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Abstract

This work stresses the fact that all current proposals for electronic voting schemes disclose
the final tally of the votes. In certain situations, like jury voting, this may be undesirable.
We present a robust and universally verifiable Membership Testing Scheme (MTS) that allows,
among other things, a collection of voters to cast votes and determine whether their tally belongs
to some pre–specified small set (e.g., exceeds a given threshold) — our scheme discloses no
additional information than that implied from the knowledge of such membership. We discuss
several extensions of our basic MTS. All the constructions presented combine features of two
parallel lines of research concerning electronic voting schemes, those based on MIX–networks
and in homomorphic encryption.
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1 Introduction

In a typical trial by jury in the United States, twelve jurors deliberate in private. A foreman
appointed by the judge among the jurors presides the deliberations. Jurors might be called upon to
decide on several different counts according to a policy which may be complicated. Nevertheless, the
simplest and most important jury verdicts are of the binary type, e.g., innocent/guilty. In criminal
cases unanimity is required in order to reach a verdict. In civil cases there are different standards,
nine out of twelve votes are representative numbers. Jury deliberations proceed in discussion rounds
followed by voting rounds. Voting is performed by raising hands. Hence, a typical requirement of
an election protocol, privacy of the votes, is not achieved. This opens the possibility of biases on
decisions due to jurors fear of rejection, a posteriori reprisals by interested parties, and/or follow-
the-leader kind of behavior. In fact, just knowledge of tallies can cause undesirable follow-the-pack
type conducts among jurors.

A ballot box system could be implemented in order to guarantee privacy. A subset of the jury
might be held responsible for tallying the votes and communicating to the others whether a verdict
has been reached. Still, this discloses the final tally to a subset of the jury and allows them to
manipulate the deliberation process. An outside third party (e.g., a judge, government employee,
etc.) could be responsible for tallying the votes, but this would cast doubts on the whole process
since it allows for outside jury manipulation, could cause undesirable leaks on how the jury is
leaning, etc.

We provide an electronic drop in procedure for jury voting in the presence of a curious media,
interested parties, dishonest court employees, and conflictive jury members, that reveals nothing
besides whether the final tally exceeds or not a given threshold value. We stress that we do not
question the adequacy of the way in which juries deliberate. There are good reasons to encourage
jurors to express clearly and openly their opinions. The point is that the way in which juries
deliberate is just one familiar example, among many, where it is clear that the voting procedure
itself has an effect on the final outcome. In particular, our work is motivated by the observation
that voting procedures that disclose final tallies may be undesirable. This situation occurs whenever
small groups wish to make a yes/no type decision by majority vote, e.g., whether to accept or reject
a paper submitted to a cryptology conference — the cryptographers program committee problem,
to confirm or not someone as president of a committee or chair of a department, whether or not to
send an invitation to a speaker, to decide whether to go forth with a given investment.

Our main procedure also provides a novel solution for the problem of computing partial information
from private data, which includes among others, the ’scoring’ problem. In the latter, a person is
willing to answer some very sensitive questions to a group of evaluators (say for a job interview
or insurance application). Answers are coded as integer values and might be weighted differently
depending on the question. Evaluators would like to learn whether the weighted score of the answers
T exceeds a given threshold or belongs to a set S of “satisfactory” values. The respondent wishes
to keep private the answers to each individual question. A solution satisfying both requirements
can be obtained by using a threshold voting scheme. Here, answers to different questions are seen
as votes coming from different individuals. The (weighted) sum T of these “votes”is tested for
membership in the set S of “satisfactory” values. This work’s main scheme provides a solution to
this problem and guarantees that only one bit of information is released: whether the “tally” T
belongs or not to the given set S.

The first electronic voting scheme proposals focused on breaking the correspondence between the
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voters and the vote casted. Afterward, several other desirable properties of electronic voting schemes
(besides correctness, privacy, and efficiency) were identified, e.g., robustness, availability, non–
duplication, universal verifiability, non–coercibility. Electronic voting protocols satisfying different
subsets of the latter properties were designed. Nevertheless, all of them reveal the final vote tally. In
this work we propose a cryptographic procedure for addressing this problem and stress its relevance
by describing other applications.

1.1 Related Work

Voting schemes where one wants only one bit of information regarding the outcome, like the ones
discussed in the previous section, can be cast in the framework of secure multi–party computation.
Thus, plausibility results, asserting that such voting schemes can be in principle built, can be
obtained. Indeed, the application of general techniques like the ones proposed in [33, 14], and [8]
yield such constructions. Unfortunately, the solutions thus obtained do not exhibit some of the
properties one desires of an electronic voting scheme (e.g., non–interaction among voters). On
the contrary, homomorphic voting protocols, MIX–network based protocols, and verifiable secret
sharing protocols are, in general, more efficient and require less communication than general purpose
secure multi-party computation protocols.

Electronic voting schemes are one of the prime examples of secure multi–party computation. This
partly explains why they have been intensively studied. The first electronic election scheme in the
literature was proposed by Chaum [21]. His work is based on a realization of a computational secure
anonymous channel called the MIX–network. Anonymous channels and election schemes are closely
related. Indeed, an anonymous channel hides the correspondence between senders and receivers.
An election scheme requires hiding the correspondence between the voters and their votes. Since
Chaum’s work, several other electronic election schemes based on untraceability networks have been
proposed. Among the earlier ones are [22, 12, 50, 54, 27]. More recent proposals of these type are
those of [44, 40, 9, 34]. Improving the efficiency and robustness of MIX-networks has also been a
major focus of attention [45, 36, 1, 37, 2, 25, 46, 39, 3, 28, 44, 40, 34]. (For actual implementations
of MIX–networks see [52] and the references therein.)

In contrast to the above mentioned schemes [17, 7, 5] introduced ones that do not rely on the use of
anonymous channels. In these schemes, ballots are distributed over a number of tallying authorities
through a special type of broadcast channel. Rather than hiding the correspondence between the
voter and his ballot, the value of the vote is hidden. Among these latter type of schemes are [53, 6].
More recent proposals are [18, 19, 51, 35, 4].

The problem of testing whether some value belongs to a predefined set without revealing the tested
value or the content of the set, is related to performing “blind queries on databases”, or private
information retrieval [15, 29]. Indeed, in the case of a single voter with vote v, and assuming the
contents of set S are not known to the voter, a procedure that answers whether or not v is in set S,
yields a method of searching for v on the “database” S without revealing neither the target value
v nor the contents of the database. The reader is referred to [42] for an in-depth survey on this
topic.

Recently, Boudot [11] proposed a scheme to securely prove that a committed number T lies in a
specific interval [a, b]. Although efficient, it strongly relies on the prover’s knowledge of T . However,
in the jury setting there is no single entity allowed to know the tally T . Hence, as presented
and without resorting to secure multi-party computation techniques, Boudot’s scheme does not
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immediately provide a solution to the jury voting problem. In contrast, our proposed scheme can
handle not only interval sets, but also arbitrary sets.

This paper’s proposal crucially relies on the feasibility of checking whether two ciphertexts encode
the same plaintext, without any party performing a decryption. A procedure for efficiently per-
forming such equality test, for ElGamal type ciphertexts, has also been used in [20, 38, 10]. But,
it at least dates back to [30].

1.2 Our Contributions

This work’s first contribution is that it stresses the fact that all current proposals for electronic
voting schemes disclose the final tally of the votes. As discussed above this may be undesirable
in some situations. Our main technical contribution is a cryptographic protocol to which we
refer as Membership Testing Scheme (MTS). Given a fixed sequence of integers c1, . . . , cn and sets
S1, . . . , Sn, it allows a collection of parties P1, . . . , Pn to cast values v1, . . . , vn, where vi ∈ Si, and
determine whether

∑
i civi belongs to some pre–specified small set S.

Based on our MTS we obtain a drop in replacement electronic procedure for a civil case jury voting
protocol by letting n = 12, c1 = . . . = cn = 1, S1 = . . . = Sn = {0, 1}, and S = {9, 10, 11, 12}
(simpler schemes can be devised for criminal type trials, so we will focus on the more challenging
civil type case). For the sake of simplicity of exposition, we discuss our results in the terminology of
jury systems. Thus, for notational and mnemonic purposes we refer to parties P1, . . . , Pn as voters
and denote them by V1, . . . , Vn, to the values v1, . . . , vn as votes, and to

∑
i civi as the tally. Our

main MTS satisfy the following properties:

• Eligibility: Only authorized voters can vote and none more than once.

• Correctness: If all participants are honest, the correct output is generated.

• Robustness: The system can recover from the faulty or malicious behavior of any (reason-
ably sized) coalition of participants.

• Computational Privacy: A voter ballot’s content will be kept secret from any (reasonably
sized) coalition of parties that does not include the voter.

• Universal Verifiability: Ensures that any party, even a passive observer, can check that
ballots are correctly cast, only invalid ballots are discarded, and the published final tally is
consistent with the correctly cast ballots.

• No–duplication: No one can duplicate anyone else’s vote.

We also exhibit variants to our main MTS that establish trade-offs between some of the above
listed features and efficiency of the overall scheme.

In our scheme the voters send in a ballot identical to those proposed in [19], i.e., an ElGamal
ciphertext representing his/her vote plus a proof that the ciphertext is indeed a valid ballot. Hence,
as in [19], both the computational and communication complexity of the voter’s protocol is linear
in the security parameter k — thus optimal.1 Moreover, for any reasonable security parameter, the

1Throughout, a modular multiplication of O(k) bit sized numbers will be our unit with respect to which we
measure computational costs.
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voters’ protocol remains the same even if the number of voters varies. Assuming m authorities, the
work performed by each authority is O(((m+k)|S|+n)k). Moreover, the computational complexity
of verifying each authority’s work is proportional to the work performed by each authority. As in [19]
the work needed to verify that a voter sent in a well formed ballot is O(k) per voter.

Our MTS proposal combines features of two parallel lines of research concerning electronic voting
schemes, those based on MIX–networks (a la [21]) and in homomorphic encryption schemes (a la [17,
7, 5]). We use homomorphic (ElGamal) encryption in order to hide the vote tallies. Specifically, our
MTS relies on the homomorphic properties of ElGamal to construct a ciphertext of the vote tallies.
Moreover, it uses MIX–networks (ElGamal based) in order to hide the value of the members of S.
This is achieved by generating a randomly permuted list of ciphertexts of elements in S. We rely
on special properties of the ElGamal cryptosystem in order to perform an equality test between the
tally’s ciphertext and each of the ciphertexts corresponding to an element of S. Thus, our MTS
proposal crucially relies on the possibility of testing whether two ElGamal ciphertexts correspond
the the same plaintext, without any of the parties involved performing a decryption.

To the best of our knowledge, the only other cryptographic protocols which rely both on homo-
morphic encryption schemes and MIX–networks are the independent recent proposals of Hirt and
Sako [35] and Jakobsson and Juels [38]. But, our MTS combines both theses schemes in a novel
way. Indeed, Hirt and Sako’s proposal uses a MIX–network in order to randomly permute, for each
voter, potential ballots, while Jakobsson and Juels’ scheme permutes truth tables rows to compute
the output of each Boolean gate of a circuit. In contrast, our MTS relies on MIX–networks in
order to randomly permute the elements of the pre–specified set S on which one desires to test
membership.

The applications we provide for our MTS constitute novel uses of MIX–networks. A feature of these
applications is that they rely on the capacity, that the overwhelming majority of MIX–network pro-
posals exhibit, to randomly permute and encrypt a list of ElGamal ciphertexts. On the contrary,
they do not use the decryption capabilities that accompany most MIX–network proposals. By com-
bining MIX–networks with efficient and available cryptographic protocols (namely, verifiable secret
sharing and homomorphic voting), this paper gives a first (practical) solution to the mentioned
jury voting problem that does not rely on general secure multi-party computation techniques.

We propose several implementations of a MTS. Our first proposal relies on the homomorphic
encryption based electronic election scheme of Cramer, Gennaro and Schoenmakers [19] and the
MIX–network of Abe [1]. We also discuss alternative implementations of our MTS based on the
MIX–network proposals of [36, 25, 28, 44, 40, 34] as opposed to that of [1]. Our different MTS
implementations exhibit different properties depending on the previous work we use to build them.

Organization: In Section 2, we informally outline the protocol and discuss the building blocks on
which our basic MTS proposal relies. In Section 3, we describe and analyze our MTS and use it for
building an electronic drop in replacement for a jury voting protocol that reveals nothing besides
whether the final tally exceeds or not a given threshold. In Section 5 and Section 6 we discuss
variants and other applications of our basic scheme. We conclude in Section 7 discussing a feature
of all of the MTSs that we propose and some desirable future developments.
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2 Preliminaries

We work in the model introduced by Benaloh et al. (see [17, 7, 5] and [19]), where participants
are divided into n voters V1, . . . , Vn and m authorities A1, . . . , Am called active parties. Al parties
are limited to have polynomially–bounded computational resources and have access to a so called
bulletin board whose characteristics we describe below.

In the sequel we assume that a designated subset of active participants on input 1k, where k is
a security parameter, jointly generate the following system values: a k bit long prime p, a large
prime q such that q divides p−1, and generators g and h of an order q multiplicative subgroup Gq

of Z
∗
p. The generators g and h are assumed to be uniformly and independently chosen among the

generators of Gq. One way for participants to collectively generate these system values is to run
the same probabilistic algorithm over jointly generated uniformly and independent coinflips.

Conventions: Henceforth, unless otherwise specified, all arithmetic is performed modulo p except
for arithmetic involving exponents which is performed modulo q. Throughout this paper, x ∈R Ω
means that x is chosen uniformly at random from Ω. Furthermore, negligible and overwhelming
probability correspond to probabilities that are at most ν(k) and at least 1−ν(k) respectively, where
ν(k) is a function vanishing faster than the inverse of any polynomial in the security parameter k.
A non–negligible probability is said to be significant.

2.1 Protocol Overview

The protocol consists of five main stages. (Setup, MIX, Verification, Voting and Output). In the
setup phase, shared parameters subsequently used in the protocol are selected. In the mix phase,
the list of encryptions of the elements in a fixed set S is shuffled by a MIX–network. To shuffle
the list means permuting it while re–randomizing each of its entries. Hence, the MIX-network’s
output is a randomly permuted list of re–encryptions of elements in S. Next, in the voting stage,
each voter posts an encryption of his vote (using the authorities’ jointly generated public–key)
and a publicly verifiable proof that the encryption corresponds to a valid vote [19]. Using the
homomorphic property of the underlying encryption scheme the authorities proceed to compute
the encryption of the tally. Finally, in the output stage, each element of the MIX–network’s output
list is compared with the encryption of the tally to test whether they encrypt the same plaintext.
This stage is performed in such a way that the authorities do not actually decrypt the tally nor
the encryption of any element in the shuffled list. Moreover, no information concerning any of the
plaintexts involved is revealed. Instead a “blinded” copy of the difference between the tally and
each element in the shuffled list is implicitly decrypted. The protocol relies on the fact that discrete
exponentiation is injective to unequivocally identify an encryption of 0, and therefore, when two
encrypted values are the same. The verification stage checks whether all previous phases were
correctly performed.

2.2 Building Blocks

Bulletin board: The communication model used in our MTS consists of a public broadcast
channel with memory, usually referred too in the literature as bulletin board. Messages that pass
through this communication channel can be observed by any party including passive observers.
Nobody can erase, alter, nor destroy any information. Every active participant can post messages
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in his own designated section of a bulletin board. This requires the use of digital signatures to
control access to distinct sections of the bulletin board. Here we assume a public–key infrastructure
is already in place. This suffices for computational security. Note that it is implicitly assumed
that denial–of–service attacks are excluded from consideration (see [19] for a discussion of how to
implement a bulletin board in order to achieve this).

Distributed Key Generation Protocol (DKG): A DKG protocol allows parties A1, . . . , Am

to respectively generate private outputs s1, . . . , sm, called shares, and a public output y = gs such
that the following requirements hold:

• Correctness: There is an efficient procedure that on at least t+1 shares submitted by honest
parties and the public values produced by the DKG protocol, outputs the unique secret value
s, even if up to t shares come from faulty parties. Honest parties coincide on the public key
y = gs and s ∈R Zq.

• Secrecy: No information on s can be learned by the adversary except what is implied by the
value y = gs (for a formal definition in terms of simulatability see [32]).

The first DKG protocol was proposed by Pedersen [48]. Henceforth in this work, DKG refers to
the protocol presented in [32] and shown to be secure in the presence of an active adversary that
can corrupt up to t < n/2 parties.

ElGamal Encryption and Robust (threshold) Proof of Equality of Encryptions:
Our MTS relies on a robust threshold version of the ElGamal cryptosystem [26] proposed in [19].
Recall that in ElGamal’s cryptosystem x ∈ Gq is encrypted as (α, β) = (gr, yrx) for r ∈R Zq, where
y = gs is the public key and s is the secret key. In a robust threshold version of the ElGamal cryp-
tosystem, the secret key and public key are jointly generated by the intended ciphertext recipients
by means of a DKG protocol like the one described above.

A robust threshold ElGamal cryptosystem has a feature on which all our MTS proposals rely. This
property allows checking whether a ciphertext encodes the plaintext 1 without either decrypting
the message nor reconstructing the secret s. We now recall the discussion in [30] on how to
perform such check efficiently. Indeed, assume (α, β) is an ElGamal encryption of message x,
that is (α, β) = (gr, yrx). Verifying whether it is an encryption of x = 1 boils down to checking if
(αs′)s = βs′ , where s′ is a randomly distributed shared secret that effectively “blinds” the decryption
of (α, β). The aforementioned equality can be verified by m parties each holding distinct shares
s1, . . . , sm and s′1, . . . , s

′
m of the secrets s and s′ without reconstructing either secret. To achieve

this, participant j commits to her secret shares sj and s′j by posting yj = gsj and y′j = gs′j in her
designated area of the bulletin board. Then, three Distributed Exponentiation (DEx) protocols are
executed (two for computing α′ = αs′ and β′ = βs′ and the last one to check that (α′)s = β′). Such
protocol on input α outputs αs by means of the following steps:

1. Participant j posts ωj = αsj and proves in zero knowledge that logg yj = logα ωj using the
protocol of [23] for proving equality of discrete logs, described in Appendix A. The protocol
satisfies special soundness and is honest–verifier zero–knowledge [19]. This suffices for our
application. In order to make the protocol non–interactive the Fiat–Shamir heuristic is used.
This requires a cryptographically strong hash function. We henceforth refer to this non–
interactive proof as Proof–Log(g, yj ;α, ωj).
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2. Let Λ denote any subset of t+1 participants who successfully passed the zero knowledge proof
and let λj,Λ denote the appropriate Lagrange interpolation coefficients. The desired value can
be obtained from the following identities:

αs =
∏

j∈Λ

ω
λj,Λ

j , λj,Λ =
∏

l∈Λ\{j}

l

l − j
.

ElGamal Ballots and Efficient Proofs of Validity: In our MTS each voter will post on
the bulletin board an ElGamal encryption. The encryption is accompanied by a proof of validity
that shows that the ballot is indeed of the correct form. To implement this, consider a prover who
knows x ∈ {x0, x1} and wants to show that an ElGamal encryption of x, say (α, β) = (gr, yrx), is
indeed of this form without revealing the value of x. The prover’s task amounts to showing that
the following relation holds:

logg α ∈ {logy(β/x0), logy(β/x1)} .

Building on [16], an efficient witness indistinguishable (honest–verifier zero–knowledge) proof of
knowledge for the above relation was proposed in [19]. For completeness sake we review it as well
as a non–interactive version of it in Appendix B. Henceforth, Proof–Ballot{x0 ,x1}(α, β) denotes
this (non–interactive) proof.

Universally Verifiable MIX–network: A MIX–network for ElGamal ciphertexts consists of
a bulletin board and a collection of authorities called the MIX–servers. It takes a list of ElGamal
ciphertexts, permutes them according to some (secret) permutation and outputs an ElGamal re–
encryption of the original list (without ever decrypting the original list of ciphertexts).

We now describe a MIX–network proposal due to Abe [1] which in addition to the aforementioned
properties also satisfies: correctness, robustness, privacy, and universal verifiability. MIX–servers
first run the DKG protocol and jointly generate a secret s and a public y. Initially, the bulletin
board contains a list of ElGamal ciphertexts ((G0,l,M0,l))l where M0,l = mly

t0,l and G0,l = gt0,l

for ml ∈ Gq and t0,l ∈R Zq. (To avoid the attack shown in [49] a proof of knowledge of t0,l must
accompany (G0,l,M0,l).) The list of ElGamal ciphertexts is re-randomized and permuted by the
cascade of MIX–servers. Server j chooses a random permutation πj of S, picks tj,l ∈R Zq for each
l, reads ((Gj−1,l,Mj−1,l))l from the bulletin board, and posts in the bulletin board ((Gj,l,Mj,l))l
where

Gj,l = Gj−1,πj(l)g
tj,l , and Mj,l = Mj−1,πj(l)y

tj,l .

Processing proceeds sequentially through all servers.

Lemma 2.1 ([1]) Under the intractability of the Decision Diffie–Hellman problem, given correctly
formed ((Gj−1,l,Mj−1,l))l and ((Gj,l,Mj,l))l, no adversary can determine πj(l) for any l with prob-
ability significantly better than 1/|S|.

An additional protocol, referred to as Protocol–Π, is executed in order to prove the correctness
of randomization and permutation to external verifiers as well as convince honest servers that
they have contributed to the output, i.e., no one has canceled the randomization and permuta-
tion performed by the honest servers (with success probability significantly better than a random
guess). For completeness sake we review this protocol as well as a non–interactive version of it
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in Appendix C. A non–interactive version of Protocol–Π can be derived through standard tech-
niques. We henceforth denote this (non–interactive) version by Proof–Π. (See details in [1].)

Our MTS can be based on any re-encrypting MIX–network with the mentioned characteristics.
Other alternatives will be discussed later on.

3 Membership Testing Scheme (MTS)

In what follows, N denotes the cardinality of the set S for which one seeks to verify whether it
contains the vote tally. Also, henceforth, i runs over {1, . . . , n}, j runs over {1, . . . ,m}, and l runs
over S. We work in the model described in the previous section where the active set of participants
is V1, . . . , Vn (the voters) and A1, . . . , Am (the authorities). Voters and authorities might overlap.

Basic MTS Protocol

Input

1. Public Input: System parameters, i.e., a k bit long prime p, a prime q > n that divides p− 1
and generators g and h of an order q multiplicative subgroup Gq of Z

∗
p (elements g and h are

uniformly and independently generated). A set S ⊂ {1, . . . , n}.

2. Private Input for voter Vi: A vote vi ∈ {0, 1}.

Goal

To determine whether
∑

i vi belongs to S without revealing anything else besides this bit of
information.

Setup Phase

1. Using the DKG protocol A1, . . . , Am jointly generate the public value y = gs where s ∈R Gq

and the private shares s1, . . . , sm. Authorities commit to their share sj of s by posting yj = gsj

in their designated bulletin board area.

2. Using the DKG protocol, authorities jointly generate, for each l ∈ S, the public value y l = gs′
l

where s′l ∈R Zq and the private shares s′l,1, . . . , s
′
l,m. Authorities commit to their share s′l,j of

s′l by posting y′l,j = gs′
l,j in their designated area of the bulletin board.

MIX Phase

1. Let ((G0,l,M0,l))l be a list such that G0,l = 1 and M0,l = h−l for each l ∈ S.

2. Authority Aj chooses at random a permutation πj of {1, . . . , N}, for each l picks tj,l ∈R Zq,
and posts the list ((Gj,l,Mj,l))l such that for each l ∈ S,

Gj,l = Gj−1,πj(l)g
tj,l and Mj,l = Mj−1,πj(l)y

tj,l .

10



Verification Phase

Authorities cooperate to issue Proof–Π, a honest–verifier zero–knowledge (non–interactive)
proof that shows that they know random factors and permutations that relate ((G0,l,M0,l))l
with ((Gm,l,Mm,l))l. Each authority signs Proof–Π in order to insure verifiers of the presence
of an authority they can trust. Each authority checks the proof. If the check succeeds the
result is declared VALID. If it fails, dishonest authorities are identified (and removed) by
means of the tracing capabilities that Proof–Π provides. The remaining authorities restart
from the beginning of the MIX Phase.

Voting Phase

Voter Vi chooses ri ∈R Zq and posts an ElGamal encryption representing his vote vi, say
(αi, βi) = (gri , yrihvi), and Proof–Ballot{h0,h1}(αi, βi). Each authority checks the proof. If
the check fails the ballot is declared incorrect.

Output Phase

1. Each authority computes α =
∏

i

αi and β =
∏

i

βi over all correctly issued ballots.

2. Using the DEx protocol, for each l ∈ S, authorities compute

G′
l = (Gm,l α)s′

l and M ′
l = (Mm,l β)s′

l .

Then, using the DEx protocol again, authorities verify whether (G′
l)

s = M ′
l for some l in S.

In the affirmative case they output MEMBER, otherwise NON–MEMBER.

Remark 3.1 Note that both the MIX Phase and the Verification Phase may be pre-computed before
the voting begins. In fact, if the Verification Phase is not declared VALID, there is no need to
perform the Voting Phase.

Electronic Jury Voting Protocol: We conclude this section with a simple observation; an
electronic analog of a 12–juror civil case voting protocol where 9 votes suffice to reach a verdict
can be derived from our Basic MTS by letting n = 12 and S = {9, 10, 11, 12}.

4 Analysis

4.1 Eligibility

The non–anonymity of ballot casting insures that only authorized voters cast ballots. Indeed, recall
that voters must identify themselves through digital signatures in order to post their vote onto their
designated area of the bulletin board. This also insures that no voter can cast more than one ballot.

4.2 No–duplication

Follows from requiring each voter to compute the challenge in the (non–interactive) proof of validity
of ballots as a hash of, among others, a unique public key identifying the voter.
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4.3 Correctness

Clearly, an honest voter can construct a ballot and its accompanying proof of validity. Moreover,
the following holds

Theorem 4.1 If all participating authorities are honest, then they will output MEMBER if and
only if the tally of the validly cast votes belongs to the set S.

Proof: In addition to the notation introduced in Section 3, for j ≤ m let πj,...,m denote πj ◦ πj+1 ◦
. . . ◦ πm and π denote π1 ◦ . . . ◦ πm. Assuming that all participants in the Basic MTS are honest,

Gm,l = gτm,l , and Mm,l = yτm,lh−π(l) ,

where
τm,l =

∑

j

tj,πj,...,m(l) , and ρ =
∑

i

ri .

Hence, since y = gs, α = gρ, and β = yρh
�

i vi ,

(G′
l)

s = ys′
l
(τm,l+ρ) , and M ′

l = ys′
l
(τm,l+ρ) · hs′

l
(

�
i vi−π(l)) . (1)

If
∑

i vi ∈ S, for l = π−1 (
∑

i vi), it holds that π(l) =
∑

i vi. Hence, hs′
l
(

�
i vi−π(l)) equals 1, and

the LHS of both equalities in (1) are equal. If
∑

i vi 6∈ S, then for every l ∈ S it holds that
π(l) 6=

∑
i vi. Hence, hs′

l
(

�
i vi−π(l)) 6= 1, and the LHS of both equalities in (1) are distinct for every

l in S. Thus, the Basic MTS outputs MEMBER if and only if
∑

i vi belongs to S.

4.4 Robustness

First we observe that robustness with respect to malicious voters is achieved.

Lemma 4.2 ([19]) An incorrectly formed ballot will be detected with overwhelming probability.

Still, we need to show that the protocol cannot be disrupted by dishonest authorities. We will need
the following:

Lemma 4.3 ([1]) Protocol–Π is a honest verifier zero–knowledge proof of knowledge for π and
τm,l’s. The protocol is also honest verifier zero–knowledge proof of knowledge for πj’s and tj,l’s held
by honest provers.

Robustness with respect to malicious authorities is now guaranteed by the following result

Theorem 4.4 Assume there are at most t < m/2 participating authorities controlled by an ad-
versary. The goal of the adversary is to force the output of the scheme to be incorrect (i.e., to be
MEMBER when it should be NON–MEMBER and vice versa). The adversary cannot succeed with
non–negligible probability. When an attempt by the adversary to force an incorrect output is de-
tected, the identity of the authorities controlled by the adversary will be exposed with overwhelming
probability.
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Proof: By Lemma 4.2 it suffices to consider the case where only correctly formed ballots will be
accounted for. Let T be the tally of the correctly formed ballots.

Observe that there are at least t honest authorities. Any such collection of authorities will be
able to decide correctly whether or not T belongs to S unless ((Gm,l,Mm,l))l is not a permuted
ElGamal re–encryption of ((G0,l,M0,l))l. If the latter holds, then Lemma 4.3 insures that with
overwhelming probability the Verification Phase will detect it, the tracing option invoked, and the
identity of dishonest authorities exposed.

4.5 Privacy

We now show that under a standard computational assumption our Basic MTS does not disclose
any information pertaining the honest voter’s ballots besides that implied by the output of the
scheme.2

Secure Function Evaluation Framework: We follow the model of secure multi-party function
evaluation proposed by Canetti [13], and hence, we cast our Basic MTS protocol as computing a
function fS on the voters’ votes, namely fS(v1, . . . , vn) = b, where b is the bit set to 1 if

∑
i vi ∈ S

and 0 otherwise.

Very roughly, in [13] the notion of security of a cryptographic protocol P computing a function
f is formalized by considering a setting with two different “worlds”: the “real world” and the
“ideal world”. In the former, protocol P is executed on the presence of some adversary A. In
the latter, the following “ideal” protocol I is executed instead: each party (authority or voter)
privately delivers her input to an (incorruptible) trusted party which then computes the desired
function f on those inputs, and privately hands the corresponding output of the function back to
each party. Protocol P is considered private and correct if, for every adversary A attacking protocol
P in the real world, we can exhibit an adversary SIM (called the simulator) which can do “as
well as A” but this time running on the ideal world. In our setting, adversary SIM “doing as well
as” A means that the combined output of adversary A and the honest parties after running P is
computationally indistinguishable from the corresponding output of adversary SIM and honest
parties after running the ideal protocol I. This notion captures the property that protocol P
cannot be less secure than the most secure protocol I computing the same function f . The reader
is refereed to [13] for background and further details of the model.

In the analysis of this section we make the simplifying assumption that the signing key generation
procedure for authorities and voters is executed as the very first step in the MTS protocol. This
assumption is not essential and can be removed at the expense of a more involved argument.

The following two lemmas show that some of the building blocks of our Basic MTS protocol (see
Section 2.2) do not leak more information than the function they compute.

Lemma 4.5 ([32, 41]) Assume a broadcast channel is available and there are less than t < m/2
dishonest authorities. Then, under the Decisional Diffie Hellman assumption (DDH), the following
hold:

a. The DKG protocol privately and correctly computes the function DKG, which is defined as
“On any input, generate the authorities’ shares s1, . . . , sm of a random secret s, and value

2An extension of this argument may also yield an alternative proof of the robustness of our protocol.
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y = gs. Each authority receives as output one share si and the value y. Each voter receives
a copy of y.”

b. The DEx protocol privately and correctly computes the function Exp defined as “On input the
authorities’ shares of a secret s and a value G, compute the value Gs. The output is given to
all the parties.”

Moreover, the simulator implied by part (a) (respectively by part (b)) satisfy the condition that, on
input a randomly chosen input y∗, it outputs a distribution indistinguishable from an execution of
DKG (respectively DEx) where the public output is y∗.

Lemma 4.6 Assume a broadcast channel is available and there are less than t < m dishonest au-
thorities. Then, under the Decisional Diffie Hellman assumption (DDH), the MIX–network protocol
(ie. MIX Phase and Verification Phase) privately and correctly computes the function MIX defined
as defined as: “On any input, compute a random permutation of the list (h−`)`∈S and then encrypt
each element of the list. All parties receive the resulting list as output.”

Proof: It suffices to consider an ideal adversary SIMMIX that simulates the work of all honest
authorities while using the real adversary A to drive the strategy for the dishonest authorities.
The view of adversary A in the simulation is indistinguishable from the one in a real execution
of the protocol, otherwise we can either break the semantic security of ElGamal encryption (or
equivalently, the DDH assumption) or contradict the zero-knowledge property of Protocol–Π.
Similarly, since t < m, Lemma 4.3 and the semantic security of ElGamal encryption guarantee that
the output of the honest authorities and voters in the simulation follow the same distribution as in
the real execution of the MIX protocol.

MTS protocol is Private: We conclude this section by showing that protocol MTS does not
leak any more information besides that implied by the output of the scheme. Specifically, the
following holds

Theorem 4.7 Assume there are less than t < m/2 dishonest authorities and n′ dishonest voters
controlled by an adversary A. For any such adversary A attacking MTS, there exits a simulator
SIM such that, for any list (vi)i of votes cast by the voters, the following two distributions are
computationally indistinguishable under the Decisional Diffie Hellman assumption:

• The output of adversary A running on the real world when protocol MTS is executed on input
(vi)i, and

• The output of simulator SIM running on the ideal world where the trusted party computes
function fS over private inputs (vi)i.

Proof: Let SIMDKG, and SIMDEx denote the simulators for protocols DKG, and DEx given
by Lemma 4.5. We build a simulator SIM for the ideal protocol computing function fS. Simulator
SIM has black-box access to adversary A and works as follows: First, it simulates the first step
of the Setup Phase of the MTS protocol by running the signing key generation procedure on behalf
of the honest authorities, picking a random value s and running SIMDKG on target value y = gs.
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(Note that such simulation allows SIM to know the “shared secret” s.) Analogously, shared values
s′` are computed by invoking SIMDKG once for each `.

Then, SIM runs SIMMIX to simulate the MIX Phase and Verification Phase. SIMMIX outputs
a list (Gm,`,Mj,`)`.

Once in the Voting Phase, SIM chooses random votes for all honest voters and simulate their work
during this phase (i.e., signing key generation, ballot preparation and ballot posting). By querying
adversary A, the simulator obtains the ballots for the corrupted parties. Using the knowledge of
secret s, the simulator extracts the values vi of the correctly cast votes. These values are used as
input to function fS which returns a bit b.3

Then, for each ` ∈ S, SIM runs simulator twice SIMDEx; first on input Gm,` and target value
G′

` = (Gm,`)
s′
` , and then on input Mm,` and target value M ′

` = (Mm,`)
s′
` . If b = 0, simulator SIM

picks a random value M̂ in Gq (the simulation fails if M̂ = M ′
` for some ` ∈ S); otherwise, if

b = 1, simulator picks `∗ ∈ S at random and sets M̂ = M ′
`∗ . The simulator concludes by running

SIMDEx on input G′
` and target value M̂ .

By Lemma 4.5 and Lemma 4.6, the simulation of the Setup, MIX and Verification phase is correct.
For the Voting Phase, the semantic security of the ElGamal encryptions and the zero-knowledge
property of the Ballot–Proof guarantee adversary A cannot distinguish a simulated view from
a view in the real protocol. Finally, for the Output Phase we make the realistic assumption that
q >> N . In such case, Lemma 4.5 guarantees adversary SIM can, without being detected, control
the simulation so as to satisfy the condition (G′

`)
s = M ′

` for some ` ∈ S if and only if b = 1.

4.6 Universal Verifiability

Follows from the public verifiability of the proofs of ballot validity (Proof–Ballot), the proof of
randomization and permutation (Proof–Π), the proof of knowledge of equality of discrete loga-
rithms (Proof–Log) and the correctness proof associated to the DKG protocol. Note that even in
the case that there are more than t dishonest authorities, although privacy might be compromised,
passive observers will still be able to ascertain whether the protocol was correctly performed.

4.7 Efficiency

We make the (realistic) assumption that n ≥ N ≥ t. Recall that a modular multiplication of O(k)
bit sized numbers is our unit measure of computational costs.

The voter’s ballot consists of an ElGamal ciphertext and a (non–interactive) proof that it is indeed
a valid ballot. The size of both components is linear in the size of an element of Z

∗
p, i.e., O(k).

The work involved in the computation of both ballot components is dominated by the modular
exponentiations, of which there are a constant number, each one requiring O(k) work. Hence,
the computational and communication complexity of the voter’s protocol is linear in the security
parameter k — thus optimal. Moreover, for any reasonable security parameter, a voter’s protocol
remains the same even if the number of voters varies. The work needed to verify that a voter sent

3 Recall that in the ideal model of [13], even though the simulator is not allowed to access the honest parties’
inputs, all such inputs are indeed used by the trusted party to compute function fS .
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in a well formed ballot equals the computational cost of making the ballot, i.e., O(k) per voter.
We stress that all the above characteristics of a voter’s protocol are inherited from the electronic
election scheme proposed in [19].

The work performed by the j–th authority during the MIX Phase is dominated by the cost of
computing ((Gj,l,Mj,l))l. Since

Gj,l = Gj−1,πj(l)g
tj,l and Mj,l = Mj−1,πj(l)y

tj,l ,

the work performed by each authority during this phase is O(Nk). Analogously, the work performed
by each authority during the Verification Phase is O(Nk2). Finally, since each run of the DEx
protocol costs O(mk) per authority, the work performed by each authority during the Output Phase

is O((mN +n)k) (the O(nk) term is due to the work performed in order to compute α =
∏

i αi, and
β =

∏
i βi). The other tasks performed by the authorities are not relevant in terms of computational

costs. Thus, the work performed by each authority is O((mN + n)k) provided they spend O(Nk2)
work during pre-computation (before the voting begins). The communication complexity (in bits)
incurred by each authority exceeds the computational complexity by a factor of k.

The computational complexity of verifying the authorities work is proportional to the computational
work performed by each authority during the corresponding phase.

5 Variants

More Efficient and Alternative MTSs: If one is willing to forgo universal verifiability, more
efficient MIX–networks like the one proposed by Desmedt and Kurosawa [25] might be used instead
of Abe’s MIX–network in the MTS of Section 3. In this case, the work done by each authority
during the pre-computation stage is reduced to O(kN). In fact, the only essential characteristic
our MTS scheme requires from the underlying MIX–network is that it performs a random secret
permutation and ElGamal re–encryption of an input list of ElGamal ciphertexts. (The threshold
decryption capabilities utilized in the DEx protocol is a feature from the underlying encryption
scheme, not of the MIX–network). Thus, other more efficient recent MIX–network proposals like
those of Neff [44], Furukawa and Sako [28], Abe [2, 3], and Jakobsson and Juels [37], are good
candidates for drop in replacements in the MIX module of the MTS of Section 3. (All the latter
preserve universal verifiability.)

After submission of this paper, MIX–network proposals were put forth that relax the universal
verifiability property while significantly improving their overall efficiency [34]. Also, it has been
shown that efficiency can be improved if a non–negligible probability of error in the verification
process can be tolerated [40] (the probability of error goes down as the number of elements permuted
increases, but still this is probably unacceptable in the jury voting scenario).

Other Homomorphic Encryption Schemes: Similarly, the requirements from the encryption
scheme used in this work are being a (semantically secure) homomorphism between plaintexts
and ciphertexts, and an efficiently identifiable encryption of 1. Thus, cryptosystems like the one
proposed by Paillier [47] can also be used to instantiate our MTS. The MIX network of Furukawa
and Sako [28], the proofs of equality of encryption and the proofs of ballot validity can be easily
adapted in order to be implemented based on Paillier’s system. The resulting scheme can be proven
secure using an analysis similar to the one of Section 4.
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Unanimity Voting: In case of unanimity voting S is a singleton. Therefore, there is no need
to use a MIX–network. Thus, the computational cost of the scheme is reduced by skipping the
pre-computation phase.

6 Applications

Testing Membership of Linear Functions: We can modify our Basic MTS to allow parties
P1, . . . , Pn to determine whether their private inputs vi ∈ Si, for i ∈ {1, . . . , n}, are such that∑

i civi ∈ S without revealing
∑

i civi. Here, S1, . . . , Sn and S are publicly known subsets of Zq,
and c1, . . . , cn is a publicly available fixed sequence of integers. This modification of our Basic MTS
allows to implement a weighted majority voting electronic election scheme.

Scoring: Consider a person/entity which is willing to answer n very sensitive questions to a group
of m evaluators. Assume the i–th question accepts as answer any element of Si. Each evaluator
would like to learn whether the weighted score of the answers

∑
i ciai exceeds a threshold (here

again c1, . . . , cn is a publicly available fixed sequence of integers). But, the respondent wishes to
keep private the answers to each individual question. This problem clearly reduces to the one
discussed in the previous paragraph. Thus, it follows that our Basic MTS can be used to solve it.

Private Information Retrieval: When restricted to a single voter V with a vote v ∈ S ′ ⊃ S,
the proposed scheme yields a method of searching for v on the “database” S without revealing
neither the target v nor the contents of the database. The corresponding proof of validity can be
designed using 1-out-of-n proofs [16] as suggested in [18]. This problem is a special case of what is
known as private information retrieval [15, 29]. It encompasses situations where users are likely to
be highly motivated to hide what information they query from a database that contains particularly
sensitive data, e.g., stock quotes, patents or medical data.

7 Final Comments

An interesting feature of our electronic jury voting scheme is that it combines parallel lines of re-
search concerning electronic voting, one based on MIX–networks [21] and another on homomorphic
encryptions [17, 7, 5]. We need homomorphic encryption in order to hide the ballots content and
compute the tally while keeping it secret. We need ElGamal based MIX–networks in order to hide
the value of the elements of S to which the ElGamal encryption of the vote tally is compared.
It is an interesting challenge to design an electronic jury voting scheme in the model introduced
in [17, 7, 5] which does not rely on MIX–networks.
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A Proof of Knowledge for Equality of Discrete Logarithms

Prover Verifier

[(yj, ωj) = (gsj , αsj )]

ρ ∈R Zq

(a, b)← (gρ, αρ)
a,b
−→

c
←− c ∈R Zq

r ← ρ + sjc
r
−→ gr ?

= ayc
j

αr ?
= bωc

j

Figure 1: Proof of knowledge for logg yj = logα ωj.

In order to make the protocol of Figure 1 non–interactive the Fiat–Shamir heuristic is used. This
maintains security in the random oracle model.

B Proof of Validity of Ballot

Voter Verifier

r, w, ρ1−v , d1−v ∈R Zq

a1−v ← gρ1−v αd1−v

b1−v ← yρ1−v (β/x1−v)
d1−v

av ← gw

bv ← yw α,β,a0,b0,a1,b1
−→

dv ← c− d1−v
c
←− c ∈R Zq

ρv ← w − rdv
d0,d1,ρ0,ρ1
−→ c

?
= d0 + d1

av
?
= gρvαdv , ∀v ∈ {0, 1}.

bv
?
= yρv (β/xv)

dv , ∀v ∈ {0, 1}.

Figure 2: Proof of Validity of Encrypted vote (α, β) = (gr, yrxv), r ∈R Zq, v ∈ {0, 1}

In order to make the protocol of Figure 2 non–interactive, the challenge c is computed as a hash
of the values α, β, a0, b0, a1, b1. This maintains security in the random oracle model. In order
to prevent vote duplication, the challenge must be made voter–specific. Following [31] this can be
done by having voter Vi compute the challenge as the hash of the values IDi, α, β, a0, b0, a1, b1,
where IDi is a unique public string identifying Vi.
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C Proof of Randomization and Permutation

We now describe a protocol due to Abe [1], denoted Protocol–Π, which convinces external verifiers
of the correctness of the randomization and permutation. It also convinces honest servers that the
permutations they have performed have not been canceled (with non–negligible probability).

Protocol–Π
The following steps are repeated k times.

1. The j-th server receives ((G̃j−1,l, M̃j−1,l))l. She then selects a random permutation π̃j of

{1, . . . , N} and sends ((G̃j,l, M̃j,l))l to the (j + 1)–th server, where

G̃j,l = G̃j−1, �πj(l)g
�rj,

�
πj (l) , and M̃j,l = M̃j−1, �πj(l)y

�rj,
�
πj (l) ,

where r̃j,l ∈R Zq. The last server publishes the list she receives.

2. Verifier publishes the challenge c ∈R {0, 1}.

3. If c = 0, the j–th server commits to j, π̃j , r̃j,1, . . . , r̃j,N by broadcasting to all other servers a
commitment of these values. Commitments are opened once all of them have been exchanged.
The last server posts π̃ = π̃1 ◦ . . . ◦ π̃m and ρ̃m,l =

∑
j r̃j, �πj(l).

If c = 1, the j–th server calculates ϕj = π−1
j ◦ϕj−1◦π̃j and ω̃j,l = ω̃j−1, �πj(l)+r̃j, �πj(l)−tj,ϕj−1◦ �πj(l)

(for j = 0, ϕ0 equals the identity permutation, and ω̃0,l = 0). The last server publishes ϕ = ϕm

and all ω̃m,l’s.

4. If c = 0 each server and verifier check that all commitments where opened correctly, that π̃
and ρ̃m,l’s are correctly made, and whether

G̃m,l

G0, �π(l)
= g �ρm,l , and

M̃m,l

M0, �π(l)
= y �ρm,l ,

and in case c = 1,

G̃m,l

Gm,ϕ(l)
= g �ωm,l , and

M̃m,l

Mm,ϕ(l)
= y �ωm,l .

If the verification fails, the randomization and permutation step is declared not VALID and
all servers show the πj’s and ti,j’s. This makes all computations traceable and dishonest
servers are identified.

Although the above protocol is interactive, a non–interactive version can be derived using the Fiat–
Shamir heuristic by computing the challenge via a hash function (the resulting protocol remains
secure under the random oracle model). In this case, the non–interactive proof consists of the
outputs of the last server.
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