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Yao et al. (YYZ09a; YYZ07) claimed a potential limitation on the class of protocols that

could be securely implemented in the Generalized Universal Composability (GUC)

framework proposed by Canetti et al. (CDPW07). Specifically, Yao et al. presented a

concrete attack on a GUC Zero Knowledge (GUCZK) protocol, a natural adaptation

Blum’s ZK proof for Directed Hamiltonicity using the general GUC feasibility of

(CDPW07). Interestingly, the attack was not analyzed in the GUC model in (YYZ09a)

but in the FUC model, a new UC-like framework proposed in the same work.

Nonetheless, Yao et al. (YYZ09a) argued that, in light of this attack, GUC would lose its

concurrent general composability and proof of knowledge properties. Concretely, they

argue that GUC composability would now be with respect to some adversaries with

limited access to external arbitrary protocols.

In this work, we show that the claimed attack from Yao et al. is indeed harmless and

does not contradict the security of the mentioned GUCZK protocol, thus restoring the

general feasibility for GUC.

1. Introduction

The Universal Composability framework (UC), introduced by Canetti (Can01), allows

designing protocols whose security is maintained even when composed with any other

arbitrary protocol (i.e. general composition (Lin03)).

But such strong guarantee comes at a price: many interesting computational tasks,

modeled as ideal functionalities, are unrealizable in the so-called plain UC as shown by

Canetti et al. (CKL06). In particular, this result ruled out the possibility of realizing

many functionalities, such as commitments and zero knowledge. Nevertheless, Canetti et

al (CLOS02) showed that any functionality can be UC-realized in the Fcrs-hybrid model,

where a Trusted Third Party provides a Common Reference String.

In practice, trusted parties are obviously hard to obtain and consequently, it is desirable

to restrict our trust to a single trusted party – one that could be reliably shared between
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many protocols. But UC-secure protocols must be subroutine respecting, which means

that the protocol an its subroutines should no provide (resp. receive) input (resp. output)

to (resp. from) any other protocol. In the case of protocols that are run in the Fcrs-hybrid

model, this implies that Fcrs must be a subroutine of the protocol. Therefore, different

subroutine respecting protocols must call different instances of Fcrs.

Pass (Pas03) showed that if a shared Fcrs is used for realizing zero knowledge, it leads

to situations where a zero knowledge protocol looses its deniability, a key and desirable

property. Furthermore, Yao et al. (YYZ09b) showed that this setting could also lead to

compromising the framework’s general composability as well as the proof of knowledge

property.

In order to solve this problem, the Generalized Universal Composability (GUC) frame-

work was introduced by Canetti, Dodis, Pass, and Walfish (CDPW07). In this setting,

protocols are not subroutine respecting but Ḡ-subroutine respecting instead – protocols

are subroutine respecting except that they are allowed to call the shared functionality

Ḡ. Canetti et al. (CDPW07) showed that a global Common Reference String is still

insufficient for obtaining general feasibility for GUC (that is, realizing any functional-

ity), thus a different setup assumption must be used. Consequently, the Augmented CRS

shared functionality Ḡacrs was introduced in the same work (CDPW07). Using this setup

assumption they showed how any ideal functionality could be realized.

Nevertheless, Yao et al. (YYZ09a; YYZ07) claimed that there exists a potential limita-

tion of the general feasibility for generalized universal composability (GUC) framework.

Specifically, they showed a concrete attack on the GUCZK protocol implied by the general

GUC feasibility result of Canetti et al. (CDPW07). The attack’s validity was first argued

in the GUC model (YYZ07) but later re-stated in the so-called FUC mode (YYZ09a), a

supposedly more general UC-like framework proposed in the same work (see Sect. 3.3 for

a discussion of FUC). In any case, Yao et al. (YYZ09a; YYZ07) argued that this was ev-

idence that GUC would lose its concurrent general composability. More concretely, they

claimed that GUC composability would be restricted to some adversaries with limited

access to external arbitrary protocols, as opposed to the general composability proposed

in (CDPW07).

The consequences of this attack are significant. Canetti himself has wondered about

the implications of the above result (Can07). Concretely, he conjectures that the attack

is an indication that, in some situations, there are protocols that unintentionally (but

inevitably) share more information than just public information.

1.1. Our contribution

In this work, we show that the claimed attack from Yao et al. is harmless and does not

contradict the security of the implied GUCZK, thus restoring the general feasibility for

GUC. More concretely, we show that the attack described in Yao et al. (YYZ09a) can

be straightforwardly mapped into an attack in the GUC model. Then, we show that the

same techniques used to prove the security of the general feasibility result for GUC can be

used in order to simulate the mapped attack only with access to the ideal functionality.
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1.2. Organization

The attack of Yao, the main focus of this work, applies to the GUC Zero-Knowledge

protocol implied by the general feasibility result for GUC. In order to describe this pro-

tocol, we must introduce several primitives. In Sect. 2, after presenting some preliminar-

ies about notation, terminology, and execution framework, we describe Identity-based

Trapdoor Commitments, Blum’s (honest verifier) zero-knowledge protocol, and Dense

Pseudo-Random Ciphertext Secure Encryption Schemes, which are tools we need to de-

scribe the UC Adaptive Identity-based Commitments (UAIBC). Then, in Sect. 3.4 we

describe the objective of Yao et al.’s attack, the UC Zero-Knowledge protocol imple-

mented using the UAIBC protocol, as well as a discussion of why the attack is harmless,

including exhibiting a simulator for the attack. We discuss the consequences and conclude

in Sect. 4.

2. Preliminaries

We denote by [n] the set {1, 2, . . . , n}. We denote by x← v the instruction that assigns

the variable x the value v. We denote by an integer k the security parameter.

We use PPT as shortcut for probabilistic polynomial time Turing Machine, that is, a

Turing Machine who might use a random tape and whose execution time is bounded by

some polynomial in the security parameter.

Given a probabilistic Turing Machine M we denote by M(x; ρ) the output of M when

executed with input x and randomness ρ. We use y
R←M(x) as shortcut for y ←M(x; ρ),

when ρ is uniformly sampled from {0, 1}r and r is polynomially related to the security

parameter. If D is a distribution, we denote by x
R← D the experiment of sampling x

according to D.

We use poly(k) to denote a function n : N→ N polynomially bounded in the security

parameter, i.e. there exists a polynomial p such that n(k) < p(k) for any large enough

integer k. We use negl(k) to denote a function µ : N → R+ which is asymptotically

bounded by the inverse of any polynomial, that is, for any polynomial p and for any

integer k large enough µ(k) < 1/p(k).

2.1. Universal Composition (UC) and Generalized Universal Composition (GUC)

In this section, we briefly recall the Universal Composability framework and the Gener-

alized Universal Composability framework. The interested reader is refereed to (Can01;

CDPW07; CLOS02) for more details.

The Universal Composability framework (UC)

The UC framework is a general tool for modeling security of cryptographic protocols. The

desired properties of cryptographic protocols are defined in terms of tasks or ideal func-

tionalities. The ideal functionality is a trusted third party that obtains inputs directly

from the parties, performs certain instructions on these inputs, and provides the appro-

priate outputs back to the parties. A protocol securely implements a given cryptographic
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task if running the protocol against a realistic (i.e. real-life) adversary “emulates” the

execution of an ideal functionality. In the ideal functionality, the task is computed by the

trusted party directly interacting with the parties against a very limited adversary called

the ideal adversary or simulator. The notion of “emulation” involves a distinguisher Z
which not only provides the inputs to the parties and sees their outputs but also interacts

with the adversary, with the goal of telling whether it is interacting with a real proto-

col and the real-life adversary, or with the functionality and the ideal adversary. Good

emulation means no such environment is successful. See details and proofs in (Can01).

The main advantage of UC security is that it composes, that is, the security of any

protocol is maintained even when the protocol is being executed concurrently with other,

possibly adversarially chosen, protocols. But there is a restriction: the protocol must be

subroutine respecting. This means that the protocol itself and all its subroutines do

not provide any input or output to any other protocol. In other words, the protocol and

the subroutines called by the protocol are independent of all other protocols and cannot

share state with other protocols.

The Generalized UC framework (GUC):

Being subroutine respecting, however, is an unrealistic limitation when protocols need

access to a trusted party. This is the case when setup assumptions are used (which are

required when realizing more interesting functionalities (CKL06)), as noted by Canetti

et al. (CDPW07). The goal of the GUC framework is to overcome the UC limitation of

requiring subroutine respecting protocols.

In the GUC framework (CDPW07), subroutine respecting protocols are extended so

they can be Ḡ-subroutine respecting : protocols can be subroutine respecting except that

are allowed to call the shared functionality Ḡ. The GUC framework models Ḡ-subroutine

respecting protocols by giving the environment direct access to the shared functionality.

This small change lets the environment simulate protocols that share state with the

analyzed protocol.

The definitions of execution and emulation in GUC are almost identical to those of UC

but notation changes. From now on, we denote by EXEC both the UC-execution as well as

the GUC-execution, and by UC-emulation we also refer to GUC-emulation. Analogously

to UC, it is possible to prove a composition theorem for Ḡ-subroutine respecting protocols.

2.2. Full Universal Composition (FUC)

We now briefly recall the FUC framework, proposed in Yao et al. (YYZ09a). Even though

the presentation there is very informal, in what follows, we attempt to extract a somewhat

more precise, UC-like, especification in order to reason about it. Below, quotes are from

Yao et al. (YYZ09a).

Full universal composability (FUC) denotes a UC-like framework that attempts to

capture composability with arbitrary protocols, “which was the original security goal and

motivation for UC.” In this context, the described framework seems to follow the UC

design, with the following differences. In FUC, “the adversary controls all communication
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channels among all executing protocols. In other words, in FUC the adversary has full

access to external arbitrary protocols.”. Accordingly, the FUC framework would allow

the adversary to directly start new protocol executions (as opposed to UC where only

the environment can do it) and control all the communication of these new protocols.

Note that, like in UC, it is the environment and not the adversary who provides the

inputs to the new protocol, otherwise the resulting notion of emulation is meaningless

(see discussion after the environment constructed in Sect 3.2).

In Yao et al. (YYZ09a), it is claimed that “the adversary considered in accordance

with FUC, who has full access to the external world, is much more powerful than the

adversary considered in accordance with the GUC feasibility of Canetti et al. (2007), who

has limited access to the external world.”

UC/GUC/FUC Attacks: In order to understand the attack from (YYZ09a; YYZ07), we

describe what an attack to some protocol Π is in any UC-like framework mentioned

above (the concept is shared among all framworks). Intuitively, a protocol is not secure if

there is an attack, where security in UC/GUC/FUC is defined by the concept of protocol

emulation mentioned earlier. A protocol Π realizes a functionality F if for all adversary

A there exists a simulator S such that for all environment Z

|Pr[EXEC(Z,A,Π) = 1]− Pr[EXEC(Z,S,F) = 1]| ≤ negl(k) .

Consequently, there is an attack to protocol Π if there exists an adversary A such that

for all S there exists Z where

|Pr[EXEC(Z,A,Π) = 1]− Pr[EXEC(Z,S,F) = 1]| > 1/kc

for some c ∈ N.

2.3. Identity Based Trapdoor Commitments

Identity-based Trapdoor Commitments (IBTC) (Wal08) are commitment schemes pa-

rameterized by an identity ID and with the additional property that, with knowledge of

some trapdoor associated to ID, one can violate the binding property.

Definition 1 (IBTC). An Identity-Based Trapdoor Commitment scheme IC is given by

a 5-tuple of PPT algorithms IC = (Setup,Extract,Com,ECom,Equiv), with the following

basic properties:

Setup: A deterministic algorithm which takes as input a (uniformly random) “master

secret key” MSK ∈ {0, 1}k and outputs a public key PK.

Extract: On input (ID,MSK) outputs a trapdoor SKID for identity ID.

Com: A deterministic algorithm which takes as input a tuple of the form (PK, ID, d,m),

and outputs a commitment κ for message m under identity ID using random input

d. The domain from which d is chosen is denoted by D, and the domain where the

commitment lies is denoted by C. As a shorthand, we may write ComID(m; d) to

denote Com(PK, ID, d,m).

ECom: On input (PK, ID, SKID) outputs a pair (κ, α), to be used with Equiv.
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Equiv: On input (PK, ID, SKID, κ, α,m) produces a value d ∈ D such that ComID(m; d) =

κ. That is, d makes κ appear to be a commitment to m.

2.4. Blum’s Proof of Knowledge protocol for Directed Hamiltonian Cycle

We recall Blum’s protocol for Directed Hamiltonian Cycle (DHC) from (Blu86). Blum’s

protocol is 3-round public coin honest verifier protocol (a.k.a. Σ-protocol) in which the

prover first commits to a random permutation of the edges in a graph, and then to the

permutation itself. The verifier uniformly chooses between asking for an opening a Hamil-

tonian cycle of the permuted graph, or an opening of the graph and the permutation.

Common input: The common input for the prover and the verifier is a graph G =

(V,E), where V = [n] and E is represented as a matrix E of size n2, where each entry

eij ∈ {0, 1} for i, j ∈ [n].

Secret input: The secret input of the prover is a Hamiltonian cycle C for G.

Round-1: The prover randomly samples a permutation over [n] and commit to the

matrix C of size n2, such that each entry is given by cij = Com(ekl, rij), each rij ∈R
{0, 1}poly(k), for k, l ∈ [n], i = π(k), and j = π(l). The prover also commit to a

description of π.

Round-2: The verifier uniformly selects a bit c ∈R {0, 1} and sends it to the prover.

Round-3: If b = 0, the prover sends to the opening to all commitments, and the verifier

checks that the revealed graph is indeed isomorphic to G via π. If b = 1, the prover

reveals to the verifier only the commitments to entries π(i), π(j) such that (i, j) ∈ C,

and the verifier checks that all revealed values are 1 and the corresponding entries

form a simple n-cycle.

We note that the previous protocol slightly differs from the original protocol from (Blu86):

in round-1 of the above protocol, the prover also sends a commitment to the permutation

used. Yao et al. (YYZ09a) use the original protocol by Blum but this does not suffice for

straight line witness extraction (a requirement for the simulation in UC), so we believe

it is an error. Moreover, the protocol we describe here is the underlying protocol used in

order to construct UCZK (CF01, Sect. 5), and allows straight-line witness extraction for

malicious provers.

2.5. Dense Pseudo-Random Ciphertexts Secure Encryption

The protocol UAIBC from (CDPW07) made use of a Dense Pseudo-random Ciphertexts

(PRC) Secure Encryption which is an encryption scheme where the the public keys and

the ciphertexts are “close” to the uniform distribution on the respective support sets

(DSP92; Wal08).

Definition 2 (Dense PRC Encryption). A public key encryption scheme PRC =

(Gen,Enc,Dec), satisfying the standard correctness properties for public key encryption,

is said to be Dense PRC secure if it satisfies the following additional constraints:

1 Public keys produced by Gen lie within some abelian group Φ, with efficiently com-

putable inverse and group operations.
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2 Membership in Φ is efficiently testable.

3 The uniform distribution on Φ is efficiently samplable.

4 The distribution of public keys produced by Gen is computationally indistinguishable

from the uniform distribution on Φ.

5 For all PPT adversaries A:

Pr
[
ALR(·,0)(1k) = 1

]
−
[
ALR(·,1)(1k) = 0

]
≤ negl(k),

where the answer to a query of the oracle LR(m, b) is computed by obtaining (ρ, ρ−1)
R←

Gen(1k) and returning the pair 〈ρ,Encρ(m)〉 if b = 0, or returning the uniformly ran-

dom pair 〈U,R〉 if b = 1 (where U is chosen from a group Φ, and R from {0, 1}|EU (m)|).

2.6. Universally Composable Adaptive Identity Based Commitments (UAIBC)

We recall the UAIBC protocol from (CDPW07). This is an interactive protocol where the

committer party Pc commits to a bit b to the receiver party Pr. UAIBC allows extraction

of commitments when the committer is corrupt, which means that the actual committed

value can be efficiently computed, as well as commitment equivocability, that is, if the

receiver is corrupt there is a procedure to open the committed value to an arbitrary value.

In order to achieve these properties, UAIBC builds on IBTC, which allows equivocation,

and a coin tossing protocol, which allows extraction.

Let IC = (Setup,Extract,Com, ECom,Equiv) be an IBTC scheme and PRC = (Gen,Enc,

Dec) a Dense PRC Encryption scheme. In the commit phase both parties engages in a

coin tossing protocol (CT), where a completely random value is obtained by both parties.

The CT protocol have the additional property that, when Pc is corrupted, the outcome

can be set to any value. After the execution of the CT protocol, Pc commits to b by

computing κ = ComPr
(b; d), where d ∈R D, and also computing the value

ψ =

{
Encρ(d) if b = 0,

c ∈R C otherwise.

A detailed description of UAIBC can be found in Fig. 1.

3. The attack to UAIBC

In (YYZ09a) Yao et al. claimed a potential limitation of the general feasibility for GUC.

Specifically, they presented a concrete attack on the GUCZK protocol implied by the

general GUC feasibility of (CDPW07), supposedly showing that this protocol could lose

concurrent general composability and proof of knowledge properties. In this section, we

review both the GUCZK protocol mentioned above as well as the attack from (YYZ09a).

3.1. The implied GUC Zero Knowledge protocol

Canetti and Fischlin (CF01) showed how to obtain composable zero knowledge from com-

posable commitments, or more formally, how to realize Fzk (see Fig. 2) in the Fcom-hybrid
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Fig. 1. The protocol UAIBC of Sect. 2.6.

3

Adversary A Verifier V (G)

(com, P, V, sid)-
ρ1

R← Φ : d1
R← D

(κ1, α)← ECom(PK,P, SKP )
κ1�

(ρ, ρ−1)
R← Gen(1k)

ρ2 -
d1 ← Equiv(PK,P, κ1, α1, ρ · ρ−1

2 )

ρ1 ← ρ · ρ−1
2

ρ← ρ1 · ρ2
(ρ1, d1)�
A,A′ -

for each (i, j) ∈ [n]2

(κ, ψ)← Aij
d← Decρ−1(ψ)

m′ij ← κ = ComV (0; d)?0 : 1
1� Similarly, compute π from A′ and ρ−1.
Z - Compute C from π and Z.

Pc(b) : Pr :

Commit phase: (com, Pc, Pr, sid)−−−−−−−−−−−−−→ ρ1
R← Φ; d1

R← D
κ1←−−−− κ1 ← ComPc(ρ1; d1)

ρ2
R← Φ ρ2−−−−→ ρ← ρ1 · ρ2

if κ1 = Com(ρ1, d1) then (ρ1, d1)←−−−−−−−−
ρ← ρ1 · ρ2
d
R← D; r

R←R;m
R←M

κ← ComPr (b; d)

ψ ← b = 0?Encρ(d; r) : m (κ, ψ)−−−−−−−→ return (ack, Pc, Pr, sid)

Reveal phase:

(b, d, r)−−−−−−−−→ if κ = Com(b; d) then

if b = 1 ∨ ψ = Encρ(d; r) then

return (rev, , b, Pc, Pr, sid)

Fig. 2. The Zero-Knowledge ideal functionality

Functionality Fzk

Fzk, parameterized by a binary relation R and running with a prover P , a verifier V , and an

adversary S, proceeds as follows. Upon receipt of a message (ZK-prover, P, V, x, w) from the

prover P :

If (x,w) ∈ R, then send (ZK-proof, P, V, x) to V and S, and halt. Otherwise halt.

model. Their protocol is a simple adaptation of Blum’s protocol, where commitment calls

are replaced with calls to Fcom.

In GUC, the same protocol works for obtaining GUCZK from UAIBC. The GUCZK

implied by (CDPW07) and (YYZ09a) is described in Fig. 3. We observe, however, that

the protocol from Fig. 3 is NOT directly obtained by replacing each call to Fcom by the

protocol UAIBC. Instead and following (YYZ09a), only one CT is executed. Nonetheless,

if one CT protocol is executed for each call to Fcom, it is easy to see that the attack from

(YYZ09a) even modified for many calls to CT remains harmless.

3.2. The attack from (YYZ09a)

We now describe the attack from (YYZ09a), which was described in the FUC framework.

The attack from (YYZ09a) is a chosen protocol attack, that is, an adversarial protocol is

designed in order to be composed with protocol from Fig. 3. Also, notice that the protocol

from (YYZ09a), described in Fig. 4, is exactly as the protocol from Fig. 3, except that

the coin tossing is replaced by a random value chosen by the verifier. This resemblance

is exploited by an adversary – who (supposedly) does not know a Hamiltonian circuit for

some graph G – to obtain a convincing proof for the GUCZK protocol.

The attack from (YYZ09a) is as follows:

1 Static corruption: the adversary A corrupts P (the prover of the GUCZK protocol)

and V ′ (the verifier of the protocol from Fig. 4) at the onset of computation.
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Fig. 3. The GUCZK implied by UAIBC. The common input is a graph G = (V,E), where

V = [n] and E is a n2-matrix whose entries eij lay in {0, 1}. The secret prover’s input is

a Hamiltonian Circuit C for G. In the protocol, the permutation π is uniformly chosen

at random from Sn, the set of permutations over [n], and 〈π〉 ∈ {0, 1}∗ is a binary

representation of π. In the verifier’s description, we use two functions for checks: function

check0 checks if value A′ opens to π and D′ (bit by bit), then checks if value A opens to

E′ and D, and finally that π(G) = G′. Similarly function check1, checks if each Aij

opens to M ′ij , Dij , and if they encode a n-cycle. 1

Prover P (G,C) Verifier V (G)

(com, P, V, sid)-
ρ1

R← Φ; d1
R← D

κ1 ← ComP (ρ1; d1)
κ1�

ρ2
R← Φ

ρ2 -
(ρ1, d1)�

if κ1 6= ComP (ρ1; d1) then abort ρ← ρ1 · ρ2
ρ← ρ1 · ρ2
π

R← Sn;G′
R← π(G)

Let E′ be G′’s adjacency matrix

Let A,A′ and D,D′ be empty matrices

for each (i, j) ∈ [n]2 :

d
R← D; r

R← {0, 1}|Encρ(d)|
κ← ComV (e′ij ; d)

ψ ←M ′ij = 0?Encρ(d) : r

Aij ← (κ, ψ);Dij ← d

for each i ∈ {0, . . . |π| − 1}
d′

R← D; r′
R← {0, 1}|Encρ(d′)|

κ′ ← ComV (〈π〉i; d′)
ψ′ ← 〈π〉i = 0?Encρ(d

′; r′) : r

A′i ← (κ′, ψ′);D′i ← d′

(A,A′) -
c
R← {0, 1}

c�
if c = 0 then

Z ← (E′, 〈π〉, D,D′)
else

Zij ← (e′ij , Dij), ∀(i, j) ∈ [n]2 st.

(π(i), π(j)) ∈ C
Z - if c = 0 then

check0(A′, π,D′, A,E′, D)

else

check1(A,M ′, D)

2 In the execution of the GUCZK protocol (which we call “the first session”), A works

just as the honest prover does until Phase-1 (i.e., the coin-tossing) finishes. Denote

by ρ the output of the coin-tossing in the first session. Adversary A suspends the first

session.

3 Now, A runs the above protocol, referred as the second session, and sends to he prover

P ′ the value ρ as the Phase-1 message of the second session, where ρ is the output of

the coin-tossing of the first session.
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Fig. 4. Adversarial protocol from (YYZ09a).
2

Prover P ′(G,C) Verifier V ′(G)

ρ
R← Φ

ρ�
π

R← Sn;G′
R← π(G)

Let E′ be G′’s adjacency matrix

Let A,A′ and D,D′ be empty matrices

for each (i, j) ∈ [n]2 :

d
R← D; r

R← {0, 1}|Encρ(d)|
κ← ComV (e′ij ; d)

ψ ←M ′ij = 0?Encρ(d) : r

Aij ← (κ, ψ);Dij ← d

for each i ∈ {0, . . . |π| − 1}
d′

R← D; r′
R← {0, 1}|Encρ(d′)|

κ′ ← ComV (〈π〉i; d′)
ψ′ ← 〈π〉i = 0?Encρ(d

′) : r′

A′i ← (κ′, ψ′);D′i ← d′

(A,A′)-
c
R← {0, 1}

c�
if c = 0 then

Z ← (E′, 〈π〉, D,D′)
else

Zij ← (e′ij , Dij), ∀(i, j) ∈ [n]2 st.

(π(i), π(j)) ∈ C
Z -

if c = 0 then

check0(A′, π,D′, A,E′, D)

else

check1(A,M ′, D)

4 Then, A just copies messages received from P ′ in the second session to the verifier V

in the first session.

The previous adversary is supposed to allow an environment Z to distinguish an execu-

tion of the GUCZK protocol from an execution of Fzk for any simulator S. Although not

explicitly given in (YYZ09a), the implied environment Z from (YYZ09a) is as follows:

1 Activate P ′ (the prover from the second session) with input (G,C), where G is a

graph and C is a Hamiltonian circuit for G.

2 If V (the verifier from the first session) outputs (ZK-proof, P, V,G), then output 1.

We remark that it is crucial that the Hamiltonian Circuit is given as input by the

environment and not the adversary, because otherwise the claim “A can successfully finish

the execution of the first session, but without knowing any corresponding NP witness to

the statement being proved in the first session” is meaningless.

We conclude that the claim of (YYZ09a) can be rephrased as there does not exist

simulator S that makes Z output 1, because C, the witness for G such that (C,G) ∈ R,

remain hidden to S.
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On the role of identities. In the first session, the role of prover as well as of verifier is

given by the identities. With this information, an honest verifier will compute IBTC with

identity P . The fact P is corrupted allows the simulator to simulate and then equivocate

the commitment computed by V with identity P in the Coin Tossing (CT) protocol. On

the other hand, in the second session, the identities univocally define V as the verifier

(although this entity is actually V ′, but this is a maliciously constructed protocol). This

role assignment is unavoidable as otherwise V will fail when checking the validity of

commitments (computed by P ′) received after the CT protocol.

3.3. Mapping the attack from FUC to GUC

The attack from (YYZ09a) is designed in the FUC framework. We recall that, there, the

adversary is claimed to be more powerful since “it is assumed that the adversary controls

all communication channels among all executing protocols. In other words, in FUC the

adversary has full access to external arbitrary protocols.”. Furthermore, is claimed that

“the adversary considered in accordance with FUC, who has full access to the external

world, is much more powerful than the adversary considered in accordance with the GUC

feasibility of Canetti et al. (2007), who has limited access to the external world.”

However, at least for the attack from (YYZ09a), the additional power of the adversary

seems of no real use in the following sense. Given the previous FUC adversary A, the

previous FUC environment Z, and any FUC simulator S, one can construct a GUC

adversary A′, a GUC environment Z ′, and a GUC simulator S ′ such that the output of

Z and Z ′ follows exactly the same distribution when executed with the GUCZK protocol

or Fzk.

The GUC adversary A′ internally simulates A and all communication with external

entities is forwarded to the corresponding external entity in the GUC execution, except

communication from P ′ to V ′ which is received from Z ′ (instead of directly from P ′).

The environment Z ′ internally simulates Z and also internally simulates P ′ with input

(G,C) and forwards all communication from P ′ to A′ (and communication with external

entities is forwarded by Z ′). The simulator S ′ internally simulates S and communication

from P ′ to V ′ is received from Z ′ (and communication with external entities is forwarded

by S ′).
Note that in execution of GUCZK with Z,A or Z ′,A′, as well as execution of Fzk

with Z,S or Z ′,S ′, the only difference is that in FUC party P ′ is an independent ITM,

while in GUC executions is simulated by Z ′. However, in the GUC executions, messages

from P ′ are computed exactly in the same way as in FUC executions. Therefore, in GUC

executions, all input received by the simulated Zs follows exactly the same distribution

as in the FUC executions. We conclude that the output of Z and Z ′ follow exactly the

same distribution in each of the different executions.

From here onwards, we focus on the attack in the GUC framework since, as we have

shown, it has the same effect as the attack in the FUC model.
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3.4. A simulator for Yao’s attack

In (YYZ09a) is claimed that “A can successfully finish the execution of the first session,

but without knowing any corresponding NP witness to the statement being proved in

the first session”. We claim that A definitively knows the witness for the statement being

proved, and there exists a simulator S who is able to extract the witness used by P ′ by

simply interacting with A.

Given that P is corrupted, S retrieves SKP from Ḡacrs and internally simulates A con-

trolling corrupted P and internally simulates the honest verifier V . The key observation

is that the knowledge of SKP allows the simulator to equivocate the IBTC with identity

P , thus the outcome of the CT can be set to a value ρ for which the simulator knows

ρ−1. The knowledge of ρ−1 allows to extract the Hamiltonian circuit used by the prover

P ′ of the second session. The detailed description of the simulator is given in Fig. 5.

Fig. 5. Simulated adversary and simulated verifier. 3

Adversary A Verifier V (G)

(com, P, V, sid)-
ρ1

R← Φ : d1
R← D

(κ1, α)← ECom(PK,P, SKP )
κ1�

(ρ, ρ−1)
R← Gen(1k)

ρ2 -
d1 ← Equiv(PK,P, κ1, α1, ρ · ρ−1

2 )

ρ1 ← ρ · ρ−1
2

ρ← ρ1 · ρ2
(ρ1, d1)�
A,A′ -

for each (i, j) ∈ [n]2

(κ, ψ)← Aij
d← Decρ−1(ψ)

m′ij ← κ = ComV (0; d)?0 : 1
1� Similarly, compute π from A′ and ρ−1.
Z - Compute C from π and Z.

Pc(b) : Pr :

Commit phase: (com, Pc, Pr, sid)−−−−−−−−−−−−−→ ρ1
R← Φ; d1

R← D
κ1←−−−− κ1 ← ComPc(ρ1; d1)

ρ2
R← Φ ρ2−−−−→ ρ← ρ1 · ρ2

if κ1 = Com(ρ1, d1) then (ρ1, d1)←−−−−−−−−
ρ← ρ1 · ρ2
d
R← D; r

R←R;m
R←M

κ← ComPr (b; d)

ψ ← b = 0?Encρ(d; r) : m (κ, ψ)−−−−−−−→ return (ack, Pc, Pr, sid)

Reveal phase:

(b, d, r)−−−−−−−−→ if κ = Com(b; d) then

if b = 1 ∨ ψ = Encρ(d; r) then

return (rev, , b, Pc, Pr, sid)

On adaptive corruptions: The attack of Yao et al. only considers static corruptions. We

can attempt to augment Yao et al.’s attack considering adaptive corruptions. Specifically

one might consider an adversary that corrupts P , the prover in the first session, only

after it receives the commitment κ1 from V . In this case, the simulator is no longer able

to equivocate, because it does not know the secret key of the prover.

But the UAIBC protocol is executed assuming secure channels, thus the simulator

needs to send κ1 only when the adversary corrupts P . In this case, the simulator knows

the secret key of the prover when κ1 is computed, and thus, is able to equivocate it.

4. Conclusion

Yao et al. presented potential limitation of the general feasibility for GUC proposed in

(CDPW07). They claimed that the Ḡ-subroutine respecting limitation on state informa-
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tion sharing is still unrealistic to reflect adversarial activities happening in asynchronous

networks like the Internet. They argue that the inputs of an honest player could be

maliciously dependent on the transcript of the challenge protocol and on the whole tran-

script of the external protocols. They refer to this as unpredictable environment and

adversary, and they claimed that the general GUC feasibility proposed in (CDPW07) is

w.r.t. predictable environment and adversarial strategies.

We note that the Ḡ-subroutine respecting limitation is rather a design decision. For

example, if the designer of the challenge protocol decides that the protocol should share

state via other way than Ḡ, then he designer need to assume that the protocol is Ḡ, Ḡ′-
subroutine respecting for some shared functionality Ḡ′. Perhaps this modeling might have

reduced expressive power (and it is interesting to find an example not expressible in this

way), but we could not find an example of this on Yao et al.’s work.

We also note that the unpredictable environment an adversary strategy is already

expressible on GUC. Certainly, there is no impediment for an environment to give inputs

to the challenged protocol that depend not only on the challenge protocol but also on the

whole transcript of external protocols. Furthermore, such strategy can be simulated by

an environment an adversary executed on EUC (CDPW07, Thm. 1), which implies that

the unpredictable strategy can be derived only from queries to the shared functionality

and the ideal functionality.

In conclusion, Yao et al. also showed a concrete attack on the GUCZK protocol implied

by the general GUC feasibility of (CDPW07) arguing that it could lose concurrent general

composability and proof of knowledge properties. We showed that the attack is harmless

because it can be simulated using the techniques of Canetti et al. (CDPW07).

We praise Yao et al.’s motivation of studying the GUC framework and the general

feasibility of GUC, yet we believe that the question of identifying and characterizing the

exact limits of the framework is still an open question.
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