x′ = xr, the quantity |qreal,x′ − qideal,x′ | is not negligible. This concludes the proof of the lemma.

We remark that the previous lemma indicates that G-Independence is not only weaker than the
other definitions, but also rather unsatisfactory. Indeed, by following G-Independence, we may
deem protocols like ΠG “secure”, when in reality they fail to provide even a very intuitive notion of
independence – namely the one that requires the announced bits do not always sum 0. We stress
the above result holds even for the uniform distribution.

6.2 Feasibility of CR and G independence

At this point, we have all the tools needed to prove the feasibility results for CR and G-Independence,
namely that there exist protocols that achieve (D(CR),CR)-Independence as well as (D(G),G)-
Independence. Indeed, Corollary 5.5 together with Claim 5.6 and the results of this section provide
concise proofs for Claim 5.1 and Claim 5.3. Claim 5.1 follows from the existence of a protocol
achieving (D(Sb),Sb)-Independence (by Corollary 5.5), and that (D(CR),Sb)-Independence implies
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(D(CR),CR)-Independence. Claim 5.3 is proved analogously.

7 Other Issues and Open Problems

Number of Parties polynomially related to security parameter: Our results have been
presented in the setting where there is constant number of parties n. Extensions of these results to
the case n polynomially related to the security parameter are possible, but they require substantial
changes to the definitions of [CR87, Gen00] (which assume the number of parties is fixed) and
therefore, were out of the scope of this work.
Efficient Sb-Independent protocols: An interesting open problem is to find a constant round
protocol (i.e., as efficient as the one of [Gen00]) for simultaneous broadcast that achieves the stronger
notion of CR-Independence [CR87] or even (and preferably) Sb-Independence [CGMA85].
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A Alternative Characterization of Notions

A.1 Sb-Independence

We prove here that Sb-Independence is equivalent to (All,Sb)-Independence.

Proposition A.1 A protocol Π achieves Sb-Independence if and only if Π achieves (All,Sb)-
Independence.

Proof: One direction is trivial since Singleton ⊂ All. We prove the other direction, namely that
(Singleton,Sb)-Independence implies (All,Sb)-Independence. Assume Π is Sb-Independent. Then,
for every polynomial-time adversary A attacking Π there exists a simulator S for Ideal(fSB). Then,
by conditioning on the success probability of the distinguisher T on each particular value of the
input distribution we get∣∣∣Pr

[
x R← D(k) : T (1k, z,x,ExecΠ

A(k, z,x)) = 1
]

− Pr
[
x R← D(k) : T (1k, z,x,Exec

Ideal(fSB)
S (k, z,x)) = 1

]∣∣∣
=

∑
y∈{0,1}n

(
Pr

[
T (1k, z,x,ExecΠ

A(k, z,y)) = 1
]
− Pr

[
T (1k, z,x,Exec

Ideal(fSB)
S (k, z,y)) = 1

])
· Pr

[
D(k) = y

]
≤

∑
y∈{0,1}n

(
k−c

)
· Pr

[
D(k) = y

]
= k−c .

for some constant c > 0 and infinitely many values of k. Notice that the last inequality follows
from the Sb-Independence of Π. This proves the result.
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A.2 CR-Independence

In this section, we present the definition of independence of [CR87], slightly generalized for arbitrary
input distributions.

Definition A.2 [CR87] Let D be an input distribution over {0, 1}n. A protocol Π achieves in-
dependence under input distribution D if, for all adversary A, all honest party Pi, all “good”
polynomial-time predicate R, all constant c > 0, and all sufficiently large k,∣∣∣Pr [Wi = 0 ]− Pr

[
Wi = 0 | R(W{i}) = 1

]∣∣∣ < k−c (8)

where W ← AnnouncedΠ
A(D). Predicate R is “good” if it occurs with non-negligible probability

under adversary A and distribution D. Formally, for i ∈ [n] the polynomial-time computable
predicate R(W1, . . . , Wi−1,Wi+1, . . . ,Wn) is said to be good with respect to adversary A and
distribution D if whenever party Pi is honest the event R(W{i}) = 1 happens with non-negligible
probability. That is,

Pr
[
W← AnnouncedΠ

A(D(k)) : R(W{i}) = 1
]

is non-negligible in the security parameter k.

We now show that Definition 4.3 and Definition A.2. are in fact equivalent.

Proposition A.3 A protocol Π achieves CR-Independence if and only if Π achieves independence
under Definition A.2.

Proof: We first prove that Definition 4.3 implies Definition A.2. Let Π be a parallel broadcast
that achieves CR-Independence. It follows that, in particular, for all “good” predicates R∣∣∣Pr [Wi = 0 ] · Pr

[
R(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣
is negligible. Using this and that R is good, we get that the quantity∣∣∣Pr [Wi = 0 ]− Pr

[
Wi = 0 | R(W{i}) = 1

]∣∣∣
= Pr

[
R(W{i}) = 1

]−1
·
∣∣∣Pr [Wi = 0 ] · Pr

[
R(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣
is negligible too.

We now prove that Definition A.2 implies Definition 4.3. Indeed, assume Π be a parallel broad-
cast that achieves independence according to Definition A.2. We analyze four cases depending on
the probability p that the event R(W{i}) = 1 (when W← AnnouncedΠ

A(D(k))) occurs.
Case (a): p is negligible but non-zero, Then,∣∣∣Pr [Wi = 0 ] · Pr

[
R(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣
= Pr

[
R(W{i}) = 1

]
·
∣∣∣Pr [Wi = 0 ]− Pr

[
Wi = 0 | R(W{i}) = 1

]∣∣∣ (9)

is negligible, since p = Pr
[
R(W{i}) = 1

]
is so.
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Case (b): p is non-negligible. Since Π satisfies Definition A.2, the rightmost factor of Equation
9 is negligible too.

Case (c): p = 0, that is, R does never happen. Then, Pr
[
Wi = 0 ∧ R(W{i}) = 1

]
= 0 , and∣∣∣Pr [Wi = 0 ] · Pr

[
R(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣ = 0 .

Case (d): p is neither negligible nor non-negligible. We prove the contrapositive. If Definition
4.3 does not hold for such R, there exist a constant c > 0 such that for infinitely many values of k∣∣∣Pr [Wi = 0 ] · Pr

[
R(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣ ≥ k−c (10)

Let S be the set of all values of k for which Equation (10) holds. Now, consider the following
relation R′ which equals R when k ∈ S and equals one (ie. it is true) otherwise. Then, clearly R′

is non-negligible and∣∣∣Pr [Wi = 0 ]− Pr
[
Wi = 0 | R′(W{i}) = 1

]∣∣∣
= Pr

[
R′(W{i}) = 1

]−1
·
∣∣∣Pr [Wi = 0 ] · Pr

[
R′(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣
≥

∣∣∣Pr [Wi = 0 ] · Pr
[
R(W{i}) = 1

]
− Pr

[
Wi = 0 ∧ R(W{i}) = 1

]∣∣∣
≥ k−c

for all (infinitely many) k ∈ S. The result then holds.

A.3 G-Independence

In this section, we present two equivalent notions of independence, and then show they imply
G-Independence. Our first definition is expressed in terms of distributions ensembles.

Definition A.4 (G∗-Independence) Protocol Π achieves G∗-independence if for all adversaries A
corrupting parties in B ⊂ [n] (where |B| = t < n), for each corrupted party Pi, the ensembles
(indexed by k ∈ N, x ∈ {0, 1}n, and z ∈ {0, 1}∗)

E
def=

{
W← AnnouncedΠ

A(k,z)(x) : Wi

}
E0

def=
{
W← AnnouncedΠ

A(k,z)(xB t 〈0〉B) : Wi

}
are statistically close (in the security parameter k).

Our second definition, although more technical, is useful when proving implications or separations
between G and other notions.

Definition A.5 (G∗∗-Independence) Protocol Π achieves G∗∗-independence if for all adversaries A
corrupting parties in B ⊂ [n] (where |B| = t < n), for each corrupted party Pi, for all vectors
r, s ∈ {0, 1}B, all vectors w ∈ {0, 1}B, and all auxiliary input z ∈ {0, 1}∗, the quantity∣∣∣Pr

[
W←AnnouncedΠ

A(k,z)(w t s) : Wi = 1
]
− Pr

[
W←AnnouncedΠ

A(k,z)(w t r) : Wi = 1
]∣∣∣

is negligible in the security parameter k.
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The two definitions are equivalent.

Proposition A.6 Let Π be a correct parallel broadcast. Then, Π achieves G∗∗-Independence if
and only if Π achieves G∗-Independence.

Proof:
G∗∗ ⇒ G∗: Assume Π is not G∗-Independent. We want to prove Π is not G∗∗-Independent.

Indeed, if Π is not G∗-Independent then ensembles E and E0 must not be statistically close, and
there exists x ∈ {0, 1}n, k ∈ N, and z ∈ {0, 1}∗, for which there exists a constant c > 0 and
infinitely many k such that (w.l.o.g.)

Pr
[
W← AnnouncedΠ

A(k,z)(xB t xB) : Wi = 1
]

− Pr
[
W← AnnouncedΠ

A(k,z)(xB t 0B) : Wi = 1
]

> k−c

The result follows immediately from taking w = xB, r = xB and s = 0B.
G∗ ⇒ G∗∗: Assume Π is not G∗∗ independent. We want to prove Π is not G∗-Independent.

Indeed, if Π is not G∗∗-Independent then there exists a vector w ∈ {0, 1}B, distinct vectors r, s ∈
{0, 1}B, an integer k ∈ N, and a string z ∈ {0, 1}∗, for which there exists a constant c > 0 and
infinitely many k such that (w.l.o.g.)∣∣∣Pr

[
W← AnnouncedΠ

A(k,z)(w t s) : Wi = 1
]

− Pr
[
W← AnnouncedΠ

A(k,z)(w t r) : Wi = 1
]∣∣∣ > k−c (11)

For simplicity, we define D(a) def= Pr
[
W← AnnouncedΠ

A(k,z)(a) : Wi = 1
]
, for any vector a ∈

{0, 1}n. Let x def= wt r and x′ def= wt s. Then, Equation (11) can be rewritten as |D(x)−D(x′)| >
k−c. In consequence, using that xB = x′

B = w we have∣∣D(x)−D(xB t 0B)
∣∣ +

∣∣D(x′)−D(x′
B t 0B)

∣∣ ≥ ∣∣D(x)−D(x′)
∣∣ > k−c

which implies that either |D(x)−D(xB t 0B)| > k−c/2 or |D(x′)−D(x′
B t 0B)| > k−c/2, and the

result follows.

The following result shows that both G∗ and G∗∗-Independence imply G-Independence for any
distribution for which G can be achieved.

Proposition A.7 , If a protocol Π achieves G∗∗-Independence then Π achieves G-Independence
for any distribution D ∈ ΨL,n.

Proof: Let D be an arbitrary distribution in ΨC,n and r, s ∈ {0, 1}n−t two strings such that the
probability DB equals r or s is not null. Also, let A be an arbitrary polynomial-time adversary that
corrupt players in B (t = |B|) and let i ∈ B. For fixed values of k ∈ N and z ∈ {0, 1}∗, we denote by
PrD,A [E ] the probability of event E under the choice x R← D(k) and W ← AnnouncedΠ

A(k,z)(x).
Now, for simplicity, we define the quantities

P (a,b) def= PrD,A

[
Wi = 1 | xB = a ∧ xB = b

]
Q(a,b) def= Pr

[
x R← D(k) : xB = w | xB = b

]
.
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First, notice that WB = xB, since all uncorrupted parties always output their inputs. Then

PrD,A

[
Wi = 1 | WB = r

]
− PrD,A

[
Wi = 1 | WB = s

]
=

∑
w∈{0,1}t

(P (w, r) ·Q(w, r)− P (w, s) ·Q(w, s)) (12)

By G∗∗-Independence, for all w′ ∈ {0, 1}t, all r′, s′ ∈ {0, 1}n−t, |P (w′, r′)− P (w′, s′)| < ε(k) where
ε(k) is some negligible function in k. Let P (w, t∗) def= maxt∗{P (w, t)}. Then, by definition it
follows that P (w, r) ≤ P (w∗, t) and, by G∗∗-Independence, that P (w, s) < P (w, t∗)+ ε(k). Then,
plugging these in Equation (12) we have∑
w∈{0,1}t

(P (w, r) ·Q(w, r)− P (w, s) ·Q(w, s)) ≤
∑

w∈{0,1}t

(P (w, t∗) · (Q(w, r)−Q(w, r))) + ε(k) (13)

Now, define R(w, r, s) def= Q(w, r)−Q(w, s). We claim that |R(w, r, s)| is negligible in k. Indeed,
since D ∈ ΨL,n,

|R(w, r, s)| = |Q(w, r)−Q(w, s)| =
∣∣∣Q(w, r)− Pr

[
D(k)

B = w
]

+ Pr
[
D(k)

B = w
]
−Q(w, s)

∣∣∣
≤

∣∣∣Pr
[
x R← D(k) : xB = w | xB = r

]
− Pr

[
D(k)

B = w
]∣∣∣

+
∣∣∣Pr

[
x R← D(k) : xB = w | xB = r

]
− Pr

[
D(k)

B = w
]∣∣∣

< 2 · ε′(k) (14)

for some negligible function ε′(k). Combining Equations (12), (13) and (14) we obtain∣∣Pr
[
Wi = 1 | WB = r

]
− Pr

[
Wi = 1 | WB = s

]∣∣ < 2 · ε′(k) + ε(k) .

This proves the result.

B Secure Function Evaluation

We briefly recall the definition of secure function evaluation from [Can00]. Let n ∈ N be a fixed
parameter. Assume Π is an n-party protocol, x = (x1, . . . , xn) is a vector of inputs for the parties,
and f : ({0, 1}∗)n → ({0, 1}∗)n be a function that map n strings into n strings. Intuitively, the goal
of protocol Π is to compute function f on the inputs held by the parties, in such a way that each
party receives some output as specified by f . In order to define the security of a protocol computing
f , the simulation paradigm is used and two processes or “worlds” are considered: an ideal process
and a real process.
In the ideal process, there is a trusted third party connected to each party by a point-to-point
channel. The trusted party may compute f on the inputs provided by the parties and returns the
output to the parties as specified by f . In this world, the protocol Ideal(f) that computes f on the
parties’ input vector x is very simple: all parties privately submit their inputs to the trusted party,
which computes (y1, . . . , yn) = f(x) and returns each output yi to party Pi. Adversaries in the
ideal process cannot corrupt the trusted party but can corrupt an arbitrary subset B of the parties
before the protocol starts. Upon corruption, party Pj gives her input xj to the adversary and
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all her outgoing messages and output is controlled by the adversary. The communication channel
between each honest party and the trusted third party cannot be eavesdropped by the adversary.
This process models the ideal case in which an adversary cannot disrupt the computation other
than replacing the inputs and outputs of corrupted parties, nor obtain more information from the
inputs and outputs of the honest parties other than what can be inferred from the output of the
corrupt parties.
In the real process there is no trusted third party and parties are connected by pairwise point-
to-point channels. Adversaries in the real process can also corrupt an arbitrary set B of parties;
corruption occurs as in the ideal process. Parties execute protocol Π in this world.
For any security parameter k ∈ N, any input x = (x1, . . . , xn) ∈ ({0, 1}∗)n for the parties, and any
real-process adversary A with auxiliary input z ∈ {0, 1}∗, we let ExecΠ

A(k,x) denote the (n + 1)-
vector whose elements are the output of each party and the adversary after executing protocol Π
under adversary A. That is,

ExecΠ
A(k, z,x) def=

(
OutputΠ

A(k, z),OutputΠ
P1

(k, x1), . . . ,OutputΠ
Pn

(k, xn)
)

.

where OutputΣ
C(k, x) denotes the local output of entity C (either a party or adversary) after

executing protocol Σ on input the security parameter k and value x. Similarly, for the ideal
process, given any ideal-process adversary S the execution of Ideal(f) under adversary S is defined
as

Exec
Ideal(f)
S (k, z,x) def=

(
Output

Ideal(f)
S (k, z),Output

Ideal(f)
P1

(k, x1), . . . ,Output
Ideal(f)
Pn

(k, xn)
)

.

Both quantities define ensembles in the straightforward way,

ExecΠ
A

def=
{
ExecΠ

A(k, z,x)
}

k∈N,z∈{0,1}∗,x∈({0,1}∗)n

Exec
Ideal(f)
S

def=
{
Exec

Ideal(f)
S (k, z,x)

}
k∈N,z∈{0,1}∗,x∈({0,1}∗)n

A protocol Π securely implements function f if for any real-process PPT adversary A there exists an
ideal-process PPT adversary S such that ExecΠ

A is computationally close to Exec
Ideal(f)
S , denoted

ExecΠ
A

c
≈ Exec

Ideal(f)
S

Spelled out, protocol Π securely implements function f if for any real-process PPT adversary A
there exists an ideal-process PPT S such that for all PPT distinguishers D, for all constant c > 0
and for all sufficiently large k, all z ∈ {0, 1}∗ and x ∈ ({0, 1}∗)n,∣∣∣Pr

[
D(1k, z,x,ExecΠ

A(k, z,x)) = 1
]
− Pr

[
D(1k, z,x,Exec

Ideal(f)
S (k, z,x)) = 1

]∣∣∣ < k−c

C Some useful relations

Let X = (X1, . . . , Xn) an arbitrary random variable that takes values in {0, 1}n. For any set
G ⊂ {1, . . . , n}, any i 6∈ G, any bit b, and any string u ∈ {0, 1}n−t such that Pr [XG = u ] > 0, let pb,i

and qb,iu denote the values pb,i
def= Pr [Xi = b ] and qb,i(u) def= Pr [Xi = b | XG = u ]. Furthermore,

let ε(k) be a negligible function, that is, ε(k) < k−c for all constant c > 0 and sufficiently large k.

Proposition C.1 Assume, |pb,i−qb,i(u)| < ε(k) for all u ∈ {0, 1}n−t. Then |qb,i(r)−qb,i(s)| < 2·ε(k)
for all r, s ∈ {0, 1}n−t.
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Proof: There are four cases, depending on whether pb,i is larger or smaller than qb,i(r) and qb,i(s).
Assume pb,i < qb,i(r) and pb,i < qb,i(s). Then, qb,i(r)− pb,i < ε(k) and qb,i(s)− pb,i > 0. Subtracting
and taking absolute value we get |qb,i(r)−qb,i(s)| < ε(k) and the result holds. The case pb,i > qb,i(r)
and pb,i > qb,i(s) is analogous.

Now, assume qb,i(r) > pb,i but pb,i > qb,i(s). Then, qb,i(r)− pb,i < ε(k) and pb,i − qb,i(s) < ε(k).
Subtracting and taking absolute value we get the result. The case pb,i > qb,i(r) and pb,i < qb,i(s) is
analogous.
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