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2 � Alejandro Hevia and Marcos Kiwi1. INTRODUCTIONAn ingenious new type of cryptanalytic attack was introduced by Kocher in [Kocher1996]. This new attack is called timing attack. It exploits the fact that cryptosys-tems often take slightly di�erent amounts of time on di�erent inputs. Kocher gaveseveral possible explanations for this behavior, among these: branching and con-ditional statements, RAM cache hits, processor instructions that run in non-�xedtime, etc. Kocher's most signi�cant contribution was to show that running timedi�erentials can be exploited in order to �nd some of a target system's private infor-mation. Indeed, in [Kocher 1996] it is shown how to cryptanalyze a simple modularexponentiator. Modular exponentiation is a key operation in Di�e{Hellman's keyexchange protocol [Di�e and Hellman 1976] and the RSA cryptosystem [Rivestet al. 1978]. A modular exponentiator is a procedure that on inputs k; n 2 N,n 6= 0, and y 2Zcomputes (yk mod n). In the cryptographic protocols mentionedabove n is public and k is private. Kocher reports that if a passive eavesdropper canmeasure the time it takes a target system to compute (yk mod n) for several inputsy, then he can recover the secret exponent k. Moreover, the overall computationale�ort involved in the attack is proportional to the amount of work done by the vic-tim. For concreteness sake and clarity of exposition we now describe the essence ofKocher's method for recovering the secret exponent of the �xed{exponent modularexponentiator shown in Fig. 1.Input: y 2ZCode: z = 1Let kl � � � k0 be k in binaryFor i = l down to 0 doz = z2 mod nIf ki = 1 then z = z � y mod nOutput: z.Fig. 1. Modular exponentiator.The attack allows someone who knows kl � � �kt to recover kt�1. (To obtain theentire exponent the attacker starts with t = l+1 and repeats the attack until t = 1.)The attacker �rst computes l � t+ 1 iterations of the for loop. The next iterationrequires the �rst unknown bit kt�1. If the bit is set, then the operation (z = z�y modn) is performed, otherwise it is skipped. Assume that each timing observationcorresponds to an observation of a random variable T = e +Pli=0 Tl�i where Tl�iis the time required for the multiplication and squaring steps corresponding to thebit kl�i and e is a random variable representing measurement error, loop overhead,etc. An attacker that correctly guesses kt�1 may factor out of T the e�ect ofTl; : : : ; Tt�1 and obtain an adjusted random variable of known variance (providedthe times needed to perform modular multiplications are independent from eachother and from the measurement error). Incorrect guesses will produce an adjustedrandom variable with a higher variance than the one expected. Computing thevariance is easy provided the attacker collects enough timing measurements. Thecorrect guess will be identi�ed successfully if its adjusted values have the smallervariance.



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 3In theory, timing attacks can yield some of a target system's private information.In practice, in order to successfully mount a timing attack on a remote cryptosystema prohibitively large number of timing measurements may be required in order tocompensate for the increased uncertainty caused by random network delays. Nev-ertheless, there are situations where we feel it is realistic to mount a timing attack.We now describe one of them. Challenge{response protocols are used to establishwhether two entities involved in communication are indeed genuine entities and canthus be allowed to continue communication with each other. In these protocols oneentity challenges the other with a random number on which a predetermined cal-culation must be performed, often including a secret key. In order to generate thecorrect result for the computation the other device must posses the correct secretkey and therefore can be assumed to be authentic. Many smart cards, in partic-ular dynamic password generators (tokens) and electronic wallet cards, implementchallenge{response protocols (e.g. the message authentication code generated ac-cording to the ANSI X9.26 [Menezes et al. 1997, page 651] standard). It is expectedthat extensive use will be made of smart cards based in general purpose program-mable integrated circuit chips. Thus, the speci�c functionality of each smart cardwill be achieved through programming. The security of these smart cards will beprovided using tamper{proof technology and cryptographic techniques. The abovedescribed scenario is an ideal setting in which to carry out a timing attack. Thewidespread availability of a particular type of card will make it easy and inexpensiveto determine the timing characteristics of the system on which to mount the attack.Later, the obtaining of precise timing measurements (e.g. by monitoring or alteringa card reader or by gaining possession of a card) could be used to retrieve some ofthe secret information stored in the card by means of a timing attack. Thus, cardsthat implement challenge{response protocols where master keys are involved couldgive rise to a security problem. (See [Dhem et al. 1998] for a discussion of a practi-cal implementation of a timing attack against an earlier version of the CASCADEsmart card.)New unanticipated strains of timing attacks might arise. Hence, timing attacksshould be given some serious consideration. This work contributes, ultimately, infurthering our understanding of the strengths of this new cryptanalytic technique,the weaknesses it exploits, and the ways of eliminating the possibility of it becomingpractical.Kocher implemented the attack against the Di�e{Hellman key exchange proto-col. He also observed that timing attacks could potentially be used against othercryptosystems, in particular against the Data Encryption Standard (DES). Thisclaim is the motivation for this work.2. SUMMARY OF RESULTS AND ORGANIZATIONWe study the vulnerability of one of the most widely used cryptosystems in theworld, DES, against a timing attack. The starting point of this work is the ob-servation of Kocher [Kocher 1996] that in DES's key schedule generation processmoving nonzero 28-bit C and D values using a conditional statement which testswhether a one{bit must be wrapped around could be a source of non{constant en-cryption running times. Hence, he conjectured that a timing attack against DES



4 � Alejandro Hevia and Marcos Kiwicould reveal the Hamming weight of the key.1 We show that although Kocher'sobservation is incorrect (for the DES implementations that we analyzed), his con-jecture is true. But, we do more.In Sect. 3 we give a brief description of DES.In Sect. 4.1 we describe a timing attack against DES that assumes the attackerknows the target system's design characteristics. We �rst discuss experimentalresults that show that a computationally inexpensive timing attack against twoimplementations of DES could yield enough information to recover the Hammingweight of the DES key being used. Hence, assuming the DES keys are randomlychosen, an attacker can recover approximately 3:95 bits of key information. To thebest of our knowledge, this is the �rst implementation of a timing attack against asymmetric cryptosystem. (Since the preliminary version of this work appeared twotiming attacks against RC5 have been reported [Handschuh and Heys 1999].) InSect. 4.1.1 we describe computational experiments that measure the threat impliedby an actual implementation of a timing attack against DES.Recovering 3:95 bits of a DES key is a modest improvement over brute forcekey search. But, recovering the Hamming weight of the key is, potentially, morethreatening. In particular, an adversary can restrict attention to keys determinedto have either a signi�cantly low or high Hamming weight. Although such keys maybe rare once the adversary determines that one such key is being used the ensuingkey search may be signi�cantly sped up. Thus, the adversary can balance the timeto �nd such rare keys with the time needed for key recovery. In some systems, eventhe recovery of a single (although rare) key may be of serious concern.In Sect. 4.1.2 we identify the sources of the dependencies between the encryptiontime and the key's Hamming weight in the implementations of DES that we studied.The most relevant are conditional statements.In both DES implementations that we analyzed the encryption time T is roughlyequal to a linear function of the key's Hamming weight X plus some normallydistributed noise e. Since a DES key is a 56 bit long string and keys are chosenuniformly at random in the key space, we have that X � Binom (56; 1=2).2 Thus,for some �, �, and �,T = �X + � + e ; X � Binom (56; 1=2) ; e � Norm �0; �2� :In Sect. 4.2 we show that it is not necessary, in order to perform a timing attackagainst DES, to assume that the design characteristics of the target system areknown. Indeed, we propose two statistical methods whereby a passive eavesdroppercan infer from timing measurements all the target system's design informationrequired to successfully mount a timing attack against DES. To the best of ourknowledge, this is the �rst proof that it is possible to infer a target system's designcharacteristics through timing measurements.We would like to stress that all of the timing attacks described in this workonly require precise measurements of encryption times but no knowledge of theencrypted plaintexts or produced ciphertexts.1 Recall that the Hamming weight of a bitstring equals the number of its bits that are nonzero.2 Recall that the distribution Binom (N;p) corresponds to the distribution of the sum of Nindependent identically distributed f0;1g-random variables with expectation p.



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 5In Sect. 5 we propose a \blinding technique" that can be used to eliminate almostall of the execution time di�erentials in the analyzed DES implementations. Thisblinding technique makes both DES implementations that we study impervious tothe sort of timing attack we describe in this work. Finally, we discuss under whichconditions all, and not only the Hamming weight of, a DES key might be recoveredthrough a timing attack.2.1 Related WorkModern cryptography advocates the design of cryptosystems based on sound math-ematical principles. Thus, many of the cryptosystems designed over the last twodecades can be proved to resist many sophisticated, mathematically based, cryptan-alytic techniques (provided one is willing to accept some reasonable assumptions).Traditionally, the techniques used to attack such cryptosystems exploit the algorith-mic design weaknesses of the cryptosystem. On the other hand, timing attacks takeadvantage of the decisions made when implementing the cryptosystems (speciallythose that produce non-�xed running times). But, timing attacks are not the onlytype of attacks that exploit the engineering aspects involved in the implementationof cryptosystems. Indeed, recently Boneh, Lipton, and DeMillo [Boneh et al. 1997]introduced the concept of fault tolerant attacks. These attacks take advantage of(possibly induced) hardware faults. Boneh et al. point out that their attacks showthe danger that hardware faults pose to various cryptographic protocols. They con-clude that even sophisticated cryptographic schemes sealed inside tamper{resistantdevices might leak secret information.A new strain of fault tolerant attacks, di�erential fault analysis (DFA), was pro-posed by Biham and Shamir [Biham and Shamir 1997]. Their attack is applicableto almost any secret key cryptosystem proposed so far in the open literature. DFAworks under various fault models and uses cryptanalytic techniques to recover thesecret information stored in tamper{resistant devices. In particular, Biham andShamir show that under the same hardware fault model considered by Boneh et al.,the full DES key can be extracted from a sealed tamper{resistant DES encryptorby analyzing between 40 and 200 ciphertexts generated from unknown but relatedplaintexts. Furthermore, in [Biham and Shamir 1997] techniques are developed toidentify the keys of completely unknown ciphers sealed in tamper{resistant devices.The new type of attacks described above have received widespread attention (seefor example [English and Hamilton 1996; Marko� 1996]).3. THE DATA ENCRYPTION STANDARDDES is the most widely used cryptosystem in the world, specially among �nancialinstitutions. It was developed at IBM and adopted as a standard in 1977 [NBS1977]. It has been reviewed every �ve years since its adoption.DES has held up remarkably well against years of cryptanalysis. But, faster andcheaper processors allow, using current technology, to build a reasonably pricedspecial purpose machine that can recover a DES key within hours [Stinson 1995,pp. 82{83]. For concreteness sake, we provide below a brief description of DES. Fora detailed description see [NBS 1977]. More easily accessible descriptions of DEScan be found in [Schneier 1996; Stinson 1995].DES is a symmetric or private{key cryptosystem, i.e., a cryptosystem where the
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��6 6 6- - --- 2 161 CiphertextKey scheduleEncryptionPlaintext . . . . . Perm.Perm.Key Fig. 2. DES encryption process.parties that wish to use it must agree in advance on a common secret key whichmust be kept private. DES encrypts a message (plaintext) bitstring of length 64using a bitstring key of length 56 and obtains a ciphertext bitstring of length 64.It has three main stages. In the �rst stage the bits of the plaintext are permutedaccording to a �xed initial permutation. In the second stage 16 iterations of acertain function are successively applied to the bitstring resulting from the �rststage. In the �nal stage the inverse of the initial permutation is applied to thebitstring obtained in the second stage.The strength of DES resides on the function that is iterated during the encryptionprocess. We now give a brief description of this iteration process. The input toiteration i is the output bitstring of iteration i � 1 and a 48 bit long string, Ki.Actually, each Ki is a permuted selection of bits from the DES key. The stringsK1; : : : ;K16 comprise what is called the key schedule. During each iteration a 64bit long output string is computed by applying a �xed rule to the two input strings.The encryption process is depicted in Fig. 2.Decryption is done with the same encryption algorithm but using the key schedulein reverse order K16; : : : ;K1.The best traditional cryptanalytic attacks known against DES are due to Bihamand Shamir [Biham and Shamir 1991; Biham and Shamir 1993] and Matsui [Matsui1994a; Matsui 1994b]. However, they are not considered a threat to DES in practicalenvironments (see [Menezes et al. 1997, pp. 258{259]).4. TIMING ATTACK OF DESWe now consider the problem of recovering the Hamming weight of the DES keyof a target system by means of a timing attack. We �rst address the problem, inSect. 4.1, assuming the attacker knows the design of the target system. We thenshow, in Sect. 4.2, that this assumption can be removed.4.1 Timing Characteristics of Two Implementations of DESWe studied the timing characteristics of two implementations of DES. The �rstone was obtained from the RSAEuro cryptographic toolkit [Kapp 1996], henceforthreferred to as RSA{DES. The other implementation of DES that we looked at wasone due to Louko [Louko 1992], henceforth referred to as L{DES. We studied bothimplementations on a 120-MHz PentiumTM computer running MSDOSTM. Theadvantage of working on an MSDOSTM environment is that it is a single processoperating system. This facilitates carrying out timing measurements since there are
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EncryptionFig. 4. L-DES.no other interfering processes running and there are less operating system mainte-nance tasks being performed. We measured time in microseconds (�s).In our �rst experiment we �xed the input message to be the bitstring of length64 all of whose bits are set to 0. For each i 2 f 0; : : : ; 56 g we randomly chose 32keys of Hamming weight i. For each selected key we encrypted the message a totalof 16 times. During each encryption we measured the time it took to generate thekey schedule and the total time it took to encrypt the message. The plots, for eachof the implementations that we looked at, of the average (for each key) encryptionand key schedule generation times are shown in Fig. 3 and Fig. 4.Only obvious outliers were eliminated. In fact the only outliers that we noticedappeared at �xed intervals of 216 clock ticks. These outliers were caused by systemmaintenance tasks.



8 � Alejandro Hevia and Marcos KiwiA randomly chosen DES key has a Hamming weight between 23 and 33 withprobability approximately 0:86. Thus, the most relevant data points shown inFig. 3 and Fig. 4 are those close to the middle of the plots.For various keys chosen at random we performed 216 time measurements (for eachkey) of the encryption and key schedule generation times. After discarding obviousoutliers we graphed the empirical frequency distributions of the collected data. Theempirical distributions we observed were roughly symmetric and concentrated in afew contiguous values (usually three or four). This concentration of values is due tothe fact that we were only able to perform time measurements with an accuracy of0:8381�s and that time di�erentials among encryptions performed under the samekey were rarely larger than 3:0�s. (For an explanation of how to measure time withthis precision on an MSDOSTM environment see Appendix A). The above suggests,as one would expect, that the variations on the running time observed when thesame process is executed many times over the same input are due to the e�ect ofnormally distributed random noise.For di�erent values of i 2 f 8; : : : ; 48 g we randomly chose 28 keys of Hammingweight i. After throwing away outliers we graphed the empirical frequency dis-tributions of the collected data. The empirical frequencies observed looked likenormal distributions with small deviations (typically 1:2�s for L{DES and 1:8�sfor RSA{DES). We conclude that the variations on the encryption and key schedulegenerations times observed among keys of same Hamming weight are mostly due tothe total number of bits of the key that are set and not by the position where theseset bits occur. Thus, the e�ect of which bits are set among keys of same Hammingweight is negligible.We repeated all the experiments described so far but instead of leaving the inputmessage �xed we chose a new randomly selected message at the start of each en-cryption process. All the results reported above remained (essentially) unchanged.There was only a negligible increase in the measured deviations.Assuming that the attacker knows the design of the target system, he can buildon his own a table of the average encryption time versus the Hamming weight ofthe key. The clear monotonically increasing relation between the encryption timeand the Hamming weight of the key elicited by our experiments is a signi�cantimplementation 
aw. It allows an attacker to determine the Hamming weight of theDES key. Indeed, the attacker has to obtain a few encryption time measurementsand look in the table he has built to determine the key's Hamming weight fromwhich such time measurements could have come. Thus, the attacker can recoverH(wt(K)) � 3:95 bits of key information (H denotes the binary entropy function).Remark 1. A precise estimation of the Hamming weight of the DES key can beachieved by means of a timing attack if two situations hold. First, accurate timemeasurements can be obtained. Second, the variations in the encryption and key{schedule generation time produced by di�erent keys with identical Hamming weightis small compared to the time variations produced by keys with one more or one lessset bit. We have noticed that the latter situation approximately holds. An exactestimation of Hamming weight of the DES key can be achieved if the attacker canaccurately perform time measurements of several encryptions of the same plaintext.But, this requires a more powerful attacker, one that should be capable of �xing the



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 9Input: M 2 f0;1g64, C 2 f0;1g64, � 2 R.=� Where � is the time it takes DES to generate ciphertext C from messageM �=Code: For i = 0 up to 56,Let l be such that jf j : jTj � � j < jTl � � j gj = i.3Let Kl = fK 2 f0;1g56 : wt(K) = l g.Randomly choose m in f0; : : : ; jKlj � 1 g.For j = 0 up to jKlj � 1,Let K be the (m+ j) mod jKlj lexicographically �rst elem. of Kl.If (DES encryption of M under key K yields C) then return(K).Fig. 5. Key recovery procedure based on a timing attack that reveals the Hamming weight ofthe key.input message fed into the encryption process.More remarkable than the established monotonically increasing relation betweenthe encryption times and the Hamming weight of the key is the linear dependencythat exists between the two measured quantities. The correlation factors for thedata shown in Fig. 3 and Fig. 4 are 0:9760 and 0:9999 respectively. The sharp lineardependency between encryption times and Hamming weight allows an attacker toinfer the target system's information which is required to carry out the attackdescribed above. This topic is discussed in the next section.4.1.1 Experimental Results. In this section we describe a computational exper-iment that shows the expected reduction in the size of the key space search thatwould be achieved by the implementation of the timing attack described in theprevious section.Assume that for every i 2 f 0; : : : ; 56 g we have a Ti 2 R corresponding to theexpected time it takes the target DES implementation to encrypt a message witha key of Hamming weight i. Furthermore, assume that Ti < Ti+1 (as supportedby our experimental observations). Consider the procedure of Fig. 5 for recoveringthe DES encryption key through a timing attack that exploits the facts reportedin Sect. 4.1. Note that it is possible to experimentally determine the expectednumber of keys that this procedure would try without having to actually execute it.Indeed, if the DES encryption of plaintext M under key K generates the ciphertextC in � -�s, then the expected size of the key space searched by the given procedure is,��fK 0 2 f0; 1g56 : jTwt(K0) � � j < jTwt(K) � � j g��+ 12 ��fK 0 2 f0; 1g56 : Twt(K0) = Twt(K) g�� :For both DES implementations we studied we randomly chose DES message/keypairs, measured the encryption time, and computed the expected number of keysthat the procedure of Fig. 5 would have tried before �nding the correct encryptionkey. From our discussion of Sect. 4.1 it follows that the best that one can hopefor is to have to try half of the keys whose Hamming weight equals that of thecorrect encryption key. This corresponds to 3:24 percent of all the key space, sinceif pk = �56k � 1256 then 0:0324 � 2�P56k=0 pk log2 pk=2. We found that for RSA{DES 5:303 In the (unlikely) event that l is not uniquely de�ned, perturb � by a value uniformly chosen inthe interval [��; �], where � is tiny compared to the precision of the timing measurements.



10 � Alejandro Hevia and Marcos Kiwik 14 16 18 20 22 24 26 28pk 0.008 0.058 0.295 1.090 2.973 6.044 9.224 10.615RSA 0.004 0.131 0.387 1.155 2.221 4.274 6.943 9.865Louko 0.004 0.029 0.425 0.646 1.654 3.362 5.366 6.472k 30 32 34 36 38 40 42 44pk 9.224 6.044 2.973 1.090 0.295 0.058 0.008 0.001RSA 8.744 6.054 2.088 1.098 0.459 0.074 0.004 0.001Louko 5.337 3.768 1.770 0.571 0.172 0.043 0.004 0.001Table 1. Results of computational experiment.percent of the key space would have been searched, in average, before �nding thecorrect encryption key. For L{DES, the percentage goes down to 3:84 percent.Table 1 shows in more detail some of the data collected in our experiments.Columns are labeled according to the weight of the DES key. We denote the weightof a key by k. The second row represents the percentage of the total key spacecorresponding to DES keys of Hamming weight k (with a precision of 0:0005). Wedenote this value by pk. For each DES key of weight k we estimated (16000 � pktimes) the expected percentage of the key space that would have been searchedbefore �nding the encryption key. Each of theses estimates was based on 16000 � pkmeasurements in order to insure that at least 16 measurements were considered forevery estimate associated to nonzero pk's. The last two rows of Table 1 show, foreach DES implementation and some key weights, the average of the values obtained.Recovering 3:95 bits of a DES key gives a modest improvement in the timeneeded to recover the key. But, Table 1 implies that a timing attack that revealsthe Hamming weight of the key is potentially more threatening. In particular, anadversary can restrict attention to keys determined to have either a signi�cantlylow or high Hamming weight. The adversary can do this by performing timingmeasurements until one is found to be either signi�cantly low or high. Once theadversary detects such a rare key the subsequent key search can be much less thanthe usual amount. Thus, the adversary can balance the time to �nd such rare keyswith the time needed for key recovery. In some systems the recovery of even asingle key may cause total disruption and/or forward vulnerability.4.1.2 Sources of the dependency between DES encryption time and key's Ham-ming weight. The key schedule generation in L{DES is carried out by a procedurecalled des set key. This procedure computes the resulting key schedule bitstringby performing a bitwise OR with some pre-computed constants. For each bit of thekey, such bitwise or's are computed if and only if the key bit is set. For that purpose,it uses a piece of code of the following form: If (condit) then instr1; : : : ; instr32;else instr. The number of times condit is true turns out to be exactly the Ham-ming weight of the DES key. This is the main source of running time di�erentialsin L{DES.In RSA{DES's key schedule generation code there is also a procedure that con-tains two conditional statements. These conditional statements are used in thecomputation of the subkeys. More precisely, they implement a �xed permutation



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 11PC2 of some bits of the key. Their code is of the following form: If (condit) theninstr. The total number of times condit is true is equal to the sum of the Ham-ming weight of all subkeys. Thus, the number of times instr is executed is directlyproportional to the Hamming weight of the DES key.As mentioned in Sect. 2, Kocher [Kocher 1996] conjectured that in DES's keyschedule the rotation of nonzero bits using conditional statements could give riseto running time di�erentials. In the implementations of DES we analyzed we foundno evidence to support this conjecture.Finally, note that it is clear from Fig. 4 that in L-DES there is a source of non{�xed running times which does not depend on the key schedule generation process.This is evidenced by the non{constant distance between the two curves shown inFig. 4. The source of these time di�erentials is not due to conditional statements.We were not able to identify the cause of this dependency nor able to exploit it inorder to recover all of the DES key.4.2 Derivation of the Timing Characteristics of the Target SystemAs discussed in Sect. 4.1, in both DES implementations that we studied the en-cryption time was roughly equal to a linear function of the key's Hamming weightplus some normally distributed random noise. In this section we exploit this factin order to derive all the necessary information needed to perform a timing attackthat reveals the Hamming weight of the target system's DES key.First we need to introduce some notation. Assume we have m measurements onthe time it takes the target system to perform a DES encryption. The time mea-surements might correspond to encryptions performed under di�erent DES keys.For i 2 f 1; : : : ; k g, denote by Ki the i-th key that is used by the target system dur-ing the period that timing measurements are performed. We make the (realistic)assumption that K1; : : : ;Kk are chosen at random in f0; 1g56 and independent ofeach other. Let X(i) denote the Hamming weight of key Ki. Thus, the distributionof X(i) is a Binom (56; 1=2). Since we are assuming that the Ki's are chosen in-dependently we have that X(1); : : : ; X(k) are independent random variables. Notethat successive time measurements can correspond to encryptions of the messageunder the same key. For i 2 f 1; : : : ; k g, let �i 2 f 1; : : : ;m g be the index of thelast measurement corresponding to an encryption performed with key Ki. For con-venience's sake, let �0 = 0. Hence, 0 = �0 < �1 < : : : < �k�1 < �k = m. Denote byIi the set of indices that correspond to time measurements under key Ki, i.e. fori 2 f 1; : : : ; k g let Ii def= fn 2 N : �i�1 < n � �i g. For i 2 f 1; : : : ; k g and j 2 Iilet T (i)j be the random variable representing the time it takes the target system toperform the j-th encryption of the message with key Ki. Finally, for j 2 Ii let e(i)jbe a random variable representing the e�ect of random noise on the j-th encryptionwith key Ki. Thus, the e(i)j 's represent measurement inaccuracies and the targetsystem's running time 
uctuations.We now have all the notation necessary to formally state the problem we wantto address. Indeed, the linear dependency between the encryption time and theHamming weight of the key in both DES implementations that we studied implies



12 � Alejandro Hevia and Marcos Kiwithat there exists �, �, and �, such that for all i 2 f 1; : : : ; k g and j 2 IiT (i)j = �X(i) + � + e(i)j ; X(i) � Binom (56; 1=2) ; e(i)j � Norm �0; �2� (1)Our problem is to infer from timing measurements the parameters �, �, and � forwhich (1) holds. We address two variations of this problem. In Sect. 4.2.1 we showhow to deal with the case where the �i's are known. In Sect. 4.2.2 we show how tohandle the case where the �i's are unknown. The former case is the most realisticone. Indeed, a standard cryptanalytic assumption is that the attacker knows thekey management procedure of the target system.4.2.1 Known � 0is. We propose two alternative statistical methods for deducingthe parameters �, �, and � for which (1) holds. One method is based on maximumlikelihood estimators and the other one on asymptotically unbiased estimators.Since the following discussion heavily relies on standard concepts and results fromprobability and statistics we refer the reader unfamiliar with these subjects to [Feller1966; Ross 1988; Zacks 1971] for background material and terminology.Maximum Likelihood Estimators: Let X = (X(i) )ki=1, T (i) = (T (i)j )j2Ii , andT = (T (i) )ki=1. Thus, X;T (1); : : : ; T (k), and T denote random variables. Further-more, let x = (xi )ki=1, t(i) = ( t(i)j )j2Ii , and t = ( t(i) )ki=1 be the actual values takenby X, T (i), and T respectively.Let fT (t;�; �; �) be the marginal distribution of T given �, �, and �. For a�xed collection of time measurements t the values of �, �, and � that maximizefT (t;�; �; �) are the maximum likelihood estimators we are looking for. The maxi-mum likelihood estimators are the values most likely to have produced the observedtime measurements. They can also be regarded as the values minimizing the lossfunction � log fT (t;�; �; �). This explains why maximum likelihood estimators arethought to be good predictors. Thus, in order to determine good estimators for �,�, and � we �rst compute fT (t;�; �; �).Proposition 1. The marginal distribution of T given �, �, and � isfT ( t ; �; �; � ) = � 12��2�m2 kYi=1 EX(i) h e� 12�2 Pj2Ii (t(i)j �(�X(i)+�))2 i :Proof. Let fX;T (�;�; �; �), fT=X=x(�;�; �; �) and fX (�;�; �; �) denote the jointdensity function of X and T , the density function of T given X = x, and theprobability distribution of X respectively. For convenience's sake, we henceforthomit �, �, and � from the expressions for fX;T , fT=X=x, and fX .Observe that the independence of the X(i)'s and e(i)j 's imply that the T (i)'s areindependent. Thus, the joint density function of X and T given �, �, and � isfX;T (x; t ) = fX (x ) � fT=X=x( t ) = kYi=1 fX(i) (xi ) � fT (i)=X(i)=xi ( t(i) ) ;where the last equality follows since the X(i)'s are independent and the T (i)'s areindependent.



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 13From (1) we get that T (i)j given X(i) = xi distributes like a Norm ��xi + �; �2�.Moreover, for �xed i, the T (i)j 's are independent random variables. Hence,fT (i)=X(i)=xi ( t(i)) = Yj2Ii� 12��2� 12 e� 12�2 (t(i)j �(�xi+�))2= � 12��2� jIij2 e� 12�2 Pj2Ii (t(i)j �(�xi+�))2 :Since X(i) � Binom (56; 1=2), we know that fX(i) (xi) = 1256 �56xi�. Thus,fX;T (x; t ) = � 12��2�m2 kYi=1 1256�56xi� e� 12�2 Pj2Ii (t(i)j �(�xi+�))2 :The marginal distribution of T given �, �, and � equals the sum, over all valuestaken by x, of fX;T (x; t). Hence,fT ( t ; �; �; � ) = � 12��2�m2 kYi=1 56Xxi=0 1256�56xi� e� 12�2 Pj2Ii (t(i)j �(�xi+�))2 :The conclusion follows directly from the previous equality and the fact that X(i) �Binom (56; 1=2).For a given t the values of �, �, and � that maximize the right hand side of theexpression in Proposition 1 are the maximum likelihood estimators sought. As is of-ten the case when dealing with maximum likelihood estimators it is di�cult to solveexplicitly for them. (See [Zacks 1971, Ch. 5, x2] for a discussion of computationalroutines that can be used to calculate maximum likelihood estimators.)The advantage of the above described approach for determining the parametersrelevant for carrying out the timing attack is that it uses all the available timingmeasurements. But, it does not allow us to determine how many measurements aresu�cient in order to obtain accurate estimations of the parameters sought. Thealternative approach described below solves this problem.Asymptotic Estimators: Our goal is to �nd good estimators b�, b�, and b� for�, �, and �. Moreover, we are interested in determining the asymptotic (on thenumber of timing measurements) behavior of such estimators. In particular, theirasymptotic distributions, their limiting values, and their rate of convergence.We will now derive good predictors for �, �, and �. We start with a key observa-tion. Since the expectation and variance of a Binom (56; 1=2) are 28 and 14 respec-tively, taking the expectation and variance in (1) yields that for all i 2 f 1; : : : ; k gand j 2 Ii�T def= E hT (i)j i = 28 � �+ � ; �2T def= VhT (i)j i = 14 � �2 + �2 : (2)Hence, if we knew �T , �2T , and �2 we could solve for � and � in (2). This suggeststhat if we can �nd good estimators for �T , �2T , and �2, then we can derive goodestimators for � and �. We now provide candidates for c�T , c�2T , and c�2, the esti-mators for �T , �2T , and �2 respectively. But, we �rst need to introduce additional



14 � Alejandro Hevia and Marcos Kiwinotation. LetT (i) def= (Xj2Ii T (i)j )=jIij ; T def= ( kXi=1 T (i))=k ; e(i) def= (Xj2Ii e(i)j )=jIij :De�nec�T def= T ; c�2T def= 1k kXi=1 1jIij Xj2Ii(T (i)j �T )2 ; c�2 def= 1k kXi=1 1jIijXj2Ii(T (i)j �T (i))2 :Solving for � and � in (2) yields that the two natural candidates for b� and b�,the estimators for � and �, areb� def= 1p14 (c�2T �c�2)1=2 ; b� def= c�T � 28 � b� :We now prove that b� is well de�ned.Proposition 2. c�2T �c�2 = 1k kXi=1(T (i) � T )2 � 0 :Proof. Just note thatc�2T = 1k kXi=1 1jIij Xj2Ii(T (i)j � T (i) + T (i) � T )2 = c�2 + 1k kXi=1(T (i) � T )2:We henceforth denote a chi{square distribution with l degrees of freedom by �2l .Proposition 3. If jI1j = : : : = jIkj = n, then the distribution of c�2T � c�2 is(approximately) 1k (14 ��2 + 1n �2)�2k�1:Proof. Since T (i)j = �X(i) + � + e(i)j , we have that T (i) = �X(i) + � + e(i).Since e(i) is the average of n independent Norm �0; �2� random variables, e(i) �Norm �0; �2=n�. In addition, the de Moivre{Laplace Theorem [Hazewinkel 1988,pp. 397] states that the Binom (m; p) distribution can be expressed in terms ofthe standard normal distribution. Moreover, if m ! 1, then such an expressionis exact, and if mp(1 � p) � 10, then the expression provides a good approxima-tion of the Binomial distribution [Ross 1988, pp. 170{171]. Thus, since X(i) �Binom (56; 1=2), the distribution of X(i) is well approximated by a Norm (28; 14).Hence, since X(i) is independent of e(i) and the sum of independent normal distrib-utions is a normal distribution, it follows that T (i) is approximately distributed asa Norm��T ; 14�2+ �2n �. The desired conclusion follows from a classical statisticsresult [Hogg and Tanis 1997, Theorem 5.3.4] and Proposition 2.Proposition 4. If jI1j = : : : = jIkj = n and �2=n is negligible, then pk(b�2��2)converges (in distribution)4 to a Norm �0; 3�4� plus some small constant error termwhen k !1.4 Recall that when X1; X2; : : : ; X are random variables on some probability space (
;F;P) it is



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 15Proof. First, note that if we neglect �2=n then Proposition 2 and our de�nitionof b� imply that the distribution of b�2 = 114(c�2T �c�2) is (approximately) a �2k �2k�1.Second, recall that the sum of the squares of l independent identically distributednormal random variables with zero mean and variance equal to 1 is distributedaccording to a �2l . Equivalently, the sum of l independently distributed �21 randomvariables is distributed according to a �2l . Hence, since the expectation and varianceof a �21 random variable are 1 and 3 respectively, the Central Limit Theorem impliesthat pk � 1( 1k�1�2k�1 � 1), converges (in distribution) to a Norm (0; 3).Putting the two observations together shows that pk � 1(b�2��2) converges (indistribution) to a Norm �0; 3�4� plus some small constant term when k!1. Thestated result follows immediately.Theorem 1. If jI1j = : : : = jIkj = n, �2=n is negligible and k is su�cientlylarge, then the distribution of b� is (approximately) a Norm ��; 34k�2�.Proof. The Law of Large Numbers implies that c�2T and c�2 converge (almostsurely)5 to �2T and �2 respectively. Hence, by continuity, b� = 1p14 �c�2T �c�2�1=2converges (almost surely) to � = 1p14 ��2T � �2�1=2 when k ! 1. This fact andProposition 4 yield that if k!1, then pk(b�� �) = pk(b�2��2)b�+� converges (in dis-tribution) to a Norm �0; 34�2� plus some small error term. The desired conclusionfollows immediately.Remark 2. Theorem 1 provides an approximation to the distribution of b�. Theapproximation error arises from three sources. The �rst one is the use of the deMoivre{Laplace Theorem to express a Binom (56; 1=2) in terms of a Norm (28; 14).The second one is due to the use of the Central Limit Theorem to approximate thedistribution of an estimator by its limit distribution. The �nal source of erroris due to the use of the Law of Large Numbers to approximate an estimator byits asymptotic value. These three sources of approximation error can be boundedthrough the de Moivre{Laplace Theorem, Berry{Essen's inequality[Hazewinkel 1988,pp. 369], and Chebyshev's inequality[Ross 1988, pp. 337] respectively. A bound onthe accumulated approximation error shows that Theorem 1 is fairly accurate.Corollary 1. If jI1j = : : : = jIkj = n, �2=n is negligible and k is su�cientlylarge, then P[ jb�� �j � �j�j ] ; Ph jb� � �j � �j�j i � 1k�2O(1) :Proof. The bound concerning b� follows from Theorem 1 and Chebyshev's in-equality[Ross 1988, pp. 337]. In order to prove the other bound recall that b� =said that Xn converges in distribution to X as n !1, if P[Xn � x ]! P[X � x ] as n!1 forall points x at which FX(x) = P[X � x ] is continuous.5 Recall that when X1; X2; : : : ; X are random variables on some probability space (
;F;P) it issaid that Xn converges almost surely to X as n ! 1, if f! 2 
 : Xn(!)! X(!); as n !1gis an event whose probability is 1.



16 � Alejandro Hevia and Marcos Kiwic�T � 28 � b� and � = �T � 28 � �, thusPh jb� � �j � �j�j i = P[ jc�T � �T � 28(b�� �)j � �j�T � 28 ��j ]� P[ jc�T � �T j � �j�T j ] +P[ jb�� �j � �j�j ]� 1�2 � 1�2TV[c�T ] + 1�2V[ b� ]� ;where the last inequality is a consequence of applying Chebyshev's inequality twice.Note that from Theorem 1 we have that V[ b� ] = 34k�2. Moreover, V[c�T ] =1kVhT (i) i = 1k (14 ��2 + �2=n). The result follows.Corollary 1 tells us that with probability at least 1� �, it su�ces to take n timemeasurements for each of 1�O( 1�2 ) di�erent keys to approximate � and � to withina multiplicative factor of (1� �).4.2.2 Unknown � 0is. The assumption that the �i's are known made in the previoussection is not strictly necessary since an attacker may alternate between performingseveral timing measurements over a short period of time and resting for an appro-priately long period of time. Hence, the problem of deducing the target system'sdesign characteristics reduces to the case in which the �i's are known provided thatthe keys are not changed too often and the attacker's resting period is longer thana key's lifetime. (Changing keys too often creates a key management problem forthe cryptosystem's user. Thus, it is reasonable to assume that a key's lifetime isnot excessively short.)We now discuss another approach for handling the case of unknown �i's underthe assumption that the attacker has access to several identical copies of the targetsystem, e.g., several copies of a smart card supporting a DES based challenge{response protocol. Lets make the reasonable assumption that the target system'skeys are independently generated. In this case the attacker may perform, overa short period of time, several timing measurements for each copy of the targetsystem. If the key's are not changed too often the attacker can deduce the targetsystem's relevant timing characteristics as in Sect. 4.2.1. Indeed, the attacker canassume that all the timing measurements arising from the same copy of the systemcome from encryptions performed under the same key. Since keys correspondingto di�erent copies of the target system are independently generated and the copiesof the system are identical, the problem of deducing the target system's designcharacteristics reduces to the case in which the �i's are known.Tests of statistical hypothesis give rise to another alternative for handling the caseof unknown �i's. Indeed, consider the situation in which an attacker determines mtiming measurements t1; : : : ; tm arising from random variables satisfying (1). As-sume keys are not changed too often, i.e., at least n � m timing measurementscome from encryptions performed under the same key. Thus, for each j such thatn � j � m � n the attacker can perform a test of equality of two normal distri-butions[Hogg and Tanis 1997, pp. 372{385] on the samples of tj�n+1; : : : ; tj andtj+1; : : : ; tj+n. The signi�cance level of such tests allows the attacker to determinethe measurements around where a change of key occurs. Discarding the measure-ments around where the attacker suspects a change of key occurs yields a sequence



Strength of Two Data Encryption Standard Implementations under Timing Attacks � 17of timing measurements from which the target system's design characteristics canbe deduced as in the case of known �i's.5. FINAL COMMENTSIn [Kocher 1996] a \blinding technique" similar to that used for blind signatures[Chaum 1983] is proposed in order to prevent a timing attack against a modularexponentiator. For both implementations of DES we studied, blinding techniquescan be adapted to produce (almost) �xed running time for the key schedule genera-tion processes. Indeed, let K be the DES key of Hamming weight wt(K) whose keyschedule we want to generate. Let K 0 be a bitstring of length 56 generated as fol-lows: randomly choose bwt(K)2 c (respectively d56�wt(K)2 e) of the bits of K which areset to 1 (respectively 0) and set the corresponding bits of K 0 to 0 (respectively 1).Denote the bitwise xor ofK andK 0 byK�K 0 . Note that wt(K 0) = wt(K�K 0) = 28when the Hamming weight ofK is even, and wt(K 0) = 28 and wt(K�K 0) = 29 whenthe Hamming weight of K is odd. Modify the key schedule generation processes sokey schedules for keys K 0 and K �K 0 are generated. Note that the work requiredfor this is independent of the Hamming weight ofK. Hence, no sources of non{�xedrunning time are introduced during this step. Let K 01; : : : ;K 016 and K1; : : : ;K16 bethe key schedules obtained. Recall that Ki (respectively K 0i) is a permuted se-lection of bits from the key K � K 0 (respectively K 0). Thus, the key schedule ofK is K1 � K 01; : : : ;K16 � K 016. Figure 6 plots the encryption times of RSA{DESas previously explained. Note the very clear reduction in time di�erentials. Thereduction is achieved at the expense of increasing the encryption time by a factorof approximately 1:6. Unfortunately, this blinding technique still leaks the parityof the weight of the original DES key, i.e., 1 bit of information. (A careful look atFig. 6 con�rms this fact). This fact can be �xed using the idea developed above.Indeed, for a given DES key K one can generate three DES keys K1, K2, and K3,two of them with Hamming weight 28 and one with Hamming weight 27. Of thethree keys one will be spurious meaning that its key schedule should be generatedand the results discarded. The xor of the key schedules generated by the two non{spurious keys will give rise to the key schedule sought. When the Hamming weightof the original DES key is even (respectively odd) the spurious key will be the oneof Hamming weight 27 (respectively one of the keys of Hamming weight 28).We have seen that the main source of non{�xed running times were caused bythe key schedule generation procedure. In many fast software implementationskey setup is an operation which is separated from encryption. This would thwart atiming attack if encryption time is constant. But, in several systems it is impracticalto precompute the key schedule. For example, in smart cards pre{computations areundesirable due to memory constraints.Overall both DES implementations we studied are fairly resistant to a timingattack. This leads us to the question of whether a timing attack can �nd all of theDES key and not only its Hamming weight. Although we did not succeed in tuningthe timing attack technique in order to recover all the bits of a DES key, we identi�edin L{DES a source of non-�xed running time that is not due to the key generationprocess. Indeed, the di�erence in the slopes of the curves plotted in Fig. 4 showsthat the encryption time, not counting the key generation process, depends on thekey used. This fact is a weakness that could (potentially) be exploited in order to
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RSA−DESFig. 6. RSA{DES and modi�ed RSA{DES encryption times.recover all of the DES key. It opens the possibility that the time it takes to encrypta message M with a key K is a non{linear function of both M and K, e.g., it is amonotonically increasing function in the Hamming weight of M �K. This wouldallow a timing attack to recover a DES key by carefully choosing the messages to beencrypted. We were not able to identify clear sources of non{linear dependenciesbetween time di�erentials and the inputs to the DES encryption process in eitherof the DES implementations that we studied. Nevertheless, we feel that the partialinformation leaked by both implementations of DES that we analyzed suggests thatcare must be taken in the implementation of DES, otherwise, all of the key couldbe compromised through a timing attack.ACKNOWLEDGMENTSWe are grateful to Shang{Hua Teng for calling to our attention the work of Kocher.We thank Raul Gouet, Luis Mateu, Alejandro Murua, and Jaime San Martin forhelpful discussions. We also thank Paul Kocher for advise on how to measure run-ning times accurately on an MSDOSTM environment. Finally, we thank an anony-mous referee for pointing out that the blinding technique of Sect. 5 was leakinginformation about the parity of the Hamming weight of the key.APPENDIXA. APPENDIXStandard C routines allow to measure time events in an MSDOSTM environmentwith an accuracy of 54:9254�s [Heidenstrom 1995]. In order to measure with a timeprecision of 0:8381�s on a PentiumTM computer running MSDOSTM we followedKocher's advice [Kocher 1997]. He suggested reading the value of a high{precisiontimer by accessing port 64. Whenever this timer over
ows to 65536 it generatesone interrupt. Interrupts occur once every 54925:4�s. Hence, one can measure timeintervals with a precision of 54925:4�s=65536 � 0:8381�s. It is also a good ideato run from a RAM disk. For more information on how to perform accurate time
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