
Deniability for protocols with shared state with
applications to Anonymous Authentication

Alonso González U.
Dept. of Computer Science, University of Chile

Blanco Encalada 2120, 3er piso
Santiago, Chile

alogonza@ing.uchile.cl

Alejandro Hevia
Dept. of Computer Science, University of Chile

Blanco Encalada 2120, 3er piso
Santiago, Chile

ahevia@dcc.uchile.cl

ABSTRACT
In this work we propose a different approach to solve the
problem of anonymous authentication (Boneh et al. CCS
1999). Instead of the classical solution that uses ring signa-
tures, we directly combine an an anonymous channel with
deniable authentication without contradicting anonymity. The
classical solution provides anonymity with respect to a set
of authorized users, our solution provides anonymity with
respect to authorized and no authorized (but maybe autho-
rized for other group) users at the price of a different form
of anonimity.
We develop new tools to prove deniability of protocols in
the Generalized Universal Composability framework (GUC,
Canetti et al. TCC 2007). In particular we define deniability
for multi party protocols, and show that deniable protocols
are exactly those protocols that realize the ideal functional-
ity Fden. This result enable us to prove deniability of many
UC and GUC functionalities.
We use our new tools to design a functionality for Anony-
mous Authenticated Channels and design a protocol that
realizes it in the GUC framework.

General Terms
Theory

1. INTRODUCTION
Consider an online forum where users can post sensible data
on a server and may be concerned about being linked to
their posts. Additionally the server requieres to give dif-
ferent relevance to posts by sorting the list of posts using
the users reputation, measured by some non-integer num-
ber. Arguably, we would like to implement an Anonymous
Authentication protocol [1], where users can authenticate to
a server maintaining their anonymity.
The typical solution to the anonymous authentication prob-
lem is such that “the authentication protocol carried out
between the user and the server does not identify the user”
[1]. Instead it verifies that the user belongs to some autho-

rized group, in our case the group of users with the same
reputation. Note that the user will be anonymous only with
respect to other users with the same reputation.
Lindell [19] defined two security requirements for an anony-
mous authentication protocol:

1. Secure authentication: No unauthorized user should be
able to fool the server into granting it access (except
with very small probability).

2. Anonymity: The server should not know which user it
is interacting with.

But what if the reputation is sufficiently “fine grained”? We
can even assume that each user have a different reputation
and thus the authorized group is of size 1. In such a case,
it is unavoidable that the server will learn the user’s identity.
Can we still provide some some meaningful form of anonymity
to the user? Specifically, can we guarantee that the user
will be anonymous with respect to other parties, not to the
server but other parties than the server (eg. other users,
other servers, or any external entity)?
Note that in Lindell’s definition, with respect to anonymity
the “enemy” of the user is the server. Indeed, when the
server is malicious it will be trying to learn which user it is
authenticating. We assume that the user’s “enemy” is not
the server but any other party. In our setting the user is
not worried about what will the server learn, but is worried
about what an eavesdropper or user will learn (maybe based
on information received from a malicious server).
We allow users to authenticate themselves to the server (we
violate the anonymity requirement). But we assure that
the only entities who are aware of the identities executing
the protocol are only the user and the server. Any other
entity (including an adversary monitoring the communica-
tion) should not be aware of the identities participating in
the protocol.
We construct our solution by combining an anonymous chan-
nel and deniable authentication. Deniable authentication
allows the server to be convinced of the authenticity of a
received message, but it avoids to convince any other party
of the authenticity of a received message. The anonymous
channel hide the identities to any party other than the prover
and the server.
We prove the security of our protocol in the Generalized
Universal Composability framework [8] because it allows to
capture deniability [12] and also our protocol inherits strong
security guarantees such as composability.

1.1 Related Work
Deniable authentication was first defined by Dwork et al. in
their seminal work on Concurrent Zero-Knowledge. Later
Dodis et al introduced the notion of online deniability re-
stricted to the cases of authentication, identification, and
Key Exchange [12], and Zero Knowledge [14]. They showed
that for each of these tasks deniability is equivalent to GUC-
realize the corresponding ideal functionalities. As a conse-
quence their definition implies security under general con-
current composition.
Many protocols for deniable authentication and identifica-
tion (e.g. [15, 16, 23, 22, 20, 12]), deniable key exchange
(e.g. [24, 27]), and deniable zero knowledge [21, 14] have
been proposed. All of them fall in one of the two categories:
(offline) deniable and online-deniable.
Most of the proposed protocols proposed before [12] are
offline deniable (with the sole exception of HMQV [23] as
noted by Dodis et al. [12]).
Dodis et al. presented an online-deniable authentication
with respect to static adversaries [12], which is the under-
lying authentication procedure that our protocol for anony-
mous authentication uses. They also showed the impossibil-
ity of online-deniable authentication with respect to adap-
tive adversaries, and this result is the reason for restricting
our protocol to static adversaries.
Canetti and Vald [9, 10] introduced the notion of Bi-Denia-
bility with many similarities to the definition of deniability
of Dodis et al. [12] and with our work. They showed that a
protocol is Bi-Deniable if and only if it LUC-realizes Fauth,
the LUC authentication functionality. We note that Fauth

requires correctness, if the sender sends m the receiver re-
ceives m, but in deniability this is not the case. We discuss
about their work in Sect. 3.2.
Another meaning for deniability is that of Deniable encryp-
tion as defined in [3], where a Deniable encryption scheme
should allow the receiver (or the sender) to deny that the
content of a cyphertext is a given plaintext. In contrast,
we would say that an encryption scheme E is deniable when
a party executing E can deny that the execution is taking
place.

The modern study of anonymous channels was started in [11]
with mix-nets. More recently, in [26] Wikström introduced
a UC-secure mixnets with respect to static adversaries. His
construction relies on a honest majority of mixers and a dis-
tributed Distributed Key Generation protocol, which relies
on a Common Refference String.
Ishai et al. introduced an anonymity functionality Anon
which provides sender anonymity [17]. That is, the adver-
sary only learns the multiset of all received messages for each
receiver. A strengthened version of Anon is one where the
adversary only learns the multiset of all sent messages, and
thus this strengthened version of Anon achieves sender and
receiver anonymity. Our ideal functionality for anonymous
authenticated channels Faac can be viewed as the “conjunc-
tion” of the strengthened version of Anon and the authenti-
cated channels functionality Fauth from [5].
The main goal of Ishai et al. was to construct secure chan-
nels from anonymous channels. They observed that two par-
ties can choose random values r1 and r2 and communicate
each other those values using the anonymous channel. Each
party can compute the secret bit r1 > r2, but any other
party is unaware of this bit. They pointed out that there is

a drawback in this approach, an adversary can take advan-
tage of the anonymity and send another random value r∗

such that parties may finally compute r1 > r∗ or r∗ > r2.
A simple solution to this is to use an authentication mecha-
nism, but they pointed out that this approach fails because
most authentication tasks are non-repudiable and therefore
contradict the privacy of the secret bit. But this is not true
for our functionality Faac, therefore it can be used to imple-
ment secure channels using the “flawed” approach discarded
by Ishai et al.
Most work on the anonymous authentication literature relies
on Ring Signature protocols in order to make the user iden-
tify anonymously as member of an authorized group [18, 1,
13]. As we mentioned earlier, ring signatures don’t provide
anonymity guarantees when the size of the ring is 1.
Naor proposed the notion of Deniable Ring Signatures which
combines deniability and ring signatures [20]. As noted by
Dodis et al. their protocols can not be online deniable as
long as verifiers do not register public keys [12]. We also
note that in our setting deniable ring signature do not nec-
essarily provide anonymity between users of different rings
(in our example users with different reputations).

1.2 Our Contribution
We generalize the online deniable authentication definition
from [12] in the form of online deniability. We show that a
protocol is online deniable if and only if it GUC realizes the
ideal functionality Fden. We note that this result also ap-
plies to Bi-deniability and the LUC framework [10, 9]. We
correct a mistake from [10] and show that a protocol is Bi-
deniable if and only if the protocol LUC realizes Fden, the
LUC equivalent for Fden.
We also show that most ideal functionalities are deniable by
noting that most functionalities are subroutine respecting
(for example Fauth, Fzk, and Fcom), and showing that a sub-
routine respecting protocol GUC-emulates Fden. Our result
implies the all previous results on deniability we are aware
of: deniability for GUC-secure Zero Knowledge protocols
[14, Thm.8], deniability for GUC-secure authentication [12,
Prop.1], and deniability of GUC-secure key exchange and
identification from [12].
We apply our results on deniability to construct a seem-
ingly paradoxical functionality: one that combines anony-
mous channels and authenticated channels. That is, if a
party receives a message, she is convinced of the integrity
of the message and the identity of the sender, but no other
parties that the sender or the receiver are not aware of that.
To prove the security of the protocol, we use the fact that
the Multi Decisional Diffie-Hellman assumption is a conse-
quence of the Decisional Diffie-Hellman assumption [2]. We
give a better bound on the adversarial advantage than the
one given in [2].

1.3 Organization
We introduce the UC and GUC frameworks in section 2.
Next we define deniability an show our result that charac-
terizes deniable protocols on Sect. 3.
In section 4 we recall the mixnet of Wikström. In section 5
we define our ideal functionality for anonymous autheticated
channel Faac and we desgin a protocol that GUC realizes
Faac.

2. CRYPTOGRAPHIC MODEL
We define and prove the security guarantees of our protocol
in the Generalized Universal Composability (GUC) frame-
work. The GUC framework [8] is a generalization of the
Universal composability framework [6]. Both frameworks
models concurrent protocols, but the GUC framework also
models concurrent protocols sharing state between them.
We first review the UC because GUC builds on UC with
some minor, but significant, modifications.

2.1 The Universal Composability framework
(UC)

The UC framework provides a methodology for a modu-
larized designing and modularized proving the security of
distributed multiparty cryptographic protocols, even when
composed with arbitrary other protocols. The approach of
UC is, given a real world protocol, abstract the security
one want the protocol have into a idealized secure proto-
col. Then, it must be shown that executing the real or the
idealized protocol is essentially the same, and thus the real
protocol is as secure as the idealized protocol.
A multiparty real world protocol π is distributed between
parties P1, . . . , Pn. The protocol π can be monitored and
some participants can have “undesired” behavior, attempt-
ing with the desired security of the protocol. All the possible
undesired behavior is executed by one machine, the real ad-
versary A. In an execution of π the adversary can eavesdrop
and manipulate all the data sent from one party to another,
and can corrupt some parties and then execute arbitrary
code on them.
On the other hand, given a functionality F , we consider the
ideal protocol denoted by IDEALF . F is known as an ideal
functionality and in an execution of IDEALF is executed by
a trusted party. F does all the computation of IDEALF be-
cause each party Pi i ∈ {1, . . . , n} only passes his input to
the ideal functionality and returns unchanged all it receives
from F . We say that Pi executes the dummy party protocol
and and that Pi is a dummy party, denoted by P̃i. In an ex-
ecution of the protocol IDEALF an ideal adversary S cannot
eavesdrop the data sent between a party Pi and F , because
is sent by a secure direct link between Pi and F . S is al-
lowed to stop or drop exchanged data between some party
and F , and is allowed to communicate with F (indicating
some influence or leak to/from F).
Concurrent execution with arbitrary other protocols is given
by interaction between a protocol (real or ideal) and a spe-
cial machine Z known as the environment. It is considered
that all the externals protocols are executed by the environ-
ment Z and the inputs received by each party are given by
the environment. The environment also haves direct com-
munication with the adversary (A or S). When the protocol
finish, the output of each party is received by Z and then Z
outputs a bit.

Definition 1. The distribution that follows the output of
an environment Z, executed with adversary A, protocol π
and security parameter k, is denoted by EXECZ,A,π(k).

To execute ideal protocols we must consider hybrid models.
A protocol executed in the F1, . . . ,Fm-hybrid model is a
protocol where each party have access to ideal functionali-
ties F1, . . . ,Fm. We denote the output of Z executed with

A, protocol π in the F1, . . . ,Fm-hybrid model and security
parameter k by EXECF1,...,Fm

Z,A,π (k). In the ideal world, the
output of Z executed with S and the protocol IDEALF is
equal to EXECFZ,S,IDEALF .

Definition 2. We say that a protocol π UC-emulates ρ if
for all environment Z and all adversary A there exist an
ideal adversary S such that

EXECZ,A,π ≈ EXECZ,S,ρ.

When ρ is the protocol IDEALF executed in the F-hybrid
model we say that π UC-realizes F , and thus π is UC-secure.
The main advantage of UC security is that it composes, that
is, the security of a protocol is maintained even when the
protocol is being executed with other, possibly adversarially
chosen, protocols. But there is a restriction, the protocol
must be subroutine respecting. A subroutine respecting pro-
tocol and all its subroutines do not provide any input or
output to any other protocol. In other words the protocol
and the subroutines called by the protocol are independent
of all other protocols and can’t share state with other pro-
tocols.
Composition of UC security is guaranteed by the composi-
tion theorem (Theorem 1).

Theorem 1. [6] Suppose that subroutine respecting pro-
tocol π UC-emulates ρ (also is subroutine respecting). Let φ

be a protocol that (possibly) makes calls to π and let φπ/ρ be
the same protocol φ except that all calls to π are replaced by
calls to ρ. Then the protocol φπ/ρ UC-emulates π.

2.2 The Generalized UC framework (GUC)
As we said before, a UC-secure protocol must be subroutine
respecting. If this restriction is not accomplished the the
UC-theorem could not hold.
One scenario where is not realistic to assume that proto-
cols are subroutine respecting is when setup assumptions
are needed in order to UC-emulate the ideal functionality.
For example, in the case of zero knowledge is known that is
impossible to realize the zero knowledge ideal functionality
without some setup assumption, like the common reference
string (CRS), when only the minority of the parties is hon-
est [4].
In UC the CRS is modeled as an ideal functionality Fcrs that
publicizes a random string to all parties, and zero knowledge
protocols are proved to UC-realize the ideal zero knowledge
functionality in the Fcrs-hybrid model.
Such ideal functionality (a trusted party) is obvious hard
to obtain in the real world, and consequently is unrealis-
tic to consider a local copy of the trusted setup for each
zero knowledge protocol session. In fact it must be consid-
ered shared between the many zero knowledge protocols and
possibly other protocols.
In the case of a shared Fcrs used for realizing a ZK protocol
is shown in [21] that it leads to loose of the natural denia-
bility of a ZK protocol. Furthermore in [28] is shown that
it also could lead to the loose of general composability and
the “Proof of knowledge” property.
In GUC protocols can be not subroutine respecting but Ḡ-
subroutine respecting, and it means that the protocol is sub-
routine respecting except that is allowed to call the shared

functionality Ḡ.
GUC framework models Ḡ-subroutine respecting protocols
by allowing the environment to impersonate dummy parties
connected to the shared functionality. This small change
makes able to the environment to simulate protocols shar-
ing state with the analyzed protocol.
The definitions of execution and emulation in GUC are al-
most identical to the definitions of UC, but the names are
distinct. From now on with EXEC we refer to both, UC-
execution and GUC-execution, and with UC-emulation we
refer also to GUC-emulation. Similarly as in UC is possi-
ble to demonstrate a composition theorem for Ḡ-subroutine
respecting protocols.

3. DENIABILITY IN THE GUC FRAMEWORK
Deniable authentication was first defined by Dwork, Nahor
and Sahai in [15]. Several modifications and generalizations
have been made since then, and here we consider the defini-
tion given by Dodis, Katz, Smith and Walfish in [12], since
their definition applies to a concurrent and distributed set-
ting.
Roughly speaking an authentication protocol is deniable if
nobody can prove that a particular session of the protocol
is taking place or have ever took place. In [12] is shown
that such property can be achieved considering an on line
judge who must decide who is he talking to: an informant
who is observing a real session of the authentication pro-
tocol, or a misinformant without access to the real session
of the protocol but still try to convince the judge that the
session is taking place. The protocol is said to be an on-
line deniable authentication protocol if for all judge and all
informants there exist a mis informant such that the judge
can’t distinguish from the informant and the misinformant
with overwhelming probability.
In the full version of [12] is demonstrated that this notion
is equivalent to GUC-realize the ideal functionality Fauth.
They pointed out that a protocol GUC-realizing a function-
ality F is as deniable as F . Furthermore, the ideal function-
ality Fauth is “fully simulatable”, meaning that the protocol
can be completely simulated without the participation of
any party. The conclusion is that the functionality Fauth is
deniable too, because the misinformant can simulate Fauth.

3.1 Definition
We refer to “online deniability” instead of “online authenti-
cation deniability”, and the definition remains essentially in
the same fashion of [12], but for completeness we include it.
consider a judge J , an informant I, misinformant M and
a global setup functionality Ḡ. Instead of just a sender and
a receiver running an authentication protocol we consider
parties P1, . . . , Pn running a distributed protocol π.
In the real world the judge J gives the input of each party
participating in π to the informant I. The informant gives
the inputs to the parties and witness the execution of the
protocol π. More precisely, I is equal to the UC real world
adversary but it also can give input to the parties (in UC
this is done by the environment). The parties can communi-
cate with a shared functionality Ḡ (if for example the parties
need to register in a PKI), and J and I have also access to

Ḡ. We denote by RealDenḠJ ,I,π(k) the output of a judge J
executed in the real world with informant I, shared func-
tionality Ḡ, and protocol π executed with security parameter

k.
On the other hand is the simulated world, there the misin-
formantM try to mimic the behavior of a real execution of
π, but with no access to parties P1, . . . , Pn. We denote by

SimDenḠJ ,M(k) the output of a judge J executed in the ideal

world with misinformantM, setup functionality Ḡ, and with
security parameter k.

Definition 3. We say that a protocol π is online deniable
if for all judge J and all informant I there exists a misin-
formant M such that

RealDenḠJ ,I,π ≈ SimDenḠJ ,M.

Our goal is to express deniability in an equivalent ideal func-
tionality, that is, a protocol π is online deniable if and only
if it UC-realizes some ideal functionality Fden.
Before proving that, we note that the deniability real world
is just a syntactic transformation of the UC real world ex-
periment. This because any environment and adversary can
be simulated with a judge and an informant, and vice versa.
The judge only forwards the input of each party, given by a
simulated environment, to the informant/misinformant, and
the informant gives input to parties and simulates the ad-
versary. On the other hand, each judge and informant can
be simulated by an environment and adversary. The envi-
ronment just sends the input of parties given by the judge
and the adversary simulates the informant.

Lemma 1. For each judge J and for each informant I
there exists an environment ZJ and an adversary AI such
that for all protocol π executed in the Ḡ-hybrid model

RealDenḠJ ,I,π ≡ EXECḠZJ ,AI ,π

Conversely, for all environment Z and for all adversary A
there exists a judge J Z and an informant IA such that

EXECḠZ,A,π ≡ RealDenḠJZ ,IZ ,π

Proof. Let J be a judge and I be an informant, then we
can define the environment ZJ and an adversary AI , such
that the output of ZJ is equal to the output of J . The
environment ZJ simulates J giving his “input information”
to the corresponding party. All other information is given to
AI . As the definition of the informant is similar to the the
definition of the real adversary, AI can simulate perfectly
I. Clearly the simulation of J and I is perfect, and thus
the output of ZJ follows the same distribution that follows
the output of J .
The other direction is similar. Let Z be a judge and A be
an adversary. The judge J Z redirects input that Z sends to
the parties to the informant. The informant IA simulates
the adversary A and start an execution of π following the
instructions of J Z . The simulation of Z and A is perfect,
and thus the output of J Z follows the same distribution
that follows the output of Z.

The functionality Fden, defined in figure 1, gives all the nec-
essary to run an misinformant, and thus a simulator can

simulate the misinformant.
We show an equivalent result to the one in [12].

The ideal functionality Fden running with parties P̃1, . . . , P̃n
proceeds as follows:

1. When xi is received from party P̃i, send xi to the ad-
versary S.

2. When (yi, P̃i) is received from the adversary S, send

yi to P̃i.

Figure 1: The ideal functionality Fden

Theorem 2. A Ḡ-subroutine respecting protocol π is on-
line deniable if and only if it UC-realizes the ideal function-
ality Fden in the Ḡ-hybrid model.

Proof. We first prove the first implication, that is: π is
online deniable implies π UC-emulates Fden.
Let Z be an environment and A be an adversary. By lemma
1, there exists a judge J Z that simulates Z such that

RealDenḠJZ ,IA,π ≡ EXECḠZ,A,π.

By deniability of π, there exists a misinformantM such that∣∣∣Pr
[
RealDenḠJZ ,IA,π = 1

]
− Pr

[
SimDenḠJZ ,M = 1

]∣∣∣ = ε.

and ε is negligible in the security parameter.
Consider the ideal adversary SM, with oracle access M,

defined in figure 2. We note that in both, SimDenḠJZ ,M and

The ideal adversary SM with access to the ideal functional-
ity Fden proceeds as follows:

1. Simulate M.

2. When (xi, P̃i) is received from Fden, send (xi, P̃i) to
M.

3. When x is received from Z, send x to M.

4. When x is received from M, send x to Z.

5. WhenM writes (Output, yi, P̃i), write (yi, P̃i) to Fden.

Figure 2: The ideal adversary SM

EXECḠ,Fden

Z,SM , Z is wired with M as if M was an adversary.

The only difference is that in SimDenḠJZ ,M the input to the

parties is forwarded from Z by M. This change must be
overlooked by Z and thus

SimDenḠJZ ,M ≡ EXECḠ,Fden

Z,SM .

Then∣∣∣Pr
[
EXECḠZ,A,π = 1

]
− Pr

[
EXECḠ,Fden

Z,SM = 1
]∣∣∣ = ε.

Therefore, π UC-emulates Fden.
The other direction is similar. Suppose that π UC-emulates
Fden in the Ḡ-hybrid model. Let J be a judge and I be an

informant, by lemma 1 there exists an environment ZJ and
an adversary AI such that

RealDenḠJ ,I,π ≡ EXECḠZJ ,AI .

By hypothesis there exists a simulator S such that the ad-
vantage of ZJ distinguishing between π and Fden is negligi-
ble. Similarly as in the first implication, a misinformantMS
can simulate S for J . This seems indistinguishable from I
to J , and therefore π is online deniable.

Deniability is a concern not important per se, it becomes
important when is an additional concern to achieve some
task, say UC-realize some functionality F . As an empirical
fact, most functionalities tends to be deniable (Fauth and Fzk

are examples). Indeed, this is a consequence of the fact that
most ideal functionalities are subroutine respecting.

Lemma 2. Let π be a subroutine respecting protocol, then
π is online deniable. Furthermore, if ρ is Ḡ-subroutine re-
specting but only have access to the public interface of Ḡ (that
is the interface that is accessible by the adversary), then ρ
is also online deniable.

Proof. The view of a subroutine respecting protocol is
completely determined by its inputs and randomness, thus
π can be simulated only with access to the inputs given by
Fden.
For ρ the adversary must also use his access to the public
interface of Ḡ.

By the transitivity of the UC-emulation relation, when we
prove that a protocol UC-realizes some deniable ideal func-
tionality we are also proving that the protocol is deniable.

3.2 Bi-Deniability and UC with Local adver-
saries (LUC)

Canetti and Vald [9, 10] introduced the notion of Bi-Denia-
bility with many similarities to the definition of deniability
of Dodis et al. [12] and our work.
In the two party case, the notion of Bi-deniability is exactly
as deniability with the difference that instead of just one in-
formant and misinformant, two informants and two misinfor-
mants are considered. Each pair of informant/misinformant
is assigned to one of the two parties participating in the pro-
tocol, and can provide input to the party, corrupt the party,
and give output to the judge.
A protocol said to be Bi-deniable if for for any pair of in-
formants there exists a pair of misinformants, such that for
any judge the execution of the protocol witnessed by the
pair of informants is indistinguishable from the execution of
the misinformants.
Canetti and Vald showed that a two party protocol is Bi-
deniable if and only if it LUC-realizes Fauth [9, Thm. 7],
where Fauth is the LUC functionality for authenticated com-
munication and is described in fig. 3.
Next, we will describe a simple protocol that is Bi-deniable
but does not LUC-realize Fauth. Consider the protocol π =
(S,R) executed in the Fauth-hybrid model, where S runs the
code of the dummy party and R returns the message 0 when-
ever it receives some message m from Fauth.

The ideal functionality Fauth running with parties S,R, and
adversaries S(S,R),S(R,S) proceeds as follows:

1. Upon receiving an input (Send, sid,m) from party S,
do: If sid = (S,R, sid′) for some R, then record m and
output (Send, sid,m) to S(S,R).

2. Upon receiving “approve” from S(S,R), if m is recorded
provide (Send, sid,m) to S(R,S), and after S(R,S) ap-
proves, output (Send, sid,m) to R and halt. Other-
wise, provide (Send, sid,⊥) to S(R,S) and halt. (Both
adversaries control the channel delay.)

3. Upon receiving (Corruptsend, sid,m′) from S(S,R), if
S is corrupt and m was not yet delivered to S(R,S),
then output (Send, sid,m′) to S(R,S), and after S(R,S)

approves, output (Send, sid,m′) to R and halt.

Figure 3: The ideal functionality Fauth

Note that π is indeed Bi-deniable. The misinformant MS

forwards the input m given by J and send the (signal)
message toMR after J instruct to send “approve” to Fauth.
The misinformantMR waits for the (signal) message from
MS and the instruction “approve” from J , and outputs the
message 0 to J . Clearly, the view of a judge executed in the
Informant-Experiment is exactly the same as when executed
in the Misinformant-Experiment.
The protocol π can not LUC-realize Fauth, because it violates
the correctness property that is inherent to any protocol re-
alizing an authentication functionality. This also shows that
the equivalence between Bi-deniability and LUC realization
of Fauth is not correct, indeed the only implication that holds
is that if a protocol LUC-realizes Fauth then the protocol is
Bi-deniable.
Nevertheless, we can show that the equivalence holds when
the correctness property is removed from Fauth. In that case
we obtain our deniability function adapted to LUC, Fden,
which is described in figure 4.

The ideal functionality Fden running with parties S,R, and
adversaries S(S,R),S(R,S) proceeds as follows:

1. Upon receiving an input (Send, sid,m) from party S,
do: If sid = (S,R, sid′) for some R, then record m and
output (Send, sid,m) to S(S,R).

2. Upon receiving “approve” from S(S,R), if m is recorded
provide (Send, sid,m) to S(R,S), and after S(R,S) sends
(Send, sid,m′), output (Send, sid,m′) to R and halt.
Otherwise, provide (Send, sid,⊥) to S(R,S) and halt.
(Both adversaries control the channel delay.)

3. Upon receiving (Corruptsend, sid,m′) from S(S,R), if
S is corrupt and m was not yet delivered to S(R,S),
then output (Send, sid,m′) to S(R,S), and after S(R,S)

sends (Send, sid,m′′), output (Send, sid,m′′) to R and
halt.

Figure 4: The ideal functionality Fden

Theorem 3. Let π be some protocol. Then π LUC-realizes
Fden if and only if π is Bi-deniable.

The proof of Thm. 3 is simply an adaptation of the proof of
Thm. 2 to the LUC setting. We note that Thm. 3 can be
easily adapted to the multiparty setting.

4. ANONYMOUS CHANNELS
Anonymous channels allow users to exchange messages with-
out revealing their identities. The modern study of anony-
mous channels was started in [11] with mix-nets. In a mix-
net protocol the vector of all parties encrypted messages are
sent trough a set of mixers. Each mixer perform an opera-
tion on cyphertexts (usually partial decryption or reencryp-
tion) and send a random permutation to the next mixer.
Finally the last mixer publish a permutation of the vector
of parties messages. Several modifications have been pro-
posed to mix-nets since Chaum’s seminal paper, increasing
tolerance to dishonest parties, robustness and many other
desirable properties.
To realize our protocol we use the universal composable mix
net proposed by Wikström in [26]. We remark that we have
modified the original construction of [26], by demanding
each mixer to check in the bulletin board that there are at
least κ valid published cyphertexts before starting to mix.
Basically the mix-net proceeds as follows:

1. Each sender Pi waits for mixers public keys and com-
putes the product public key. Then each encrypt his
message under the product public key, publish the
cyphertext to a bulletin board an prove in zero knowl-
edge that it is a valid cyphertext.

2. Each mix net Mj j ∈ 1, . . . , k discards all the published
cyphertexts that are not valid, and if the number of
valid published cyphertexts is less than κ, wait.
If the number of valid published cyphertexts is at least
κ then, for l = 1, . . . , k if l = j the mixer partially
decrypt the list of cyphertexts obtained from the bul-
letin board, perform a randomly chosen permutation
on the list of cyphertext, publish on the bulletin board
and prove in zero knowledge that the published list is
a random permutation of the previous list. If l 6= j the
mixer must check that the permutation published by
the mixer Ml is a valid one. Finally lexicographically
sort the final published list and output it.

In [26] is shown that this protocol UC-realize the ideal func-
tionality FMN , a slightly different functionality than the
defined in figure 5, in the FKG − hybrid model. Our modi-
fied mix-net UC-realizes the ideal functionality FκMN in the
FKG − hybrid model.

Theorem 4. There exists a protocol that UC-realizes the
ideal functionality FκMN in the FKG-hybrid model with re-
spect to static adversaries that only corrupt half of the mixers
and under the DDH assumption in a cyclic group Gq.

We argue that the equivalent result for theorem 4 in [26]
implies theorem 4. Consider a UC real world execution of
our modified mix-net protocol with the dummy adversary,
and consider a class environments C where each Z ∈ C cor-
rupt less than k/2 mixer running arbitrary code on them,

The Ideal functionality FκMN running with mixers
M1, . . . ,Mk, senders P1, . . . , Pn, and ideal adversary S

1. Initialize a list L = ∅, and sets JP = ∅ and JM = ∅.

2. Suppose (Send,mi) mi ∈ Gq is received from Pi. If
i /∈ JP , set JP ← JP ∪ {i}, and append mi to the list
L. Then hand (Pi, Sent) to S.

3. Suppose Run is received from Mj . Set JM ← JM ∪{j}.
If |JM | ≥ k/2 and |JP | ≥ κ then sort the list L lexico-
graphically to form a list L′, and hand (Mj , Output, L

′)
to S and (Output, L′) to Ml, for l = 1 to k. Otherwise,
hand the list (Mj , Run) to S.

Figure 5: The functionality FκMN

and instructs parties to send at least κ valid messages and
before honest mixers send run. Clearly for this class of en-
vironments both, the construction of [26] an our modified
construction, give the same view to each environment in C.
Then the simulator from [26] is still useful.
The simulator also works when Z is outside C, because each
environment Z ′ /∈ C can be simulated with another environ-
ment Z ∈ C. The environment Z postpones all instructions
from Z ′ to a honest mixer to start before at least κ honest
messages have been, but tell to Z ′ that it really happen. As
long as the“postponed”mixer is honest there is no difference
between the simulated Z ′ and the real one (because in one
case the mixer(s) have received the Run input and is stopped,
and in the other case is just stopped), and hence the random
variable resulting of executing Z have the same distribu-
tion of the one resulting of executing Z ′. Then, quantifying
above all environments in C is the same as quantifying above
all environments, and as we argued for each environment in
C there exist a simulator such that it can distinguish from
the real protocol execution and the ideal functionality exe-
cution.

GUC secure mixnet
One might wonder if the mixnet of [26] is also GUC-secure.
We note that each of the subprotocols of the protocol given
in [26], excepting one, are GUC-secure because of honest
majority assumptions. The only one that not is FKG. In
[25] is shown that KG can be UC-realized with Fcrs, Is this
still valid in GUC? Or we mus use another kind of setup
assumtion such as the Augmented Common Reffernce String.
We left this question open, and assume that we have acces
to a functionality Fκmn.

5. ANONYMOUS AUTHENTICATED CHAN-
NELS

5.1 The Faac ideal functionality
An “anonymous authenticated channel” should allow parties
to send authenticated messages to any other party with-
out revealing their identities. We formally define an anony-
mous authenticated channel through the definition of an
ideal functionality called Faac (figure 6). The functional-
ity Faac just reveals the value of a sent message, but not
the identities related to that message. This holds while the
receiver of the message is not corrupt, but even in that sit-
uation the information revealed by Faac is completely sim-

Functionality Fκaac running with shared functionality Ḡkrk
with party P1, . . . , Pn and adversary S proceeds as follows

1. Initialize Γ← ∅, M ← ∅.

2. Suppose (Send,mi,j , j) is received from P̃i, do:

(a) If P̃i or P̃j aren’t registered in Ḡkrk or i = j then

send ⊥ to P̃i.

(b) If P̃j is corrupted then send

(Corruptsend, P̃i, P̃j ,mi,j) to S.

(c) Else, send (P̃i, Sent) to S and (Sent,mi,j , P̃j) to

P̃i, and let Γ ← Γ ∪ {(mi,j , i, j)} and M ← M ∪
{(mi,j)}.

3. Suppose (Corruptsend,mi,j , i
′, j) is received from P̃i,

and P̃i is corrupted. If P̃i′ is corrupted let Γ ← Γ ∪
{(mi,j , i

′, j)} and let M ←M ∪ {(mi′,j)}.

4. Once that |M | = κ, for each j ∈ {1, . . . , n} let
the multiset Mj = {(mi,j , i)|, (mi, i, j) ∈ Γ}, send

(Messages,Mj) to P̃j , and send (Messages,M) to CI
to S.

Figure 6: The ideal functionality Faac

ulatable by any one. Then the adversary can not prove to
any one else that somebody sent or received a message.

The last holds because functionality Faac is online deniable,
guaranteed by lemma 3.

Lemma 3. The functionality Faac is online deniable.

Proof. Note that Faac is Ḡkrk-subroutine respecting, but
all information needed from Ḡkrk is whether or not a party
is registered. Certainly, this information is public and thus
Faac is online deniable as consequence of Lemma 2.

5.2 The SIGMIX protocol
A first natural attempt to realize Faac is with a protocol that
uses anonymous channels to communicate message, and the
ideal functionality Fcert together with a certification author-
ity that registers public keys (in this case Ḡkrk) as done in [7].
But this attempt fails as long as the shared functionality Ḡkrk
allows all parties to verify the authenticity of a pair (m,σ).
Given that Ḡkrk publicizes parties public keys, anonymity is
lost by publicly binding the identity of the sender of m with
(m,σ).
Providing anonymity and authenticity seems to be contra-
dictory at first sight. But, being more careful, we note that
it can be realized if:

1. The messages are signed using a random shared key.

2. Only the receiver can verify if the party Pi is the author
of an authenticated message.

3. The receiver can not prove to anybody else if Pi is the
author of the received message.

4. The messages are sent from senders to receivers anony-
mously.

To proceed, we use a modified version of the GUC-secure
authentication protocol with respect to static adversaries,
from [12]. Noting that they use a deniable signing process
that help us to achieve points 1, 2 and 3 of our attempt to
realize Faac. The signing process is done through a signa-
ture that depends not only on the content of message an the
identity of the sender, instead it additionally depends on the
identity of the receiver allowing only the receiver to verify
the authenticity of the pair (m,σ). The point 4 is achieved
using Wikström’s mix net described in section 4.
The SIGMIX protocol runs in the Fmn, Ḡkrk − hybrid model
and with static adversaries. The Key Registration with
Knowledge Ḡkrk shared functionality from [12] (figure 7) pro-
vides a PKI for any protocol running concurrently with the
SIGMIX protocol. We fix the key generation algorithm Gen
with an algorithm that, using randomness r, sample a ran-
dom element x from a cyclic group Gq, of order q and gen-
erated by g, and return the pair (gx, x).
It is stressed that any other protocol using Ḡkrk−hybrid (that
is, a protocol in Φ) might share (sk, pk) pairs with SIGMIX
as long as they don’t publicize secret keys.
On the other hand, we consider the functionality Fmn as
a traditional UC ideal functionality, meaning that each in-
stance of Fmn is local to each calling protocol.
To proceed with SIGMIX, each sender Pi signs a message
mi to Pj with a MAC using a shared secret key ki,j between
Pi and Pj . Suppose that Pi and Pj have registered pairs of
secret key/public keys (xi, yi = gxi) and (xj , yj = gxj) such
that xi, xj ∈ Zq. Then the shared secret key ki,j can be non-
interactively computed by Pi with ki,j = yxij and by Pj with

kij = y
xj
i . The signed message (mi, σi,j = MACki,j(mi)) is

sent to Pj using the mix net and finally Pj can check the
authenticity recalculating the MAC. The SIGMIX protocol
is described in figure 8.:

5.3 Proof of security
Before we prove security of SIGMIX, we will prove the next
proposition about the Multi Decisional Diffie-Hellman as-
sumption [2].

Proposition 1. Let Gq be a cyclic group where the DDH
assumption holds, then the multiparty DDH (MDDH) as-
sumption also holds, that is:

({gxi}ni=1, {gxixj}ni,j=1,i 6=j)
c
≈ ({gxi}ni=1, {gri,j}ni,j=1,i 6=j).

Where xi ∈R Gq, ri,j ∈R Gq for all i and j. Specifically, for
each adversary D attacking MDDH there exists an adversary
D′ attacking DDH such that

AdvDDH
D′ (k) ≥ 1

n
·AdvMDDH

D (k).

This linear bound on the advantges is tighter than the quadratic
bound given in [2]. And, to the best of our knowledge, that
was the best bound for MDDH.

Parameterized by a security parameter λ, a protocol (or,
more generally, a list of protocols) Φ, and a (determinis-
tic) key generation function Gen, shared functionality Ḡkrk
proceeds as follows when running with parties P1, . . . , Pn:

Registration: When receiving a message (register) from
an honest party Pi that has not previously registered,

sample r
R← 0, 1 then compute (PKi, SKi)← Genλ(r)

and record the tuple (Pi, PKi, SKi).

Corrupt Registration: When receiving a message
(register, r) from a corrupt party Pi that has not
previously registered, compute (PKi, SKi)Genλ(r)
and record the tuple (Pi, PKi, SKi).

Public Key Retrieval: When receiving a message
(retrieve, Pi) from any party Pj (where i = j is
allowed), if there is a previously recorded tuple of the
form (Pi, PKi, SKi), then return (Pi, PKi) to Pj .
Otherwise return (Pi,⊥) to Pj .

Secret Key Retrieval: When receiving a message
(retrievesecret, Pi) from a party Pi that is either
corrupt or honestly running the protocol code for Φ,
if there is a previously recorded tuple of the form
(Pi, PKi, SKi) then return (Pi, PKi, SKi) to Pi. In
all other cases, return (Pi,⊥).

Figure 7: The Φ-Key Registration with Knowledge
shared functionality.

Proof. The proof is based on an hybrid argument, where
in each hybrid ~χ` the shared keys of parties P1, . . . , P` are
randomly chosen and other shared keys don’t. That is

~χ`
def
=
(

({gxi}ni=1) ,
(
{gri,j}`,`i=1,j=i

)
,
(
{gxixj}n,ni=1,j=`+1

))
Where xi ∈R Gq and ri,j ∈R Gq for all i, j ∈ 1, . . . , n. Let D
be an adversary that attacks MDDH. In figure 9 we describe
an adversary that chooses a random ` ∈ {1, . . . , n} and, if D′

breaks MDDH, it distinguish between hybrids ~χ` and ~χ`+1.

Clearly, if z = xy then ~γ3 =
(
{gδixy}`i=1

)
and thus ~χ = ~χ`.

Otherwise, if z ∈R Gq then ~χ = ~χ`+1. Then, the advantage
of D′ is given by

AdvDDH
D′ (k) =

∣∣∣Pr
[
D′(gx, gy, gz) = 1

]
− Pr

[
D′(gx, gy, gxy) = 1

]∣∣∣
=

∣∣∣∣∣
n∑
i=1

Pr
[
D′(gx, gy, gz) = 1|` = i

]
Pr [` = i]−

n∑
i=1

Pr
[
D′(gx, gy, gxy) = 1|` = i

]
Pr [` = i]

∣∣∣∣∣
=

1

n

∣∣∣∣∣
n∑
i=1

Pr [D(~χi) = 1]− Pr [D(~χi+1) = 1]

∣∣∣∣∣
=

1

n

∣∣∣Pr [D(~χ1) = 1]− Pr [D(~χn) = 1]
∣∣∣

=
1

n
AdvMDDH

D (k).

The indistinguishability between
(
({gxi}ni=1) ,

(
{gxixj}n,ni=1,j=i

))
and

(
({gxi}ni=1) ,

(
{gri,j}n,ni=1,j=i

))
is straightforward.

The protocol SIGMIXκ running with parties P1, . . . , Pn in the FκMN , ḠKRK − hybrid proceeds as follows:

Sender Pi: Each sender Pi proceeds as follows.

1. Wait for input (Send, Pj ,mi,j).

2. If i = j return ⊥.

3. Let xi the secret key of Pi registered on ḠKRK . If Pi is not registered return ⊥.

4. Hand (Retrieve, Pj) to ḠKRK and let yj the answer.

5. If the answer was ⊥ then return ⊥. Else compute ki,j ← yxij and then compute σi,j = MACki,j (mi,j).

6. Hand (Send,mi,j ||σi,j) to FMN .

7. Return (Sent,mi,j , Pj)

Receiver Pj: Each receiver Pj proceeds as follows.

1. Wait for an input (Output, L) from FMN .

2. Let y1, . . . , yn the public keys of all parties participating in the protocol. For each i ∈ {1, . . . , n} compute shared
secret ki,j ← y

xj
i

3. Let the multiset Mj ← ∅. For each (m,σ) ∈ L and for each kij , if σ = MACkij (m) then Mj ←Mj] {(m, i)}.

4. Return (Messages,Mj).

Mixer Mi: Each mixer send (Run) to FMN at the beginning of the protocol execution.

Figure 8: The protocol SIGMIX

In order to simplify the analysis we introduce a class of ad-
versaries that do not play replay attacks. Replay attacks
are attacks where past executions of the protocol can be
used again, but in the same way that they were originally
used. For example in our case, suppose that sender S sent
an authenticated message m to the receiver R. A replay
attack occurs when the adversary A can successfully send
the message m to R as it comes from S, but nothing more
than that. We note that SIGMIX is secure only with re-
spect to adversaries that do not play reply attacks, but it
can be easily adapted to tolerate that kind of adversaries.
Indeed, assume that SIGMIX securely realizes Faac with re-
spect to adversaries that do not play replay attacks, in order
to make useless the past authenticated messages (of th form
(m,MACy(m)), where y is the shared key) we add state to
senders and receivers. Therefore, to sign the iR-th message
to R the sender S computes (m,MACy(m||iR)). In order to
verify the iS-th message (m,σ) from S the receiver checks
that MAC(m||iS) = σ. Note state of the senders and receiver
are the indexes of received messages for each receiver/sender.
The security of SIGMIX is guaranteed by Theorem 5.

Theorem 5. Suppose that MAC is UF-CMA secure and
that DDH holds in Gq, then SIGMIX GUC-realizes the ideal
functionality Faac in the Ḡ-hybrid model with respect to ad-
versaries that do not play replay attacks.
Concretely, let n be the number of participants and k the se-
curity parameter of an execution of SIGMIX. Then, for all
environment Z and for all adversary A there exist a simu-
lator S, a DDH distinguisher DDDH and and a forger DMAC

such that for all k large enough

n ·AdvDDH
DDDH

(k) + n(n− 1) ·AdvUF−CMA
DMAC,MAC(k) ≥

∣∣∣∣∣∣ Pr
[
EXECḠkrk,Fmn

Z,A,SIGMIX(k) = 1
]
−

Pr
[
EXECḠkrk,Faac

Z,S,IDEALFaac
(k) = 1

] ∣∣∣∣∣∣
Proof. The proof proceeds through the indistinguisha-

bility of three games: Gamereal,Gamerand and Gameideal.
Let Z be an environment and A an adversary.
Gamereal consist of an execution of SIGMIX with environ-
ment Z and adversary A in the real world. Gamerand is the
same as Gamereal except that the shared keys between par-
ties are chosen randomly. Gameideal consist of an execution
of Faac with environment Z and the simulator S (defined in
figure 11) in the ideal world.
We let the output of each game be the output of the envi-
ronment, that is:

Gamereal
def
= EXECḠkrk,Fmn

Z,A,SIGMIX(k),

Gamerand
def
= EXECḠkrk,Fmn

Z,A,SIGMIXrand
(k),

Gameideal
def
= EXECḠkrk,Faac

Z,S,IDEALF
(k).

SIGMIXrand is almost equal to SIGMIX, except that for each
party Pi computing the shared key with ki,j = (gxj)xi an-
other party Pj we replace ki,j with a random ri,j ∈ Gq. The
same value is replaced with any other computation of ki,j
and kj,i (done by Pj). The same is done with each concur-
rent execution of SIGMIX.

On input (gx, gy, gz) the adversary D′ does the following:

1. `
R← {1, . . . , n}.

2. Compute public keys for parties in {P1, . . . , P`}:

(a) δ1 ← 1.

(b) δi
R← Gq for i = 2 to `.

(c) gxi ← (gx)δi for i = 1 to `.

3. Compute the public key of party P`+1, that is gx`+1 ← gy.

4. Compute secret keys for parties not in {P1, . . . , P`}, that is xi
R← Gq for i = `+ 2 to n.

5. Let γ1 bet the set of all public keys, ~γ1 ← ({gxi}ni=1).

6. Compute the shared keys for parties in {P1, . . . , P`}:

(a) ri,j
R← Gq for i = 1 to ` and j = i to `.

(b) ~γ2 ←
(
{gri,j}`,`i=1,j=i

)
.

7. Compute the shared key between all parties in {P1, . . . , P`} and P`+1:

(a) gri,`+1 ← (gz)δi for i = 1 to `.

(b) ~γ3 ←
(
{gri,`+1}`i=1

)
.

8. Compute the shared keys for which at least one exponent is known:

(a) gxixj ← (gx)δixj for i = 1 to ` and j = `+ 2 to n.

(b) ~γ4 ←
(
{gxixj}`,ni=1,j=`+2

)
.

(c) ~γ5 ←
(
{gxixj}n,ni=`+2,j=i

)
.

9. ~χ← (~γ1, ~γ2, ~γ3, ~γ4, ~γ5).

10. Run D(~χ) and output whatever it outputs.

Figure 9: Adversary D′ attacking DDH

Suppose that∣∣∣Pr [Gamereal = 1]− Pr [Gamerand = 1]
∣∣∣ = ε,

then there exists a MDDH distinguisher DMDDH such that
AdvMDDH

DMDDH
(k) = ε. Indeed, consider the MDDH distinguisher

defined in figure 10. Clearly, if ri,j = xixj the output of
DMDDH follows the same distribution of Gamereal, and if
ri,j ∈R Zq the output of DMDDH follows the same distribution
of Gamerand. Then it must be that

AdvMDDH
DMDDH

(k) = ε.

By proposition 1 there exist an adversary DDDH such that

The adversary DMDDH on input ({gxi}ni=1, {gri,j}ni=1,j>i)
attacking MDDH over Gq proceeds as follows:

1. Initialize Mi ← ∅ for all i ∈ {1, . . . , n}.

2. Simulate an execution of Gamereal.

3. When a the party P̃i i ∈ {1, . . . , n} \ IA registers on
ḠKRK set the registered public key to gxi .

4. If Z sends (Send,m, j) to Pi, replace Pi’s computed
shared key with ki,j = gri,j .

5. When the simulation halts return whatever Z returns.

Figure 10: The MDDH distinguisher DMDDH

AdvDDH
DDDH

(k) ≥ 1

n
AdvMDDH

DMDDH
(k).

Let IA ⊆ {1, . . . , n} be the set indexes of parties corrupted
by A and let IMA ⊆ {1, . . . , k} the set of indexes of mixers
corrupted by A. The ideal adversary SA is described in fig-
ure 11, and it simulates the execution of SIGMIX only with
access to FAAC .
As the values of honest messages (the sender and the re-
ceiver is honest) remains unknown to SA until all messages
are sent, SA cheats the simulated A making FMN tells A
that the message was sent. When the set of honest sent
messages M is revealed to SA, it silently makes the sim-
ulated parties send the messages to FMN . This seems to
A indistinguishable from an execution where an hypotheti-
cal adversary S ′A guesses the messages sent from Z to each
honest party, as the strings seen by A are the same in both
experiments.

Suppose that∣∣∣Pr [Gamerand = 1]− Pr [Gameideal = 1]
∣∣∣ = δ. (1)

As the view of the simulated A in Gameideal is the same
view of the view of A in Gamerand, then the only possible
difference on the view of Z is due to a difference in the out-
puts of the protocol. Specifically this difference is possible
because in the line 2 of the simulation of corrupted parties
in S, some messages m||σ could be dropped. The set of
all dropped messages contains all possible forgery. But if A
does not forges then the the output of Z in Gamerand must

Ideal adversary S running with parties P̃1, . . . , P̃n and ex-
ecuted in the FMN , ḠKRK-hybrid model proceeds as follows:

At the beginning S corrupts parties P̃i i ∈ IA and and
mixers Mi i ∈ IMA , then simulates an execution of Gamerand
with environment Z ′, where Z ′ is machine controlled by S.
ḠKRK and FMN are honestly simulated with some minor
modifications.

Simulation of links (Z ′,A) with (Z,S):
If m is received from Z then make Z ′ send m to A. If m is
sent from A to Z ′ then send m to Z

Simulation of corrupted parties P̃i i ∈ IA:

1. If Pi i ∈ IA send m||σ to FMN and σ = MAC
y
x
i′

j
(m)

for some registered public key yj j ∈ {1, . . . , n} and
some registered secret key xi′ i

′ ∈ IA, then send
(Corruptsend,m, i′, j) to P̃l.

2. If σ 6= MAC
y
x
i′

j
(m) for all registered public keys yj

j ∈ {1, . . . , n} and all registered secret keys xi′ i
′ ∈ IA

do nothing.

Simulation of honest parties Pi i ∈ IA:

1. If (P̃i, Sent) is received from FMN then make the sim-

ulated FMN sends (P̃i, Sent) to A.

2. If (Corruptsend, P̃i, P̃j ,mi,j) is received from FAAC
make Z ′ sends to P̃i the message (Send,m, j). When
Pi ask for his secret key the simulated ḠKRK must
answer Pj secret key (SA knows it because Pj is cor-
rupted), and when Pi ask for Pj ’s public key the sim-
ulated ḠKRK must answer Pi’s public key.

3. Once (Messages,M) is received from FAAC , modify
the list L of FMN to be equal to M .

Figure 11: The ideal adversary S

be the same in Gameideal. Let A forges be the event wen A
forges at least one signature, then

Pr
[
Gamerand = 1|A forges

]
= Pr

[
Gameideal = 1|A forges

]
.

With this in mind we express Pr [Gamerand = 1] and
Pr [Gameideal = 1] in terms of the event A forges.

Pr [Gamerand = 1] =

Pr [Gamerand = 1|A forges] Pr [A forges] +

Pr
[
Gamerand = 1|A forges

]
Pr
[
A forges

]
,

Pr [Gameideal = 1] =

Pr [Gameideal = 1|A forges] Pr [A forges] +

Pr
[
Gameideal = 1|A forges

]
Pr
[
A forges

]
.

Then∣∣∣Pr [Gamerand = 1]− Pr [Gameideal = 1]
∣∣∣

= Pr [A forges] ·∣∣∣Pr [Gamerand = 1|A forges]− Pr [Gameideal = 1|A forges]
∣∣∣

≤ Pr [A forges]

Combining this with equation 1 gives

Pr [A forges] ≥ δ.

In figure 12 we construct a forger DMAC whose advantage is
polynomially related with Pr [A forges]. Indeed,

AdvUF−CMA
DMAC,MAC(k) ≥ Pr [DMAC forges|A forges] Pr [A forges]

=
Pr [A forges]

n(n− 1)
·

n∑
i,j=1
j 6=i

Pr
[
DMAC forges|

A forges ∧ (i∗, j∗) = (i, j)
]

The forger DMAC attacking unforgeability of MAC with or-
acle access to MACk, k ∈R Gq:

1. Simulate an execution of Gamerand.

2. Choose i∗, j∗ ∈R {1, . . . , n}\IA, i∗ 6= j∗ and let M̂j∗ ←
∅.

3. Whenever party Pi∗ calls MAC with key gri∗,j∗ and
message m replace the result with MACk(m) and let

M̂j∗ ← M̂j∗] {m,MACk(m)}.

4. When FMN publish the list L drop all messages m||σ
such that σ = MACgri,j (m), i 6= i∗ or j 6= j∗, and

drop all messages in M̂j∗ . With the other messages
form a list M ′j∗ .

5. Verify each m||σ in M ′j∗ . When a valid one is founded
return it.

6. Else, abort.

Figure 12: Forger DMAC attacking MAC

Given that in the event “A forges” A forges at least one
signature for some Pi and Pj (it can not be signature seen
previously by A because it does not play replay attacks),
then at least one term in the sum must be exactly 1. Then

AdvUF−CMA
DMAC,MAC(k) ≥ Pr [A forges]

n(n− 1)

≥ δ

n(n− 1)
.

Combining the results

n ·AdvDDH
DDDH

(k)+

n(n− 1) ·AdvUF−CMA
DMAC,MAC(k) ≥ ε+ δ

≥
∣∣∣∣Pr [Gamereal = 1]−

Pr [Gameideal = 1]

∣∣∣∣ .

By unforgeability of MAC and the assumption that DDH
holds in Gq, both advantages must be negligible. Then
the advantage of Z distinguishing SIGMIX from IDEALFaac

must be negligible too.

6. REFERENCES
[1] D. Boneh and M. Franklin. Anonymous authentication

with subset queries. In 6th ACM Conference on
Computer and Communications Security (CCS ’99),
pages 113–119, New York, Nov. 1999. ACM Press.

[2] E. Bresson, O. Chevassut, and D. Pointcheval.
Dynamic group diffie-hellman key exchange under
standard assumptions. In Proceedings of the
International Conference on the Theory and
Applications of Cryptographic Techniques: Advances
in Cryptology, EUROCRYPT ’02, pages 321–336,
London, UK, UK, 2002. Springer-Verlag.

[3] Canetti, Dwork, Naor, and Ostrovsky. Deniable
encryption. In CRYPTO: Proceedings of Crypto, 1997.

[4] Canetti, Kushilevitz, and Lindell. On the limitations
of universally composable two-party computation
without set-up assumptions. JCRYPTOL: Journal of
Cryptology, 19, 2006.

[5] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000.

[6] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136–145, 2001.

[7] R. Canetti. Universally composable signature,
certification, and authentication. In CSFW, page 219.
IEEE Computer Society, 2004.

[8] R. Canetti, Y. Dodis, R. Pass, and S. Walfish.
Universally composable security with global setup. In
S. P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 61–85. Springer,
2007.

[9] R. Canetti and M. Vald. Universally composable
security with local adversaries. Cryptology ePrint
Archive, Report 2012/117, 2012.
http://eprint.iacr.org/.

[10] R. Canetti and M. Vald. Universally composable
security with local adversaries. In Proceedings of the
8th international conference on Security and
Cryptography for Networks, pages 281–301.
Springer-Verlag, 2012.

[11] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24(2):84–88, 1981.

[12] Y. Dodis, J. Katz, A. Smith, and S. Walfish.
Composability and on-line deniability of
authentication. In O. Reingold, editor, Theory of
Cryptography, 6th Theory of Cryptography Conference,
TCC 2009, San Francisco, CA, USA, March 15-17,
2009. Proceedings, volume 5444 of Lecture Notes in
Computer Science, pages 146–162. Springer, 2009.

[13] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup.
Anonymous identification in ad hoc groups. In
Advances in Cryptology-EUROCRYPT 2004, pages
609–626. Springer, 2004.

[14] Y. Dodis, V. Shoup, and S. Walfish. Efficient
constructions of composable commitments and

zero-knowledge proofs. In D. Wagner, editor, Advances
in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings, volume
5157 of Lecture Notes in Computer Science, pages
515–535. Springer, 2008.

[15] Dwork, Naor, and Sahai. Concurrent zero-knowledge.
JACM: Journal of the ACM, 51, 2004.

[16] C. Dwork and A. Sahai. Concurrent zero-knowledge:
Reducing the need for timing constraints. In
H. Krawczyk, editor, CRYPTO, volume 1462 of
Lecture Notes in Computer Science, pages 442–457.
Springer, 1998.

[17] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Cryptography from anonymity. Cryptology ePrint
Archive, Report 2006/084, 2006.

[18] J. Kilian and E. Petrank. Identity escrow. In
H. Krawczyk, editor, CRYPTO, volume 1462 of
Lecture Notes in Computer Science, pages 169–185.
Springer, 1998.

[19] Y. Lindell. Anonymous authentication. Journal of
Privacy and Confidentiality, 2(2):4, 2007.

[20] M. Naor. Deniable ring authentication. In M. Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 481–498. Springer, 2002.

[21] Pass. On deniability in the common reference string
and random oracle model. In CRYPTO: Proceedings
of Crypto, 2003.

[22] M. D. Raimondo and R. Gennaro. New approaches for
deniable authentication. In V. Atluri, C. Meadows,
and A. Juels, editors, ACM Conference on Computer
and Communications Security, pages 112–121. ACM,
2005.

[23] M. D. Raimondo, R. Gennaro, and H. Krawczyk.
Secure off-the-record messaging. In V. Atluri, S. D. C.
di Vimercati, and R. Dingledine, editors, WPES,
pages 81–89. ACM, 2005.

[24] M. D. Raimondo, R. Gennaro, and H. Krawczyk.
Deniable authentication and key exchange. In
A. Juels, R. N. Wright, and S. D. C. di Vimercati,
editors, ACM Conference on Computer and
Communications Security, pages 400–409. ACM, 2006.

[25] Wikstrom. Universally composable DKG with linear
number of exponentiations. In International
Conference on Security in Communication Networks,
SCN, LNCS, volume 4, 2004.

[26] Wikstrom. A universally composable mix-net. In
Theory of Cryptography Conference (TCC), LNCS,
volume 1, 2004.

[27] A. C. Yao and Y. Zhao. Deniable internet key
exchange. In Applied Cryptography and Network
Security, pages 329–348. Springer, 2010.

[28] A. C.-C. Yao, F. F. Yao, and Y. Zhao. A note on
universal composable zero-knowledge in the common
reference string model. Theor. Comput. Sci,
410(11):1099–1108, 2009.

