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Abstract

Essentially all known one-time signature schemes can be described as special instances of a general
scheme suggested by Bleichenbacher and Maurer based on “graphs of one-way functions”. Bleichen-
bacher and Maurer thoroughly analyze graph based signatures from a combinatorial point of view, study-
ing the graphs that result in the most efficient schemes (withrespect to various efficiency measures, but
focusing mostly on key generation time). However, they do not give a proof of security of their generic
construction, and they leave open the problem of determining under what assumption security can be
formally proved. In this paper we analyze graph based signatures from a security point of view and give
sufficient conditions that allow to prove the security of thesignature scheme in the standard complexity
model (no random oracles). The techniques used to prove the security of graph based one-time signa-
tures are then applied to the construction of a new class of algebraic signature schemes, i.e., schemes
where signatures can be combined with a restricted set of operations.
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1 Introduction

One-time signatures [Lam79] are digital signature schemeswhere the signer is restricted to sign a sin-
gle document. They are interesting cryptographic primitives because they allow to solve many important
cryptographic problems, and at the same time offer substantial efficiency advantages over regular digi-
tal signature schemes (cf. [RSA78, Sch90, GMR88, BM92]), especially with respect to signing, verifica-
tion and key generation time. Applications of one time signatures include the design of regular signa-
ture schemes [Mer87, Mer90, BM92, DN94], on-line/off-linesignatures [EGM96], digital signatures with
forward security properties [BM99, AR00, MMM02], efficientbroadcast authentication protocols [Per01]
[Roh99], network routing protocols [HPT97], and more. The first one-time signature scheme was proposed
by Lamport [Lam79] and (in an interactive setting) by Rabin [Rab78]. The idea of the basic scheme of Lam-
port is very simple: given a one-way functionf , one selects two random stringsx0, x1 (which constitute the
secret key), and publishesf(x0), f(x1). Then, a single bit messageb ∈ {0, 1} can be signed by revealing
xb. Verification is performed in the obvious way. Notice how thesigning process is almost instantaneous,
while verification only involves a single application of a one-way function. Key generation is almost as
efficient, requiring only two applications of the one-way function.

Since Lamport’s original proposal, many extensions and improvements have been suggested [MM82, Mer82,
Mer87, Vau92, BC93, EGM96, BM94, BM96b, BM96a, Per01]. The improvements usually involve iterat-
ing the application of the one-way function, or revealing multiple values as part of a signature. All these
schemes (with the exception of Perrig’s) can be described asspecial instances of a general scheme sug-
gested by Bleichenbacher and Maurer [BM94, BM96b, BM96a], based on the use of “graphs of one-way
functions”. These are directed acyclic graphs or DAGs (see next section for a formal definition) with values
associated to the vertices computed according to one-way functions associated to the edges (see Figure 1).
Messages are signed by revealing the values for some of the vertices, and signatures verified using the
publicly available one-way functions. As pointed out in [BM94, BM96b, BM96a] DAG-based one-time
signatures schemes generalize and have potential advantages over schemes simply based on the iterated ap-
plication of the one-way function (which correspond to graphs consisting of a collection of disjoint chains).
Unfortunately, one-wayness does not seem a sufficiently strong assumption to guarantee the security of the
graph based one time signature schemes. In fact, [BM94] and subsequent papers only study the combinato-
rial properties of the graphs, e.g., trying to maximize the size of the message space that can be signed using
graphs with a predetermined number of vertices. The issue ofdetermining sufficient security assumptions
on the “one-way function”f , and proving the security of graph based signatures in the standard complexity
model is left open in [BM94, BM96b, BM96a].

OUR CONTRIBUTIONS: In this paper we analyze the security of graph based signatures in order to put
them on the firm grounds of the standard computational complexity security model. We show that under
standard assumptions the security of graph based signatures can be formally proved. In order to achieve
provable security, we adopt an approach in the definition of graph based signatures that is dual to the one
used in [BM94]. Namely, instead of associating values to thenodes of a graph and functions to the edges,
we propose to associate values to the edges and functions to the nodes (Figure 2 shows an example). Then,
we prove that if the functions associated to the nodes are regular collision resistant (or simply universal one-
way) hash functions and one-to-one pseudorandom generators, then the resulting one-time digital signature
scheme is provably hard to break. These primitives can be built starting from any one-way permutation. The
regularity and one-to-one properties can be relaxed assuming that the hash functions and pseudo-random
generator only satisfy pseudorandomness and collision resistant properties.
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Figure 1: DAG where values are
associated to vertices and functions
to edges (e.g.v2=f1(v1), v6=f2(v2),
v4=f3(v3,v2), v5=f4(v4)).
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Figure 2: DAG where val-
ues are associated to edges
and functions to vertices (e.g.
(v2,v5)=f1(v1),v4=f2(v3,v2)).

An important byproduct of this work is the use of a hybrid argument in a novel way in our proof. Indeed,
in order to prove the security of the signature scheme, our analysis involves telling two distributions apart.
However, a direct hybrid argument cannot be used because thenumber of hybrid distributions may be
exponential on the security parameter. We show that by carefully setting a total order relation on the hybrids,
we can combine them into a small (polynomial) number and the proof goes through. To the best of our
knowledge this is a novel use of hybrid argument and may be of independent interest.

EXTENSIONS: Graph-based one-time signatures can be extended to instantiate a new type of signature
scheme referred asalgebraic signatures, originally suggested by Rivest [MR02]. An algebraic signature
scheme is a signature scheme in which computing signatures of unseen messages is allowed in a restricted
way. Associated to each algebraic signature scheme there isa set of functionsO = {f1, . . . , ft} (where
each functionfi maps messages into messages). The fundamental property of algebraic signature schemes
is that given signaturessig(m1), . . . , sig(mr) anyone can compute signaturesig(fi(m1, . . . ,mr)). Clearly,
algebraic signatures require the definition of a new notion of unforgeability. Namely, an algebraic signature
scheme is secure if no adversary can efficiently compute signatures of messages that cannot be computed
from m1, . . . ,mr by applying the functions inO. (See Section 6 for details). Micali and Rivest [MR02],
and, recently, Bellare and Neven [BN02], presented constructions of transitive signatureswhich allow to
sign edges in an undirected graph in such a way that computingsignatures of the transitive closure of the
signed edges does not require knowledge of the secret key. Similarly, Johnson et al. [JMSW02] studied
several cases where the signing algorithm is homomorphic with respect to binary operationsfi.

Building on graph-based one-time signature schemes we giveexplicit constructions for algebraic signatures
on sets which support union and subset operations and also union and super-intersection operations1. We
see graph-based algebraic signatures as an area that deserves further research, since it may lead to efficient
and useful constructions.

2 Notation and basic definitions

In this section we review some definitions used throughout the paper. We start by recalling some standard
definitions about cryptographic primitives and directed graphs.

1 The super-intersection of setsA andB, denotedA ⊙ B, is the collection of all setsS such thatA ∩ B ⊆ S ⊆ A ∪ B.
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2.1 Cryptographic Primitives

We first recall the standard definition of security of signature schemes under chosen-message attacks (cf.
[GMR88]) adapted to the case of one-time signature schemes.Then, we recall the (also standard) defini-
tions of security of collision-resistant one-way hash functions (cf. [BR97]) and pseudorandom generators
(cf. [BM84, Yao82]).

ONE-TIME SIGNATURE SCHEME: Formally, a signature scheme consists of three algorithmsΣ = (KG,Sig,
Vf). Given a security parameterk ∈ N, the key generation algorithmKG(k) outputs a pair of public and
private keys(pk, sk); Sig is the signing algorithm taking as input a keysk and a messagem, and returning
a signatureσ; Vf is the verification algorithm taking as input a keypk, a messagem and a signatureσ,
and returning a boolean decision. The signing algorithm maybe randomized but the verification algorithm
is usually deterministic. It is required that valid signatures are always accepted. A one-time signature
scheme is secure against existential forgery in a one-chosen-message attack if no computationally bounded
adversary (forger), after obtaining the signature of a single message of his choice, can output a (different)
message and a corresponding valid signature, except with negligible probability.

COLLISION-RESISTANT HASH FUNCTIONS: Let H be a family of functions. An individual element in
H is function H:R2 → R, for some fix setR. The familyH is said to be collision-resistant if, forH
randomly chosen inH, any computationally bounded adversary (collision-finder) can not find two different
messagesm andm′ that map byH to the same value, except with negligible probability. Furthermore, we

sayH is regular if it satisfiesPr
[

H(X) = y : X
R

← R2
]

= Pr
[

Y = y : Y
R

← R
]

for all y ∈ R, and

all H ∈ H.

PSEUDORANDOM GENERATORS: Let G:R → R2 be a deterministic function.G is a pseudorandom
generator if it no computationally bounded adversary (distinguisher) can tell apart the output ofG(x) on a
random inputx from a truly random value onR2 with non-negligible probability. Also, a pseudorandom
generatorG is one-to-oneif there is no pair of distinct inputsx, x′ ∈ R, that produce the same output onG.

2.2 Graphs

A directed graphis a pair(V,E) whereV is a finite set ofverticesandE ⊆ V ×V is the set ofedges. A path
of lengthℓ ≥ 0 from v0 to vℓ in G is a sequence of verticesp = (v0, . . . , vℓ) such that(vi−1, vi) ∈ E for all
i = 1, . . . , ℓ. If such a path exists, we say thatv0 is apredecessorof vℓ andvℓ is asuccessorof v0. The sets
of predecessors and successors ofv are denotedPred(v) andSucc(v), respectively. A set of verticesS is
predecessor closedif Pred(v) ⊆ S for all v ∈ S. Similarly, S is successor closedif Succ(v) ⊆ S for all
v ∈ S. A cycleis a path(v0, . . . , vℓ) of lengthℓ ≥ 1 such thatv0 = vℓ. A directed acyclic graph(DAG) is
a directed graph with no cycles.

The indegreeof a vertexv is the number of edges(v′, v) ∈ E pointing tov, theoutdegreeis the number
of edges(v, v′) ∈ E departing fromv, and thetotal degreeis the sum of the indegree and the outdegree.
Vertices with indegree0 are calledsources, and vertices with outdegree0 are calledsinks. Vertices that are
neither sources nor sinks are calledinternal vertices. For simplicity, in this paper we only considers DAGs
with a single sourcev⊥ with outdegree1, a single sinkv⊤ with indegree1, andn > 0 internal nodes with
total degree3. For such graphs, there are only two kind of internal vertices: expansion verticeswith indegree
1 and outdegree2, andcompression verticeswith indegree2 and outdegree1. So, the sets of vertices of our
graphs can be partitioned asV = VG ∪ VH ∪ {v⊥, v⊤}, whereVG are the expansion vertices andVH the
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compression vertices. We also fix a total order relation(VG,≤) that extends the partial order defined over
VG by the predecessor relation.

An example of DAG is depicted in Figure 3. Vertex0 is the source, vertex11 the sink,VH = {1, 2, 3, 4, 5}
are compression vertices, andVG = {6, 7, 8, 9, 10} are expansion vertices.

A cut in a graph(V,E) is a nontrivial partitionC = (S, S̄) of the vertices such thatS is predecessor closed
(or, equivalently,S̄ is successor closed). The set of cuts in a graph(V,E) is denotedCuts(V,E), and it
forms a partial order where(S, S̄) ⊑ (S′, S̄′) if and only if S ⊆ S′ (or, equivalently,S̄ ⊇ S̄′). Notice that
since(S, S̄) is nontrivial (i.e., bothS andS̄ are not empty), andS, S̄ are predecessor and successor closed,
it is always the case thatv⊥ ∈ S andv⊤ ∈ S̄. Therefore, a cut can be implicitly represented by a single set
of verticesS with the convention that ifv⊥ ∈ S then(S) represents(S, V \ S), while if v⊤ ∈ S then(S)
represents(V \ S, S). For any cutC, the component ofC containingv⊥ (resp.v⊤) is denotedS(C) (resp.
S̄(C)).

An edgee = (u, v) crossesa cutC = (S, S̄) if u ∈ S andv ∈ S̄. The set of edges crossingC is denoted
Edges(C) = E ∩ (S × S̄). We consider graphs where each edge is labeled with an element from some
setR. The labels associated to the edges are not totally independent, but must satisfy certain constraints.
Let G:R → R2 and H:R2 → R be two arbitrary functions. (Later on, we will instantiateG with a
pseudorandom generator andH with a collision resistant hash function.) A labeling is a partial functionλ
from E to R, i.e., a functionλ:T → R whereT ⊆ E. The domainT of the labeling is denoted dom(λ). We
say thatλ is consistent (with respect to functionsG andH) if values are computed according to functions
G andH, i.e.,

• for every expansion vertex with incoming edgee0 ∈ dom(λ) and outgoing edgese1, e2 ∈ dom(λ),
G(λ(e0)) = (λ(e1), λ(e2)).

• for every compression vertex with incoming edgese0, e1 ∈ dom(λ) and outgoing edgee2 ∈ dom(λ),
λ(e2) = H(λ(e0), λ(e1)).

We are interested in labeling functions defined over cuts. Alabeled cutis a labeling functionσ such that
dom(σ) is the set of edges of a cut, i.e., dom(σ) = Edges(C) for someC ∈ Cuts(V,E). If σ is a labeling
with domainEdges(C) then we writeσ:C. Similarly, we denote as{σ:C} the set of all labellings with
domainEdges(C). Notice that any functionσ:Edges(C) → R is consistent, i.e., the edges of a cut can

6



be labeled independently. Any labeled cutσ:C can be uniquely extended to a consistent labeling defined
over all edges ending in̄S(C).

Proposition 2.1 For any directed acyclic graph(V,E), cutC ∈ Cuts(V,E) and labelingσ: Edges(C)→
R, there exists a unique labeling, denoted[σ], such that

(1) dom([σ]) = E ∩ (V × S̄(C))

(2) [σ] is consistent, and

(3) [σ](v) = σ(v) for all v ∈ Edges(C).

Moreover,[σ] can be efficiently computed fromσ.

Notice that for any two cutsC1 ⊑ C2, the setEdges(C2) is contained inV × S̄(C1). Therefore, given a
labeled cutσ1:C1 and a cutC2 such thatC1 ⊑ C2, we can define a labeled cutσ2:C2 by restricting the
domain of[σ1] to Edges(C2).

Definition 2.2 For any ordered pair of cutsC1 ⊑ C2, we define a corresponding projection operationΠC1

C2

(or, simply,ΠC2
whenC1 is clear from the context) that maps any labeled cutσ1:C1 to a corresponding

labeled cutσ2:C2 obtained by first extendingσ1 to [σ1], and then restricting the domain of[σ1] to the set
Edges(C2).

Notice that ifC1 = (S1, S̄1) andC2 = (S2, S̄2), thenσ2 = ΠC2
(σ1) can be computed fromσ1 with at most

|S2 \ S1| applications of functionsG andH.

Example 2.3 Figure 4 depicts two example cutsS(C1) = {0, 1, 2, 3, 4} with Edges(C1) = {(2, 5), (4, 7),
(4, 6), (3, 6), (3, 8)}, and S(C2) = {0, 1, 2, 3, 4, 5, 8} with Edges(C2) = {(8, 9), (5, 7), (4, 7), (4, 6),

(3, 6)}. As a toy example, considerR = Z10, H(x, y)
def
= x + y, andG(x)

def
= (x, x). If we choose

{((2, 5), 3), ((4, 7), 9), ((4, 6), 5), ((3, 6), 2), ((3, 8), 8)} as a labeled cutσ:C1 in G, then it is easy to
check that the labeled cut defined byΠC2

C1
(σ) (the consistent extension ofC1 onto C2) is {((8, 9), 1),

((5, 7), 3), ((4, 7), 9), ((4, 6), 5), ((3, 6), 2)}.

3 The GBOTS construction

A graph based one-time signature (GBOTS) scheme is specifiedby a directed acyclic graph(V,E), a func-
tion µ : M → Cuts(V,E) from a message spaceM to the set of cuts of the graph, a length doubling
function G : R → R2 and a familyH of length halving functionsH : R2 → R. Functionµ must sat-
isfy the security property that ifm 6= m′, then the cutsµ(m) andµ(m′) are incomparable, i.e., neither
µ(m) ⊑ µ(m′) nor µ(m′) ⊑ µ(m). In particular, functionµ is injective. Examples of such functions are
presented in [BM96b, BM96a].

The secret key of a GBOTS scheme consists of a labeled cutσ⊥: {v⊥} and a hash functionH ∈ H, both
chosen uniformly at random. The corresponding public key isgiven by functionH and the labeled cut
σ⊤ = Π{v⊤}(σ⊥). A signature for a messagem ∈ M is a labeled cutσ:µ(m). Messagem is signed
using secret key(H,σ⊥) settingσ = Πµ(m)(σ⊥). A message signature pair(m,σ:µ(m)) is verified using
public key(H,σ⊤) checking thatΠ{v⊤}(σ) = σ⊤. A formal specification of the GBOTS scheme is given
in Figure 5.
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Algorithm KG(1k)

H
R

←H, σ⊥
R

← {σ: {v⊥}}
σ⊤ ← Π{v⊤}(σ⊥)

pk ← (H,σ⊤), sk ← (H,σ⊥)
return (pk, sk)

Algorithm Sig(sk,m)
parsesk as(H,σ⊥)
σ ← Πµ(m)(σ⊥)

return σ : µ(m)

Algorithm Vf(pk,m, σ)
parsepk as(H,σ⊤)
if Π{v⊤}(σ) = σ⊤ and dom(σ) = µ(m)

return 1
else return0

Figure 5: Key Generation, Signing and Verification algorithms for GBOTS scheme.

4 The Reduction

In this section we relate the security of GBOTS to the security of the underlying pseudorandom generator
G and family of hash functionsH. Formally, we show how a forger adversaryF that successfully attacks
the one-time signature scheme, can be used to build efficientprocedures to successfully attackG andH as
follows: an inverter algorithmIH that attempts to invert a randomly chosen functionH ∈ H; an inverter al-
gorithmIG that attempts to invert functionG; a collision finder algorithmCH that on inputH ∈ H attempts
to find a collision toH, and a distinguisherDG that attempts to tell random strings and pseudorandom
strings apart.

None of the adversariesIG,IH , CH ,DG is individually guaranteed to work, but we can bound the success
probability of the forgerF as a function of the combined success probabilities ofIG,IH , CH ,DG. So, if
G,H are cryptographically secure, then the GBOTS scheme is secure. In the rest of this section we show
how to buildIG,IH , CH ,DG given black box access to the forgerF . The success probabilities of these
adversaries are analyzed in the following section.

AdversariesIG,IH , CH ,DG all use the forgerF in a specific way, common to all four of them. So, we de-
scribe this general procedureA first. This procedure takes as input a hash functionH, a nodev, and a label-
ing σv:Pred(v). The task is, given oracle access to the forger algorithm, compute a labelingσ′

v:Succ(v).
In other words,A gets as input a labeling of the smallest cut containingv, and tries to output a labeling for
the biggest cut not containingv (where biggest and smallest refer to the⊑ ordering relation).

ProcedureA(H, v, σv) operates as follows:

1. Computeσ⊤ = Π{v⊤}(σv).

2. RunF on inputpk = (H,σ⊤).

3. Let m ∈ M be the message output byF . If v 6∈ µ(m), then abort. Otherwise, computeσm =
Πµ(m)(σv) and continue to the next step.

4. RunF on inputσm to get a forgerym′, σ′. We assume, without loss of generality, thatF always
outputs a valid message-signature pair, i.e.,Π{v⊤}(σ

′) = σ⊤. If F cannot forge a signature, then it
outputs(m,σm)

5. If v ∈ µ(m′) then abort. Otherwise, compute and outputσ′
v = ΠSucc(v)(σ

′).

A few remarks follow. First, for any vertexv, Pred(v) ⊑ {v⊤}, so the projection operation in step 1 can
always be performed. This produces a pairpk = (H,σ⊤) which is similar, but not necessarily identically
distributed, to a public key. In step 3, ifv ∈ µ(m), thenPred(v) ⊆ µ(m) because cutµ(m) is closed. So,
unless execution is aborted,Pred(v) ⊑ µ(m) andσm can be computed fromσv. Similarly, in step 5, if
execution does not abort,v 6∈ µ(m′) andµ(m′) ⊑ Succ(v). So,σ′

v can be computed fromσ′. Therefore,
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A always either aborts or it succeeds, i.e., it outputs a cutσ′
v:Succ(v) such thatΠ{v⊤}(σ

′
v) = σ⊤. We use

A to defineIG, IH , CH andDG.

4.1 Inverting H

Algorithm IH on input a hash functionH and target valuey ∈ R, chooses one vertexv ∈ VH at random,
and selectsσv uniformly at random among all labeled cutsσ:Pred(v) such thatσ(e) = y, wheree is the
only edge departing fromv. Then algorithmIH callsA(H, v, σv). If A aborts, alsoIH aborts. Otherwise,
let σ′

v:Succ(v) be the signature output byA. The output ofIH is σ′
v(e0);σ

′
v(e1), wheree0, e1 are the edges

pointing tov.

We remark thatIH may either abort, terminate successfully with a pre-image of y underH, or fail, i.e.,
terminate without aborting, but with an output valuex0;x1 such thatH(x0;x1) 6= y. The distinction
between aborting execution and failure to invert will be used in the analysis.

4.2 Inverting G

The algorithm to invertG is similar toIH . IG on input a target value(x1;x2) ∈ R2, choosesH ∈ H
uniformly at random, picks one vertexv ∈ VG, and selectsσv uniformly among all labeled cutsσ:Pred(v)
such thatσ(e1) = x1 andσ(e2) = x2, wheree1, e2 are the edges departing fromv. Then it callsA(H, v, σv).
If A aborts, alsoIG aborts. Otherwise, letσ′

v:Succ(v) be the signature output byA. The output ofIG is
σ′

v(e0) wheree0 is the edge pointing tov. As for IH , inverterIG can either abort, terminate successfully,
or fail.

4.3 Finding Collisions

In order to describe the collision finder algorithm we need the following lemma. The proof is simple and
can be seen in the full version of this paper [HM02]. The proofuses the assumption thatG is one-to-one.

Lemma 4.1 For any cutC ∈ Cuts(V,E), and labellingsσ : C andσ′ : C, if σ 6= σ′ andΠ{v⊤}(σ) =
Π{v⊤}(σ

′), then there exists a compression nodev not inC with incoming edgese0, e1 such that([σ](e0), [σ](e1))
and([σ](e0), [σ](e1)) form a collision, i.e.,H([σ](e0), [σ](e1)) = H([σ](e0), [σ](e1)) and[σ](ei) 6= [σ′](ei)
for somei ∈ {0, 1}.

The collision finderCH takes as input a hash functionH, and selects a vertexv ∈ VG ∪ VH uniformly at
random. Notice thatv ∈ VG andv ∈ VH happen with the same probability becauseVG andVH have the
same size. The rest of the collision finder algorithm is similar toIG or IH , depending on whetherv ∈ VG

or v ∈ VH .

If v ∈ VG, thenCH choosesx ∈ R uniformly at random, computes(y1; y2) = G(x), and picksσv uniformly
at random among all labeled cutsσ:Pred(v) such thatσ(e1) = y1 andσ(e2) = y2, wheree1, e2 are the
edges departing fromv. Then it callsA(H, v, σv). If A aborts, alsoCH aborts. Otherwise, letσ′

v:Succ(v)
be the signature output byA, and consider the cutSucc(v) \ {v}. Notice thatSucc(v) ⊑ Succ(v) \ {v}
andPred(v) ⊑ Succ(v) \ {v}. Therefore, we can compute two labelingσ = ΠSucc(v)\{v}(σv) and
σ′ = ΠSucc(v)\{v}(σ

′
v). If σ 6= σ′, then compute a collision fromσ andσ′ using Lemma 4.1.

If v ∈ VH , thenCH choosesx0, x1 ∈ R uniformly at random, computex2 = H(x0, x1), and pickσv

uniformly at random among all labeled cutsσ:Pred(v) such thatσ(e2) = y2. It then callA(H, v, σv). If
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A aborts, alsoIH aborts. Otherwise, letσ′
v:Succ(v) be the signature output byA, and consider the cut

Succ(v) \ {v}. As before,Succ(v) ⊑ Succ(v) \ {v} andPred(v) ⊑ Succ(v) \ {v}. Therefore, we
can compute two labelingσ = ΠSucc(v)\{v}(σv) andσ′ = ΠSucc(v)\{v}(σ

′
v). If σ 6= σ′, then compute a

collision fromσ andσ′ using Lemma 4.1.

4.4 DistinguishingG

Finally we describe a possible distinguisher forG. On inputx1, x2 ∈ R2, DG picks a random vertex
v ∈ VH ∪ VG and a hash functionH ∈ H. This time vertexv is not selected with uniform probability, but
with probability proportional to|VG ∩ (Pred(v) \ {v})|. ThenDG chooses a nodeu ∈ VG ∩ (Pred(v) \
{v}) uniformly at random, and computesσv as follows. Let{σ:∪u′≤uPred(u′)} denote the set of all
labellings defined over the union of cutsPred(u′) for all expansion verticesu′ ≤ u in the predecessor
set ofv but not includingv; in other words, it denotes the union of cutsPred(u′) such thatu′ ≤ u, and
u′ ∈ VG ∩ (Pred(v) \ {v}). In this union, each labeling satisfiesσ(e1);σ(e2) = x1;x2, wheree1, e2 are
the edges departing fromu. DistinguisherDG selectsσu uniformly at random in{σ:∪u′≤uPred(u′)}, and
computesσv = ΠPred(v)(σu). Notice that for allu′ predecessor ofv, Pred(u′) ⊂ Pred(v), and the
labeled cutσv can be computed fromσu.

ProcedureA is run on inputH, v, σv . If A aborts thenDG outputs “random”, while ifA does not abortDG

outputs “pseudorandom”.

5 Analysis

In this section we relate the success probability of the forger algorithmF to the success probability of
attacks toG andH. The following result states that ifG is a one-to-one pseudorandom generator andH
is a regular collision-resistant hash function family thenthe GBOTS scheme is existentially secure under
one-chosen-message attack.

Theorem 5.1 Let (V,E) be a directed acyclic graph,G a one-to-one pseudorandom generator, andH a
regular collision resistant family of hash functions, and consider the corresponding GBOTS scheme. Let
F be a forger that succeeds with probabilityδ. Thenδ ≤

(

αǫD + ǫC + 1
2 · (ǫG + ǫH)

)

n whereα ≤ n is
the average number ofVG predecessors of a random vertex in the graph andǫG, ǫH , ǫC , ǫD are the success
probabilities (or advantages) of adversariesIG, IH , CH ,DG as defined in the previous section.

In order to prove the result, we first show that the success probability of the adversariesIG, IH andCH is
tightly related to the aborting probability of procedureA, when called on randomly chosen inputs. We make
this statement more precise below. First, we need some notation.

A labeled cutσ is said to beconsistent with(v, y) ∈ V × (R2 ∪ R) if one of two cases hold:(a) if v ∈ VG

andy = y1; y2 ∈ R2 thenσ(e1) = y1 andσ(e2) = y2 wheree1 ande2 are the edges departing fromv, or
(b) if v ∈ VH andy ∈ R thenσ(e) = y wheree is the only edge departing fromv. The set of all labeled
cutsσ consistent with(v, y) is denoted{σ : Pred(v)y}. In particular, if eitherv ∈ VG andy = G(x) for
x ∈ R chosen uniformly at random, orv ∈ VH andy = H(x1;x2) for x1;x2 ∈ R2 chosen uniformly at
random, the set{σ : Pred(v)y} is denoted{σ:Pred(v)H/G(·)}.

Consider the following experiment. First, we choose a vertex v ∈ VH ∪ VG, a hash functionH ∈ H and a
labeled cutσv ∈ {σ:Pred(v)H/G(·)} uniformly at random. Then we call procedureA on input(H, v, σv).
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(For simplicity’s sake, when clear from the context, we useA(·) to denoteA(H, v, σv)). Let NoAbort

denote the event thatA does not abort in this experiment. The following lemma showsthat the combined
success probability of adversariesIG, IH andCH is equal to the probability of the eventNoAbort.

Lemma 5.2 Let ǫH , ǫG andǫC the advantages of adversariesCH , IG andIH . Let NoAbort be the event as
described above. Then12 · (ǫH + ǫG) + ǫC = Pr [NoAbort ]

Proof: We analyze the success probability of adversariesIH , IG andCH in turn. First, the success prob-
ability ǫH of adversaryIH is the probability that, forx = x1;x2 ∈ R2 andH ∈ H uniformly chosen at
random,H(IH(H,H(x1;x2)))) = H(x1;x2), that is, thatIH returns a pre-image ofH(x1;x2) for a ran-
dom domain pointx1;x2. ForX ∈ {H,G}, let PrX [E ] denote the probability of eventE whenH ∈ H,
v ∈ VX andσv ∈ {σ:Pred(v)H/G(·)} are chosen uniformly at random. Then

ǫH = PrH

[

H(x′) = H(x), x′ ← A(H, v, σv), x
′ 6= abort

]

= (1− PrH

[

H(x′) 6= H(x) | A(·) 6= abort
]

) · PrH [A(·) 6= abort ]

Similarly, for adversaryIG we have

ǫG = (1− PrG
[

G(x′) 6= G(x) | A(·) 6= abort
]

) · PrG [A(·) 6= abort ]

Lastly, recall that AdversaryCH is successful if, after runningA on a randomly chosenv ∈ VH ∪VG, either
G(x) 6= G(x′) if v ∈ VG or H(x) 6= H(x′) if v ∈ VH . Thus,

ǫC =
1

2
·
(

PrH

[

H(x′) 6= H(x) | x′ ← A(·), x′ 6= abort
]

· PrH [A(·) 6= abort ] +

PrG
[

G(x′) 6= G(x) | A(·) 6= abort
]

· PrG [A(·) 6= abort ]
)

Combining the above results and using that|VH | = |VG| the result follows.

As a second step toward proving Theorem 5.1, next lemma showsthat the success probability of the distin-
guisherDG is related to the difference between forger’s success probability and the probability that proce-
dureA does not abort (in the experiment described in the previous lemma).

Lemma 5.3 Let ǫD andδ denote the advantage of distinguisherDG and forgerF respectively, and letα
andNoAbort defined as before. Then

δ ≤ n · (αǫD + Pr [NoAbort ]) .

The following notation will be useful in the proof. For anyv ∈ V , let W (v) = VG ∩ Pred(v) \ {v} denote
the set of all expansion vertices which are predecessors ofv. Also, given a vertexv ∈ V and a vertex
u ∈ W (v), letPredv(≤ u) = ∪u′≤u, u′∈W (v)Pred(u′) the cut formed by the union overu′ ≤ u of all sets
Pred(u′) ⊂ Pred(v). (Recall that≤ is a total order relation overVG) Also, let{σ:Predv(≤ u)} denote
the set of all labeled cuts onPredv(≤ u); as before, fory1; y2 ∈ R2, let {σ:Predv(≤ u)y1;y2

} denote
the set of all labeled cuts compatible with(u, y1; y2). (We stress that the compatibility is with respect to
vertexu, that is,σ(e1);σ(e2) = y1; y2, wheree1,e2 are the edges leaving vertexu). As before, ifx ∈ R is
uniformly distributed, the set{σ:Predv(≤ u)G(x)} is denoted by{σ:Predv(≤ u)G(·)}. Notice that in this
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extended definition,Predv(≤ u) ⊂ Pred(v) and therefore a labeled cut forPred(v) can be computed
from any labeled cut in{σ:Predv(≤ u)}.

Proof of Lemma 5.3: By definition,ǫD = p1−p0, wherep1 andp0 denote the probability thatDG(y1; y2) =

1 when x
R

← R, y1; y2 ← G(x) and the probability thatDG(y1; y2) = 1 when y1; y2
R

← R2, respec-
tively. Consider the following two experiments, which we denoteExp1 andExp0. In the first one, we
chooseH ∈ H uniformly at random,v ∈ VH ∪ VG with probability proportional to|W (v)|, u ∈ W (v)
and σu ∈ {σ:Predv(≤ u)G(·)} uniformly at random; we then computeσv as an extension ofσu by
σv = ΠPred(v)(σu) and finally callA on input(H, v, σv). The second experiment,Exp0, is similar to the

previous one, with the exception thatσu is drawn at random from{Predv(≤ u)y1;y2
} for y1; y2

R

← R2. Let
q1(v

′, u′) andq0(v
′, u′) denote the probability procedureA does not abort inExp1 andExp0 respectively,

conditioned on the event thatv = v′ andu = u′ are chosen in each experiment.

Let α = 1
n

∑

v∈VH∪VG
|W (v)| be the average number of expansion vertices preceding a random vertex in

the graph. We claim that,

p1 =
1

nα
·

∑

v∈VH∪VG

∑

u∈W (v)

q1(v, u) and p0 =
1

nα
·

∑

v∈VH∪VG

∑

u∈W (v)

q0(v, u) (1)

and that for allv ∈ VH ∪ VG, u ∈W (v) ∪ {v}

q0(v, u∗) = q1(v, u) (2)
∑

v∈VH∪VG

q1(v, v) ≥ δ (3)

∑

v∈VH∪VG

q0(v, v∗) = n · Pr [ NoAbort ] (4)

wherew∗ = maxw′<w(w′), denotes the biggest vertex inVG smaller thanw ∈ VG andv = minv∈VG
(v) is

the “smallest” expansion vertex inVG (where “biggest” and “smallest” refer to the≤ ordering relation).

Before proving these claims, we use them to finish the proof ofthe lemma. Using equations (1-4), we have

ǫD =
1

nα

∑

v∈VH∪VG

{q1(v, v)− q0(v, v∗)} ≥
1

nα
· (δ − n · Pr [ NoAbort ])

which gives the desired result.

We now justify the claimed equations (1-4) by analyzing eachthem in turn. To justify the first part of(1),
notice that by definition ofp1 and standard conditioning we have

p1 = Pr
[

A(H, v, σv) 6= abort : v
W

← VG ∪ VH , u
R

←W (v),H
R

←H, x
R

← R,

σu
R

← {σ : Predv(≤ u)G(x)}
]

=
∑

v∈VH∪VG

∑

u∈W (v)

q1(v, u) · Pr [u | v ] · Pr [ v ]

=
∑

v∈VH∪VG

Pr [ v ]

|W (v)|

∑

u∈W (v)

q1(v, u)

wherev
W

← VG ∪ VH means vertexv is drawn from setVG ∪ VH with probability proportional to|W (v)|.
Since, for allv ∈ V , Pr [ v ] = |W (v)|/(nα) Equation (1) holds. The second part of(1) follows from a
similar argument.
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We justify Equation (2) as follows. Fixv ∈ VH ∪ VG andu ∈ W (v) ∪ {v}. Consider experimentExp0,
and assumev andu∗ ∈W (v) are the vertices chosen. First of all, notice thatPredv(≤ u∗) ⊂ Predv(≤ u)
becauseu∗ ≤ u, and thus,σu can be computed fromσu∗ . Second, assumev ∈ VG. Since the labeled cut
σu∗ ∈ σ:Predv(≤ u∗) is chosen uniformly at random, there is no other expansion node in any path from
u′ ≤ u∗ andu, andH is regular, the induced labeled cutσu = ΠPred(u)(σu∗) ∈ {σ:Predv(≤ u)} is such
thatσu(e1);σu(e2) = G(x) for somex ∈ R uniformly distributed (e1 ande2 are edges leaving vertexu).
The same argument whenv ∈ VH boils down toσu(e) = H(x1;x2) for uniformly distributedx1;x2 ∈ R2

ande the only leaving edge ofu. Thus,σu ∈ {σ:Predv(≤ u)R}, andq0(v, u∗) = q1(v, u).

To justify Equation (3) we notice that when distinguisherDG choosesu = v, the distribution of the public
key and signature so computed byA from σu follows the same distribution than the forger expects in the
one-chosen-message attack and, thus, the output of the forger is independent of the choice ofv.

∑

v∈VH∪VG

q1(v, v) =
∑

v∈VH∪VG

Pr
[

F(m,σm) = (m′, σ′),m 6= m′, v ∈ µ(m), v 6∈ µ(m′)
]

≥ δ

where the last inequality follows from that, for anym,m′ ∈M, if m 6= m′ there always existsv ∈ VH ∪VG

such thatv ∈ µ(m) but v 6∈ µ(m′), otherwisem andm′ would be comparable.

It remains to prove Equation (4). This follows fromq0(v, v∗) = q1(v, v) = Pr [NoAbort | v ] and from
vertexv ∈ VH ∪ VG being chosen uniformly at random in the experiment that defines the eventNoAbort.
This concludes the proof of the lemma.

Proof of Theorem 5.1: Immediate from Lemma 5.2 and Lemma 5.3.

6 Extensions

In this section we consider extensions of the basic securityresults presented in the previous sections. The
first one concerns relaxing the security assumptions about the underlying primitivesG,H. The second
applies the ideas in our proof of security to build provably secure signature schemes with special algebraic
properties.

6.1 Universal one-way hash functions:

The collision-resistance requirement on the hash functionfamilyH can be relaxed touniversal one-wayness
as defined by Naor and Yung [NY89]. Recall that universal one-way hash function (UOWHF) families
are such that it is hard to find a colliding pairx 6= x′ such thatH(x) = H(x′) but the adversary must
selectx beforeH is given to it. We modify our GBOTS construction, so that for each compression vertex
v a different randomly chosen functionHv ∈ H is used. The security argument in this case is modified
as follows. In order to computeσ⊤ = Π{v⊤}(σv), algorithmA(H, v, σ) picks a hash functionHv ∈ H
uniformly at random anew to compute the label of each edge leaving a compression vertex with the exception
of the edge corresponding tov, for which H is used. Thus, adversaryIH needs only to pick ahead a
random valuex ∈ R2 and, once given a target hash functionH, to use procedureA to invert H(x).
Similarly, forCH it suffices to guess the compression vertex where the collision given by Lemma 4.1 will be
found, and use the target hash functionH there. AdversariesIH andCH remain the same. The remaining
security argument does not differ substantially from the one presented in Section 5. We point out that
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regular universal one-way hash functions and one-to-one pseudorandom generators can be constructed from
any one-way permutation [NY89, CMR98].

6.2 Mapping messages to edges (or vertices):

In this paper, we associate values to edges in the graph and functions to vertices. This approach can be
seen as dual to the one used in [BM94], which associates values to vertices and function to edges. Both
approaches are essentially equivalent from a syntax viewpoint and in terms of the class of schemes they
yield. From a foundational viewpoint, we believe that the approach presented here is conceptually simpler.

6.3 Graph based algebraic signature schemes:

Algebraic signature schemes are signature schemes in whichsignatures for (certain) new messages can be
produced by combining signatures with a restricted set of operations. Since these operations do not require
knowledge of the secret key, algebraic signatures are not signature schemes in the standard interpretation
of the term, but they are a new cryptographic primitive. Theyare useful in contexts where possession of
signatures of certain messages automatically entitles possession of signatures of new messages, such as in
credential systems. Credentials may be implemented as signed documents which specify capabilities (or
attributions) to be granted to the credential holder. Thus,if implemented with the appropriate algebraic sig-
nature, the possession of one or more credentials (signatures) will automatically enable the computation of
the entitled credentials without the involvement of the original signer. Algebraic signatures were originally
suggested by Rivest [MR02].

Informally, an algebraic signature scheme consists of three algorithmsAS = (KG,Sig,Vf) and a two set of
operationsO = {f1, f2, . . . , fq} andS = {g1, g2, . . . , gs}, where eachfi (resp.gi) is a function that takes
one or more messages (resp. signatures) as inputs and produces one message (resp. signature) as output.
KG, Sig, andVf are as in any digital signature scheme (see Section 2.1). We require that ifδ1, . . . , δt are
valid signatures form1, . . . ,mt thengi(δ1, . . . , δt) is a valid signature forfi(m1, . . . ,mt) for all appro-
priatefi, gi. Notice that signatures so generated are subject to existential forgery under chosen message
attacks, so a new definition of security is required. Letspan(O, {m1, . . . ,mt}) be the set of all messages
computable from{m1, . . . ,mt} by applying functions inO on them. The security of algebraic signatures
is defined in terms of unforgeability against chosen-message attacks, where by convention, the forger is
deemed successful only if it outputs a signature of a messagem not in the setspan(O, {m1, . . . ,mt}).

Graph-based one-time signatures can be used to build very efficient algebraic signatures. Indeed, for prac-
tical functionsfi, it is possible to build graphs such thatfi is embedded in the order relation⊑. That is, if
fi(m1,m2) = m3, then there exists a labelingσ:µ(m3) which can be computed from labellingsσ1:µ(m1)
andσ2:µ(m2) and it is consistent with them.

Notice that the proof of security of Section 4 and Section 5 can be easily modified to prove that our (graph-
based) algebraic signature schemeAS is secure. Indeed, the only technical difference is that theforgerF
can request multiple signaturesσm:µ(m). This can be easily factored in by modifying ProcedureA so each
signatureσm is computed fromσv (orA aborts, if not possible). Since the forgerF must output(m′, σ′) for
m′ not in span(O,∪mµ(m)), there must existv ∈ ∪mµ(m) sov 6∈ µ(m′) and the argument goes through.
The rest of the proof is identical and, in particular, adversariesIG, IH , CH , DG remain the same, given
black-box access toA.
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Figure 6: DAG for algebraic scheme with operations{∪, subset}.

6.4 Concrete constructions of Algebraic Signature Schemes:

In this section we sketch concrete graph constructions thatyield algebraic signature schemes with respect
to (a) union and subset operations, and (b) union and super-intersection operations. (Recall that the super-
intersection of setsA andB, denotedA⊙B, is the collection of all setsS such thatA∩B ⊆ S ⊆ A ∪B.)

LetM be the set of all subset ofn elements, where we denote such elements ast0, . . . , tn−1. Consider the
graph shown in Figure 6. (Although the figure shows verticesvi having indegree and outdegree1, and the
verticesv′⊥ andv′⊤ having outdegree and indegreen, respectively, it is easy to cast this graph as one with the
properties considered in this work. Indeed, it suffices to replace each vertexvi with a small subgraph of2
compression and2 expansion vertices, and to connect eachvi to bothv′⊥ andv′⊤ by simple tree construction).

We map every setS into the set of verticesµ(S) = C defined as follows: verticesv⊥ andv′⊥ are inC, and
verticesvi are inC if and only if ti 6∈ S. NoticeC is a valid cut for any setS. Given a labeled cutσ:µ(S)
the labeling for anyC ′ = µ(S′) such thatS′ ⊆ S can be computed by projectingσ:µ(S) onC ′. The union
operation is defined similarly, since given labeled cutsσ1:µ(S1) andσ2:µ(S2) a consistent labeled cut for
µ(S1 ∪ S2) can be computed.

A algebraic signature scheme for the{∪,⊙} operations can be build by using two graphsG1 andG2 each
one like the one described above. In this case, given a setS, we define the cut on the first graph by using the
above shown rule, while for the second case we “invert” the condition, and we include the corresponding
vertices only ifti ∈ S. It is an easy exercise to verify that such mapping allows thecomputation of labeled
cuts corresponding to the union and super-intersection of two setsS1 andS2, given labeled cutsσ1:µ(S1)
andσ2:µ(S2).

7 Conclusions

In this paper, we analyze graph based signatures from a security viewpoint and give sufficient conditions,
namely the existence of one-way permutations, under which the signature scheme is secure in the standard
complexity model (no random oracles). Additionally, we present a security proof which uses a new hybrid
argument where the number of hybrid distributions may be exponential. We believe this technique is of
independent interest. We also propose a new paradigm for theconstruction of algebraic signature schemes,
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which are new useful primitives for applications where controlled “forgeability” of signatures is needed, as
in credential systems.
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