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Abstract

Essentially all known one-time signature schemes can haritded as special instances of a general
scheme suggested by Bleichenbacher and Maurer based qhsgrone-way functions”. Bleichen-
bacher and Maurer thoroughly analyze graph based sigisdtora a combinatorial point of view, study-
ing the graphs that result in the most efficient schemes (w@ipect to various efficiency measures, but
focusing mostly on key generation time). However, they dbgive a proof of security of their generic
construction, and they leave open the problem of determinmder what assumption security can be
formally proved. In this paper we analyze graph based sigaatfrom a security point of view and give
sufficient conditions that allow to prove the security of fignature scheme in the standard complexity
model (no random oracles). The techniques used to proveetheit/ of graph based one-time signa-
tures are then applied to the construction of a new classgebadic signature schemes, i.e., schemes
where signatures can be combined with a restricted set chtipes.
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1 Introduction

One-time signatures [Lam79] are digital signature schewiesre the signer is restricted to sign a sin-
gle document. They are interesting cryptographic priragibecause they allow to solve many important
cryptographic problems, and at the same time offer suhategfficiency advantages over regular digi-
tal signature schemes (cf. [RSA78, Sch90, GMR88, BM92peemlly with respect to signing, verifica-
tion and key generation time. Applications of one time sigres include the design of regular signa-
ture schemes [Mer87, Mer90, BM92, DN94], on-line/off-lisignatures [EGM96], digital signatures with
forward security properties [BM99, AR00, MMMO2], efficiehtoadcast authentication protocols [Per01]
[Roh99], network routing protocols [HPT97], and more. Thstfone-time signature scheme was proposed
by Lamport [Lam79] and (in an interactive setting) by Ralltap78]. The idea of the basic scheme of Lam-
port is very simple: given a one-way functighone selects two random stringg, x; (which constitute the
secret key), and publishe¥z), f(z1). Then, a single bit message= {0, 1} can be signed by revealing
xp. Verification is performed in the obvious way. Notice how #igning process is almost instantaneous,
while verification only involves a single application of aesway function. Key generation is almost as
efficient, requiring only two applications of the one-wawdétion.

Since Lamport’s original proposal, many extensions andavgments have been suggested [MM82, Mer82,
Mer87, Vau92, BC93, EGM96, BM94, BM96b, BM96a, Per01]. Thgrovements usually involve iterat-
ing the application of the one-way function, or revealingltiple values as part of a signature. All these
schemes (with the exception of Perrig’s) can be describespasial instances of a general scheme sug-
gested by Bleichenbacher and Maurer [BM94, BM96b, BM96akeld on the use of “graphs of one-way
functions”. These are directed acyclic graphs or DAGs (sx¢ section for a formal definition) with values
associated to the vertices computed according to one-waifuns associated to the edges (see Figure 1).
Messages are signed by revealing the values for some of ttieege and signatures verified using the
publicly available one-way functions. As pointed out in [B¥] BM96b, BM96a] DAG-based one-time
signatures schemes generalize and have potential adeardagr schemes simply based on the iterated ap-
plication of the one-way function (which correspond to draponsisting of a collection of disjoint chains).
Unfortunately, one-wayness does not seem a sufficientypgtassumption to guarantee the security of the
graph based one time signature schemes. In fact, [BM94]albekguent papers only study the combinato-
rial properties of the graphs, e.g., trying to maximize tize of the message space that can be signed using
graphs with a predetermined number of vertices. The issaet@imining sufficient security assumptions
on the “one-way function’f, and proving the security of graph based signatures in grelard complexity
model is left open in [BM94, BM96b, BM96a].

OuR CONTRIBUTIONS:. In this paper we analyze the security of graph based siggmin order to put
them on the firm grounds of the standard computational caotitplsecurity model. We show that under
standard assumptions the security of graph based sigeatarebe formally proved. In order to achieve
provable security, we adopt an approach in the definitionraply based signatures that is dual to the one
used in [BM94]. Namely, instead of associating values torthe@es of a graph and functions to the edges,
we propose to associate values to the edges and functiohs tmtles (Figure 2 shows an example). Then,
we prove that if the functions associated to the nodes atgaegollision resistant (or simply universal one-
way) hash functions and one-to-one pseudorandom gergr#ten the resulting one-time digital signature
scheme is provably hard to break. These primitives can bedbaiting from any one-way permutation. The
regularity and one-to-one properties can be relaxed asguthat the hash functions and pseudo-random
generator only satisfy pseudorandomness and collisiagstaes properties.
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Figure 1. DAG where values areFigure 2: DAG where val-

associated to vertices and functionsues are associated to edges
to edges (e.gvo=f1(v1), vs=f2(v2), and functions to vertices (e.g.
v4=f3(v3,v2), v5=f1(v4)). (v2,v5)=f1(v1),04=f2(v3,02)).

An important byproduct of this work is the use of a hybrid argunt in a novel way in our proof. Indeed,
in order to prove the security of the signature scheme, oallyais involves telling two distributions apart.
However, a direct hybrid argument cannot be used becausautmder of hybrid distributions may be
exponential on the security parameter. We show that by éreietting a total order relation on the hybrids,
we can combine them into a small (polynomial) number and toefpgoes through. To the best of our
knowledge this is a novel use of hybrid argument and may bed#pgendent interest.

EXTENSIONS Graph-based one-time signatures can be extended to tiastaa new type of signature
scheme referred aalgebraic signaturesoriginally suggested by Rivest [MR02]. An algebraic sigma
scheme is a signature scheme in which computing signatfirgsseen messages is allowed in a restricted
way. Associated to each algebraic signature scheme therses of functionsD = {fi,..., fi} (where
each functionf; maps messages into messages). The fundamental propelgebfac signature schemes
is that given signaturesig(m,), . . ., sig(m, ) anyone can compute signatug( f;(mi, ..., m,)). Clearly,
algebraic signatures require the definition of a new noticuméorgeability. Namely, an algebraic signature
scheme is secure if no adversary can efficiently computeaiges of messages that cannot be computed
frommy,...,m, by applying the functions Q. (See Section 6 for details). Micali and Rivest [MR02],
and, recently, Bellare and Neven [BNO2], presented cocistns of transitive signaturesvhich allow to
sign edges in an undirected graph in such a way that compsigmatures of the transitive closure of the
signed edges does not require knowledge of the secret keyilaBy, Johnson et al. [JMSWO02] studied
several cases where the signing algorithm is homomaorphit nespect to binary operatiorfs.

Building on graph-based one-time signature schemes weegplecit constructions for algebraic signatures
on sets which support union and subset operations and aiso and super-intersection operatibnsVe
see graph-based algebraic signatures as an area thatedeether research, since it may lead to efficient
and useful constructions.

2 Notation and basic definitions

In this section we review some definitions used throughosifptiper. We start by recalling some standard
definitions about cryptographic primitives and directeds.

1 The super-intersection of setsand B, denoted4 ® B, is the collection of all set§ such thatdN B C S C AU B.



2.1 Cryptographic Primitives

We first recall the standard definition of security of sigmatschemes under chosen-message attacks (cf.
[GMR88]) adapted to the case of one-time sighature scheifiesn, we recall the (also standard) defini-
tions of security of collision-resistant one-way hash tiores (cf. [BR97]) and pseudorandom generators
(cf. [BM84, Yao82)).

ONE-TIME SIGNATURE SCHEME: Formally, a signature scheme consists of three algoritims(KG, Sig,

Vf). Given a security parametére N, the key generation algorithidG (%) outputs a pair of public and
private keys(pk, sk); Sig is the signing algorithm taking as input a ke and a message, and returning

a signatures; Vf is the verification algorithm taking as input a kek, a messagen and a signature,

and returning a boolean decision. The signing algorithm bwyandomized but the verification algorithm
is usually deterministic. It is required that valid signais are always accepted. A one-time signature
scheme is secure against existential forgery in a one-ohmessage attack if no computationally bounded
adversary forger), after obtaining the signature of a single message of hogceh can output a (different)
message and a corresponding valid signature, except wgtlgite probability.

COLLISION-RESISTANT HASH FUNCTIONS. Let H be a family of functions. An individual element in
H is function H: R?> — R, for some fix setR. The family  is said to be collision-resistant if, foif
randomly chosen ift{, any computationally bounded adversargllision-finde) can not find two different
messages: andm’ that map byH to the same value, except with negligible probability. Rartmore, we

sayH is regular if it satisfiesPr | H(X) =y : X & RQ] = Pr [Y —y: Y& R} for ally € R, and
all H € H.

PSEUDORANDOM GENERATORS Let G: R — R? be a deterministic function.G is a pseudorandom
generator if it no computationally bounded adversaligtinguishey can tell apart the output @F(x) on a
random inputz from a truly random value o®? with non-negligible probability. Also, a pseudorandom
generatoi’ is one-to-onef there is no pair of distinct inputs, 2’ € R, that produce the same output @Gn

2.2 Graphs

A directed graphis a pair(V, E') whereV is afinite set overticesandE C V x V' is the set okdges A path
of length¢ > 0 from vy to vy In G is a sequence of verticgs= (v, . .., v¢) such thafv,_1,v;) € E for all
i=1,...,£ If such a path exists, we say thatis apredecessoof v, andv, is asuccessoof vy. The sets
of predecessors and successors afe denotedPr ed(v) andSucc(v), respectively. A set of verticeS is
predecessor closetl Pr ed(v) C S for all v € S. Similarly, S is successor closeifl Succ(v) C S for all
v € S. A cycleis a path(vy, . .., v¢) of length? > 1 such thaw, = v,. A directed acyclic grap{DAG) is
a directed graph with no cycles.

Theindegreeof a vertexv is the number of edge@’,v) € F pointing tov, the outdegreds the number

of edges(v,v’) € E departing fromw, and thetotal degreeis the sum of the indegree and the outdegree.
Vertices with indegre® are calledsourcesand vertices with outdegrdeare calledsinks Vertices that are
neither sources nor sinks are callaternal vertices. For simplicity, in this paper we only considers@A
with a single source | with outdegreel, a single sinkv+ with indegreel, andn > 0 internal nodes with
total degree3. For such graphs, there are only two kind of internal vestiegpansion verticewith indegree

1 and outdegreg, andcompression verticesith indegree2 and outdegreé. So, the sets of vertices of our
graphs can be partitioned &&= Vg U Vg U {v,,vT}, whereVy are the expansion vertices ah@ the



Figure 3: Example of a DAG. Figure 4: Two cutC; C Csin G.

compression vertices. We also fix a total order relatiop, <) that extends the partial order defined over
Ve by the predecessor relation.

An example of DAG is depicted in Figure 3. Vertéxs the source, vertexl the sink,Vy = {1,2,3,4,5}
are compression vertices, abig = {6,7,8,9,10} are expansion vertices.

A cutin a graph(V, E) is a nontrivial partitionC' = (S, S) of the vertices such that is predecessor closed
(or, equivalently,S is successor closed). The set of cuts in a grdght) is denotedCut s(V, E), and it
forms a partial order whergsS, S) C (S’,5) if and only if S C S’ (or, equivalently,S D S’). Notice that
since(S, S) is nontrivial (i.e., bothS and.S are not empty), and, S are predecessor and successor closed,
it is always the case that, ¢ S andvt € S. Therefore, a cut can be implicitly represented by a singte s
of verticesS with the convention that i, € S then(S) represent$S, V' \ S), while if v+ € S then(.S)
representgV \ S, S). For any cut”, the component of' containingv; (resp.v+) is denotedS(C) (resp.
S(0)).

An edgee = (u,v) crossesa cutC = (S, 5) if u € S andv € S. The set of edges crossirgis denoted
Edges(C) = EnN (S x S). We consider graphs where each edge is labeled with an eldroemsome
setR. The labels associated to the edges are not totally indepé&nlbut must satisfy certain constraints.
Let G:R — R? and H: R> — R be two arbitrary functions. (Later on, we will instantiate with a
pseudorandom generator afdwith a collision resistant hash function.) A labeling is atd function A
from E'to R, i.e., afunction\: T' — R whereT C E. The domairll’ of the labeling is denoted ddr). We
say that) is consistent (with respect to functiotsand H) if values are computed according to functions
G andH, i.e.,

e for every expansion vertex with incoming edge € dom(\) and outgoing edges;, e2 € dom(\),
G(A(eo)) = (Aler), Ale2)).

e for every compression vertex with incoming edggse; € dom(\) and outgoing edge; € dom(\),
Ale2) = H(A(eo), Aler))-

We are interested in labeling functions defined over cutdab&led cutis a labeling functiors such that
dom(o) is the set of edges of a cut, i.e., dogm = Edges(C) for someC € Cut s(V, E). If o is a labeling
with domainEdges(C) then we writes: C. Similarly, we denote ago: C'} the set of all labellings with
domainEdges(C). Notice that any functiom: Edges(C) — R is consistent, i.e., the edges of a cut can



be labeled independently. Any labeled eutC' can be uniquely extended to a consistent labeling defined
over all edges ending if(C).

Proposition 2.1 For any directed acyclic graghv, E), cutC € Cut s(V, E) and labelingr: Edges (C) —
R, there exists a unique labeling, denotef] such that

(1) dom([o]) = EN (V x 5(C))
(2) |[o]is consistent, and
() [o](v) =o(v) for all v € Edges(C).

Moreover,[o] can be efficiently computed from. |

Notice that for any two cut§; C Cs, the setEdges(C») is contained i/ x S(Cy). Therefore, given a
labeled cutr;: C; and a cutCy, such thatC; = C5, we can define a labeled cuit: Cs by restricting the
domain offo] to Edges (Cs).

Definition 2.2 For any ordered pair of cuts; C C5, we define a corresponding projection operaﬂft@
(or, simply, I, when(C is clear from the context) that maps any labeled €utC; to a corresponding
labeled cutry: Co obtained by first extending; to [01], and then restricting the domain [of; | to the set
Edges(Cy). 1

Notice that ifC; = (51, 51) andCy = (Sa, Ss), thenos = I, (01) can be computed fromy with at most
|S2 \ S1| applications of function&’ and H.

Example 2.3 Figure 4 depicts two example cui$C;) = {0, 1,2, 3,4} with Edges(C) = {(2,5), (4,7),
(4,6),(3,6),(3,8)}, and S(Cy) = {0,1,2,3,4,5,8} with Edges(C2) = {(8,9),(5,7),(4,7), (4,6),
(3,6)}. As atoy example, consideR = Zio, H(z,y) © o+ y, andG(z) = (x,z). If we choose
{((2,5),3), ((4,7),9), ((4,6),5),((3,6),2),((3,8),8)} as a labeled cut:C; in G, then it is easy to
check that the labeled cut defined 5582(0—) (the consistent extension @f; onto Cy) is {((8,9),1),

((5.7).3). ((4.7),9). ((4.6).5), ((3.6). 2)}. I

3 The GBOTS construction

A graph based one-time signature (GBOTS) scheme is spebyfiadiirected acyclic grapti/, £), a func-
tion u : M — Cut s(V, E) from a message spacel to the set of cuts of the graph, a length doubling
functionG : R — R? and a familyX of length halving functiondd : R?> — R. Functiony must sat-
isfy the security property that if. # m/, then the cutg:(m) and u(m') are incomparable, i.e., neither
w(m) C p(m’) nor u(m’) E u(m). In particular, functiory is injective. Examples of such functions are
presented in [BM96b, BM96a].

The secret key of a GBOTS scheme consists of a labeled cutv; } and a hash functiod/ € H, both
chosen uniformly at random. The corresponding public kegiven by functionH and the labeled cut
o1 = I, 1(oL). A signature for a message € M is a labeled cut: u(m). Messagen is signed
using secret keyH, o ) settingo = I1,,(,,)(0L). A message signature pdin, o: (m)) is verified using
public key (H, o1) checking thally, (o) = o1. A formal specification of the GBOTS scheme is given
in Figure 5.



Algorithm KG(1*) Algorithm Sig(sk,m) | Algorithm Vf(pk,m,o)

HEH, o & {o:{v )} parsesk as(H, o) parsepk as(H, o)

oT «— H{UT}(JJ_) 0 «— Hﬂ(m) (O'J_) if H{UT}(O') = o7 and dOfTQO’) = ,u(m)
pk «— (H,o071), sk — (H,0,) return o : u(m) return 1

return (pk, sk) else return 0

Figure 5: Key Generation, Signing and Verification algorithfor GBOTS scheme.

4 The Reduction

In this section we relate the security of GBOTS to the segwitthe underlying pseudorandom generator
G and family of hash function%{. Formally, we show how a forger adversaFythat successfully attacks
the one-time signature scheme, can be used to build effigienedures to successfully attaGkand’ as
follows: an inverter algorithn; that attempts to invert a randomly chosen functtdére H; an inverter al-
gorithmZ¢ that attempts to invert functio@@; a collision finder algorithnt; that on inputd € H attempts

to find a collision toH, and a distinguisheD« that attempts to tell random strings and pseudorandom
strings apart.

None of the adversarie&;, Ty, Cx, D¢ is individually guaranteed to work, but we can bound the sssc
probability of the forgerF as a function of the combined success probabilitie$afZ;,Cy, Dg. So, if
G, H are cryptographically secure, then the GBOTS scheme iseetuthe rest of this section we show
how to buildZq, Zsr, Crr, Do given black box access to the forgér The success probabilities of these
adversaries are analyzed in the following section.

AdversariesZ, Zr, Cr, D¢ all use the forgerF in a specific way, common to all four of them. So, we de-
scribe this general procedurfirst. This procedure takes as input a hash funcligra nodev, and a label-
ing o,,: Pr ed(v). The task is, given oracle access to the forger algorithmpede a labeling.: Succ(v).

In other words,A gets as input a labeling of the smallest cut containingnd tries to output a labeling for
the biggest cut not containing(where biggest and smallest refer to therdering relation).

Procedured(H, v, o,) operates as follows:

1. Computert = Iy, 1(0y).
2. RunF oninputpk = (H, o).

3. Letm € M be the message output fy. If v € u(m), then abort. Otherwise, computg, =
I0,,(m) (0») and continue to the next step.

4. RunF on inputo,, to get a forgerym’,o’. We assume, without loss of generality, tifatalways
outputs a valid message-signature pair, ik, }(¢’) = or. If 7 cannot forge a signature, then it
outputs(m, oy,

5. If v € p(m’) then abort. Otherwise, compute and outplit= IIgycc () (0')-

A few remarks follow. First, for any vertex, Pr ed(v) C {vT}, so the projection operation in step 1 can
always be performed. This produces a pgir= (H, o) which is similar, but not necessarily identically
distributed, to a public key. In step 3,ife p(m), thenPr ed(v) C p(m) because cut(m) is closed. So,
unless execution is aborteBy ed(v) C u(m) ando, can be computed from,. Similarly, in step 5, if
execution does not abornt, ¢ p(m’) andu(m’) C Succ(v). So,o), can be computed from’. Therefore,



A always either aborts or it succeeds, i.e., it outputs arffuBucc (v) such thafly, (o) = o1. We use
A to defineZq, Iy, Cxq andDg;.

4.1 Inverting H

Algorithm Z on input a hash functiol/ and target valug € R, chooses one vertax < Vy at random,
and selects,, uniformly at random among all labeled cutsPr ed(v) such thatr(e) = y, wheree is the
only edge departing from. Then algorithniZ; calls A(H, v, 0,). If A aborts, als@ aborts. Otherwise,
leto’: Succ(v) be the signature output b§. The output ofZ 7 is o/, (ep); o, (e1), whereey, e; are the edges
pointing towv.

We remark thafZy may either abort, terminate successfully with a pre-imajge onder H, or fall, i.e.,
terminate without aborting, but with an output valug; x; such thatH (zo;x1) # y. The distinction
between aborting execution and failure to invert will bedusethe analysis.

4.2 Inverting G

The algorithm to inverG is similar toZy. Zg on input a target valuézr; z2) € R?, choosesH € H
uniformly at random, picks one vertexc Vi, and selects,, uniformly among all labeled cuts: Pr ed(v)
suchthat (e;) = x1 ando(e2) = x2, Whereey, e; are the edges departing framThen it callsA(H, v, 0,,).

If A aborts, alsd aborts. Otherwise, let]: Succ(v) be the signature output byt. The output ofZ; is
al(ep) wheree is the edge pointing te. As for Zy, inverterZ. can either abort, terminate successfully,
or fail.

4.3 Finding Collisions

In order to describe the collision finder algorithm we neeal ftllowing lemma. The proof is simple and
can be seen in the full version of this paper [HMO02]. The prnasés the assumption th@tis one-to-one.

Lemma 4.1 For any cutC' € Cuts(V, E), and labellingsy : C ando’ : C, if o # o' andIly, 1(0) =
I, (0"), then there exists a compression nod®t in C with incoming edges, e; such that[o](eo), [o](e1))
and([o](eo), [¢](e1)) form acollision, i.e. H([o](eo), [o](e1)) = H([o](eo), [c](e1)) and[c](e;) # [0”](e;)

for somei € {0,1}. 1

The collision finderCy; takes as input a hash functidii, and selects a vertex € Vi U Vg uniformly at
random. Notice that € V; andv € Vg happen with the same probability becaligeandVy have the
same size. The rest of the collision finder algorithm is samib Z; or 7y, depending on whether € Vg

orv € V.

If v € Vg, thenCy chooses: € R uniformly at random, computdg; ; y2) = G(x), and pickss, uniformly

at random among all labeled cutsPr ed(v) such thato(e;) = y; ando(ez) = y2, Whereey, e, are the
edges departing from. Then it callsA(H, v, 0,,). If A aborts, als@y aborts. Otherwise, let,: Succ (v)

be the signature output by, and consider the ciBucc(v) \ {v}. Notice thatSucc(v) C Succ(v) \ {v}

andPred(v) C Succ(v) \ {v}. Therefore, we can compute two labeling= IIgycc )\ {v} (0v) and
o' =TISucc w)\fv} (00)- If o # o', then compute a collision from ando’ using Lemma 4.1.

If v € Vy, thenCy choosesry,z; € R uniformly at random, compute, = H(zg, 1), and picko,
uniformly at random among all labeled cutsPr ed(v) such that(e2) = ys. It then callA(H, v, 0y,). If



A aborts, alsdj; aborts. Otherwise, let): Succ(v) be the signature output by, and consider the cut
Succ(v) \ {v}. As before,Succ(v) C Succ(v) \ {v} andPred(v) C Succ(v) \ {v}. Therefore, we
can compute two labeling = TISycc () (v} (0v) @ndo’ = TISycc )\ (o} (00)- If o # o', then compute a
collision fromeo ando’ using Lemma 4.1.

4.4 DistinguishingG

Finally we describe a possible distinguisher t&r On inputz;, 2o € R?, D¢ picks a random vertex
v € Vg UV and a hash functiodd € H. This time vertex is not selected with uniform probability, but
with probability proportional taV; N (Pred(v) \ {v})|. ThenD¢ chooses a node € Vi N (Pred(v) \
{v}) uniformly at random, and computes, as follows. Let{c:U, <,Pred(u’)} denote the set of all
labellings defined over the union of cu® ed(u’) for all expansion vertices’ < w in the predecessor
set ofv but not includingv; in other words, it denotes the union of cised(«') such thats’ < u, and
u € Vg n (Pred(v) \ {v}). Inthis union, each labeling satisfie$e; ); o(e2) = x1;z2, whereey, e; are
the edges departing from DistinguisherD¢; selectss,, uniformly at random if{o: U, <,,Pr ed(«’)}, and
computess, = Ipy gd(,) (o). Notice that for allu’ predecessor of, Pred(u’) C Pred(v), and the
labeled cut,, can be computed from,,.

Procedured is run on inputd, v, o,. If A aborts therDg outputs “random”, while it4 does not aborDg
outputs “pseudorandom”.

5 Analysis

In this section we relate the success probability of thedom@gorithmF to the success probability of
attacks toG and H. The following result states that ¥ is a one-to-one pseudorandom generator Hnd
is a regular collision-resistant hash function family tiieka GBOTS scheme is existentially secure under
one-chosen-message attack.

Theorem 5.1 Let (V, E)) be a directed acyclic grapli; a one-to-one pseudorandom generator, And
regular collision resistant family of hash functions, amhsider the corresponding GBOTS scheme. Let
F be a forger that succeeds with probability Thend < (aeD +ec + % (eq + eH)) n wherea < n is

the average number &f; predecessors of a random vertex in the grapheandy, ec, ep are the success
probabilities (or advantages) of adversafies Zr, Crr, D as defined in the previous sectioh.

In order to prove the result, we first show that the succedsaibty of the adversarie®g, Z andCy is
tightly related to the aborting probability of procedutewhen called on randomly chosen inputs. We make
this statement more precise below. First, we need someamtat

A labeled cutr is said to beconsistent with{v,y) € V x (R? U R) if one of two cases hold@) if v € Vi
andy = y1;y2 € R%2thenco(ey) = y1 ando(es) = yo Wheree; ande, are the edges departing fromor
(b) if v € Vy andy € R theno(e) = y wheree is the only edge departing from The set of all labeled
cutso consistent with(v, y) is denoted{c : Pr ed(v),}. In particular, if eithen € Vi andy = G(x) for
r € R chosen uniformly at random, ar € Vg andy = H(z1;x2) for z1; 20 € R? chosen uniformly at
random, the sefo : Pred(v), } is denoted{o: Pr ed(v) /(. }-

Consider the following experiment. First, we choose a werte Vg U Vi, a hash functiorH € H and a
labeled cutr, € {o:Pred(v) /(. } uniformly at random. Then we call procedu#eon input(H, v, o).
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(For simplicity’s sake, when clear from the context, we usg) to denote A(H,v,0,)). Let NoAbort
denote the event thad does not abort in this experiment. The following lemma shtves the combined
success probability of adversari€s, Zy andCy is equal to the probability of the eveNbAbort.

Lemma 5.2 Letey, e andec the advantages of adversari&s, Zg andZy. Let NoAbort be the event as
described above. Theh: (ex + e¢) + ec = Pr[NoAbort ] |

Proof: We analyze the success probability of adversafigsZ andCy in turn. First, the success prob-
ability e;; of adversaryZy is the probability that, for: = 21;29 € R? and H € ‘H uniformly chosen at
random,H (Zy (H, H(x1;22)))) = H(x1;22), that is, thatZy returns a pre-image df (z1; <) for a ran-
dom domain pointz1; 9. For X € {H,G}, letPrx [ E'] denote the probability of everdf whenH € H,

v € Vx ando, € {o:Pred(v)g/q(.} are chosen uniformly at random. Then

en = Pry[H(z')=H(z),2" — A(H,v,0,),2" # abort]
= (1—Pry [H(a') # H(z) | A(-) # abort]) - Pry [ A(-) # abort]

Similarly, for adversarnZs; we have
e¢ = (1-Prg[G(2')#G(z) | A(-) # abort]) - Prg [A(-) # abort]

Lastly, recall that Adversargy; is successful if, after runningl on a randomly chosen € Vg U Vg, either
G(r) £ G ifveVgorH(x) # H(2') if v € Vy. Thus,

- (Prg [H(a') # H(z) | 2’ «+ A(),2' # abort] - Pry [ A(+) # abort] +
Prg [G(2') # G(z) | A(-) # abort | - Prg [A(-) # abort])

DO =

€ =

Combining the above results and using that| = |V the result followsl

As a second step toward proving Theorem 5.1, next lemma sti@avshe success probability of the distin-
guisherDg is related to the difference between forger’s success pilityaand the probability that proce-
dure A does not abort (in the experiment described in the previemsria).

Lemma 5.3 Let ep andd denote the advantage of distinguistigg and forgerF respectively, and let
andNoAbort defined as before. Then

d <n-(aep + Pr[NoAbort]) .

The following notation will be useful in the proof. For anye V, letW (v) = Vo NPred(v) \ {v} denote
the set of all expansion vertices which are predecessots @flso, given a vertexx» € V and a vertex

u € W(v), letPred,(< u) = Uy<y wew @ Pred(u’) the cut formed by the union ovef < v of all sets
Pred(u) C Pred(v). (Recall that< is a total order relation ovéry;) Also, let{o: Pr ed,(< u)} denote
the set of all labeled cuts dfr ed, (< u); as before, for;y2 € R?, let {o:Pred,(< u),,.,} denote
the set of all labeled cuts compatible with, y1;y2). (We stress that the compatibility is with respect to
vertexu, that is,o(e1); o(e2) = y1; y2, Whereey ,es are the edges leaving verte). As before, ifx € R is
uniformly distributed, the sefto: Pr ed, (< u)g(s) } is denoted by{o: Pr ed, (< u)g(.) }. Notice that in this
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extended definitionPr ed, (< u) C Pred(v) and therefore a labeled cut fér ed(v) can be computed
from any labeled cut ifo: Pred, (< u)}.

Proof of Lemma 5.3: By definition,ep = p; —po, wherep; andpy denote the probability thag (y1; y2) =
1 whenz & R,y1;42 — G(x) and the probability thaDg(y1;y2) = 1 wheny;;ys < R2, respec-
tively. Consider the following two experiments, which wendée Exp, and Exp,. In the first one, we
chooseH € H uniformly at randomp € Vi U Vi with probability proportional tqW (v)|, v € W (v)
ando, € {o:Pred,(< u)g()} uniformly at random; we then compute, as an extension af, by
ov = Ilpr ed () (o) and finally callA on input(H, v, o). The second experimerixpy, is similar to the

previous one, with the exception thaf is drawn at random frorPr ed,, (< w)y, .y, } fOr y1; y2 & R2. Let
q1(v',u") andgo(v', u") denote the probability procedusé does not abort ilExp; andExp,, respectively,
conditioned on the event that= v" andu = u’ are chosen in each experiment.

Leta = %ZUE‘/HUVG |W (v)| be the average number of expansion vertices preceding amrawdrtex in
the graph. We claim that,

1 1
pr=-_ Z Z qi(v,u) and po = e Z Z qo(v,u) 1)
vEVEUVG ueW (v) vEVEUVG ueW (v)

and that for all € Vg U Vg, u € W(v) U {v}

QO(U>U*) = QI(Uvu) (2)

Y awr) = 6 @3)
veVyUVa

Z qo(v,v*) = n-Pr[NoAbort] (4)
veVHUVg

wherew* = max,, -, (w’), denotes the biggest vertexfa; smaller thanv € V; andv = min,ey, (v) is
the “smallest” expansion vertex i (where “biggest” and “smallest” refer to the ordering relation).

Before proving these claims, we use them to finish the protfi@efemma. Using equations (1-4), we have

1 _ . 1
ep = — > A{a@,7) —gv,v")} > — (3= n- Pr[NoAbort )
veVyUVg
which gives the desired result.

We now justify the claimed equations (1-4) by analyzing eiem in turn. To justify the first part aft),
notice that by definition op; and standard conditioning we have

py = Pr [A(H,v,av) +abort : v & Ve UV, u & W), HEH, 2 &R,

o—u@{a:Predv(gu)G(x)}} = Z Z q1(v,u) - Pr{u | v]-Priv]

veVrUVG ueW (v)

Pr[v]
= 2wy 2 At

veVrUVa ueW (v)

wherev & Vi U Viy means vertex is drawn from sel/i; U Vi with probability proportional tgW (v)|.
Since, for allv € V, Pr[v] = |W(v)|/(na) Equation (1) holds. The second part(af follows from a
similar argument.
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We justify Equation (2) as follows. Fix € Vi U Vz andu € W(v) U {v}. Consider experimeritxp,,
and assume andu* € W (v) are the vertices chosen. First of all, notice thaed, (< u*) C Pred,(< u)
because,* < u, and thusg,, can be computed from,-. Second, assume € V. Since the labeled cut
oy € o:Pred,(< u*) is chosen uniformly at random, there is no other expansiate mo any path from
v’ < u* andu, and is regular, the induced labeled eut = Ipy gy, (our) € {o:Pred,(< u)} is such
thato,(e1); ou(e2) = G(z) for somex € R uniformly distributed ¢; ande, are edges leaving vertey.
The same argument whenc Vy boils down too, (¢) = H (z1; 22) for uniformly distributedzr; zo € R?
ande the only leaving edge ai. Thus,o,, € {o:Pred,(< u)g}, andgo(v,u*) = ¢1 (v, u).

To justify Equation (3) we notice that when distinguistigt chooses: = 7, the distribution of the public
key and signature so computed Hdyfrom o, follows the same distribution than the forger expects in the
one-chosen-message attack and, thus, the output of ther fermpdependent of the choice af

Z ¢ (v,0) = Z Pr[F(m,om) = (m',0'),m #m',v e pu(m),vepum)] > 6

veVyUVg veVyUVg

where the last inequality follows from that, for any, m’ € M, if m # m’ there always exists € VU Vg
such that € u(m) butv & u(m’), otherwisem andm’ would be comparable.

It remains to prove Equation (4). This follows frogg(v, v*) = ¢1(v,v) = Pr[NoAbort | v] and from
vertexv € Vg U Vg being chosen uniformly at random in the experiment that defthe evenNoAbort.
This concludes the proof of the lemnfa.

Proof of Theorem 5.1: Immediate from Lemma 5.2 and Lemma A3.

6 Extensions

In this section we consider extensions of the basic secrefiylts presented in the previous sections. The
first one concerns relaxing the security assumptions altwuunderlying primitivesz, H. The second
applies the ideas in our proof of security to build proval@guge signature schemes with special algebraic
properties.

6.1 Universal one-way hash functions:

The collision-resistance requirement on the hash fund#donly H can be relaxed taniversal one-wayness
as defined by Naor and Yung [NY89]. Recall that universal wag-hash function (UOWHF) families
are such that it is hard to find a colliding pair# 2’ such thatd (z) = H (') but the adversary must
selectr before H is given to it. We modify our GBOTS construction, so that fack compression vertex
v a different randomly chosen functiol, € H is used. The security argument in this case is modified
as follows. In order to computer = Il (o), algorithm A(H, v, o) picks a hash functiod, € H
uniformly at random anew to compute the label of each edgérlga compression vertex with the exception
of the edge corresponding tg for which H is used. Thus, adversaff needs only to pick ahead a
random valuer € R? and, once given a target hash functiéh to use procedured to invert H(z).
Similarly, for Cg it suffices to guess the compression vertex where the apilgiven by Lemma 4.1 will be
found, and use the target hash functiinthere. Adversarieg; andCy remain the same. The remaining
security argument does not differ substantially from the pnesented in Section 5. We point out that
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regular universal one-way hash functions and one-to-oeedusandom generators can be constructed from
any one-way permutation [NY89, CMR98].

6.2 Mapping messages to edges (or vertices):

In this paper, we associate values to edges in the graph awctidos to vertices. This approach can be
seen as dual to the one used in [BM94], which associates srédueertices and function to edges. Both
approaches are essentially equivalent from a syntax viewpod in terms of the class of schemes they
yield. From a foundational viewpoint, we believe that theraach presented here is conceptually simpler.

6.3 Graph based algebraic signature schemes:

Algebraic signature schemes are signature schemes in wigichtures for (certain) new messages can be
produced by combining signatures with a restricted set efatjpns. Since these operations do not require
knowledge of the secret key, algebraic signatures are goasire schemes in the standard interpretation
of the term, but they are a new cryptographic primitive. They useful in contexts where possession of
signatures of certain messages automatically entitleseggson of signatures of new messages, such as in
credential systems. Credentials may be implemented asdigocuments which specify capabilities (or
attributions) to be granted to the credential holder. THus)plemented with the appropriate algebraic sig-
nature, the possession of one or more credentials (siggstwill automatically enable the computation of
the entitled credentials without the involvement of thegioral signer. Algebraic signatures were originally
suggested by Rivest [MR02].

Informally, an algebraic signature scheme consists o&thtgorithmsAS = (KG, Sig, Vf) and a two set of
operationsD = {fi, fa,..., fq} andS = {g1, 92, . . ., gs}, Where eacly; (resp.g;) is a function that takes
one or more messages (resp. signatures) as inputs and esoolne message (resp. signature) as output.
KG, Sig, andVf are as in any digital signature scheme (see Section 2.1).eWere that ifé,, ..., J; are
valid signatures forny, ..., m; theng;(d1,...,d;) is a valid signature forf;(mq,...,m;) for all appro-
priate f;, g;. Notice that signatures so generated are subject to eb@téorgery under chosen message
attacks, so a new definition of security is required. $gin(O, {m,...,m;}) be the set of all messages
computable from{my,...,m;} by applying functions irf© on them. The security of algebraic signatures
is defined in terms of unforgeability against chosen-messdtacks, where by convention, the forger is
deemed successful only if it outputs a signature of a messaget in the setpan(O, {mi, ..., m}).

Graph-based one-time signatures can be used to build vieriesf algebraic signatures. Indeed, for prac-
tical functionsf;, it is possible to build graphs such thgtis embedded in the order relation That is, if
fi(m1, ma) = ms, then there exists a labeling 1.(m3) which can be computed from labellings: 1.(m;)
andos: ;1(mg) and it is consistent with them.

Notice that the proof of security of Section 4 and Sectionrbloa easily modified to prove that our (graph-
based) algebraic signature sches& is secure. Indeed, the only technical difference is thafdhger 7
can request multiple signatures,: 1(m). This can be easily factored in by modifying Proceddreo each
signaturer,,, is computed fronw, (or .A aborts, if not possible). Since the forgémust outputm’, o’) for

m’ not inspan(O, U, i(m)), there must exist € U, u(m) sov ¢ pu(m’) and the argument goes through.
The rest of the proof is identical and, in particular, adseesZqs, Zx, Ci, D remain the same, given
black-box access td.
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Figure 6: DAG for algebraic scheme with operatidnsg subse}.

6.4 Concrete constructions of Algebraic Signature Schemes

In this section we sketch concrete graph constructionsyikft algebraic signature schemes with respect
to (a) union and subset operations, and (b) union and sopEwséction operations. (Recall that the super-
intersection of setgl and B, denotedA © B, is the collection of all set§ suchthatdNnB C S C AU B.)

Let M be the set of all subset afelements, where we denote such elementg.as. , t,,_1. Consider the
graph shown in Figure 6. (Although the figure shows vertigdsaving indegree and outdegrégeand the
verticesv’, andv’ having outdegree and indegregrespectively, it is easy to cast this graph as one with the
properties considered in this work. Indeed, it suffices fage each vertey; with a small subgraph df
compression anglexpansion vertices, and to connect eado bothy’, andv’ by simple tree construction).

We map every sef into the set of verticeg(S) = C defined as follows: vertices; andv’, are inC, and
verticesy; are inC if and only ift; ¢ S. NoticeC' is a valid cut for any se$. Given a labeled cut: (.5)
the labeling for any>’ = 1(S’) such thatS” C S can be computed by projectirg 1.(S) on C’. The union
operation is defined similarly, since given labeled eutsi.(S1) andos: 4(S2) a consistent labeled cut for
w1(S1 U S2) can be computed.

A algebraic signature scheme for the, ©} operations can be build by using two graghsandG, each
one like the one described above. In this case, given &,seé define the cut on the first graph by using the
above shown rule, while for the second case we “invert” theda@n, and we include the corresponding
vertices only ift; € S. It is an easy exercise to verify that such mapping allowstmputation of labeled
cuts corresponding to the union and super-intersectiowefsetsS; and.S,, given labeled cuts;: (.S7)
andos: 1(S2).

7 Conclusions

In this paper, we analyze graph based signatures from aityeciewpoint and give sufficient conditions,
namely the existence of one-way permutations, under whielsignature scheme is secure in the standard
complexity model (no random oracles). Additionally, wegaet a security proof which uses a new hybrid
argument where the number of hybrid distributions may beoegptial. We believe this technique is of
independent interest. We also propose a hew paradigm faottgtruction of algebraic signature schemes,
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which are new useful primitives for applications where colted “forgeability” of signatures is needed, as
in credential systems.
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