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Abstract to constant in the scheme of Camenisch and Lysyanskaya.
Finally, we show how to use strong universal accumula-

Accumulator schemes were introduced in order to repters to solve a problem of practical relevance, the so called
sent a large set of values as one short value calleddhee-Invoice Factoring Problem.
cumulator These schemes allow one to generate mem-keywords: Strong Accumulators, Collision-resistant
bership proofs, i.e. short witnesses that a certain valdashing, e-Invoice.
belongs to the set. In universal accumulator schemes,
efficient proofs of non-membership can also be created. ]
Li, Li and Xue [18], building on the work of Camenischl  Introduction
and Lysyanskayd [7], proposed an efficient accumulator
scheme which relies on a trusted accumulator manag&gcumulator schemes were introduced by Benaloh and
Specifically, a manager that correctly performs accumul@e Mare [4]. These primitives allow to represent a poten-
tor updates. tially very large set by a short value calledcumulator

In this work we introduce the notion atrong univer- Moreover, the accumulator together with a so calietl

sal accumulator schemeghich are similar in functional- Nessprovides an efficiently verifiable proof that a given
ity to universal accumulator schemes, but do not assufigément belongs to the accumulated set.
the accumulator manager is trusted. We also formalizeBaric and Pfitzmann |2] refined the security definition
the security requirements for such schemes. We then gieaccumulator schemes, and introduced the concept of
a simple construction of a strong universal accumulat@gllision-free accumulators. This notion was further ex-
scheme which is provably secure under the assumptigfded by Camenisch and Lysyanskéya [7] to a dynamic
that collision-resistant hash functions exist. The weakggtting where updates (additions and deletions) to the ac-
requirement on the accumulator manager comes at a prigénulator are possible. They proposed a new construction
our scheme is less efficient than known universal accun@ipd showed how to use it to efficiently implement mem-
lator schemes — the size of (non)membership witnes&gship revocation in group signatures, and anonymous
is logarithmic in the size of the accumulated set in contraggdential systems. In particular, they show how to keep
track of valid identities using an accumulator, so proving
*A preliminary version of this work appeared in proceedingshef membership is done by arguing in zero-knowledge that a
11th Information Security Conference, ISC'08, Lecture NdteCom- certain secret value was accumulated. For a thorough dis-
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ular, deletion of elements) require the accumulator mabh-1  Our contributions

ager to be trusted. This falls short of Benaloh and De o )
ur contribution is threefold. First, we strengthen the

Mare’s initial goal: to provide membership proofs ever@jl i e ) :
if the accumulator manager is corrupted. In bath [7] aftfSic definition of universal accumulators by aIIowmg_
adversary to corrupt the accumulator manager. This

[15], a malicious manager can compute witnesses for &} ) : .
es rise to the notion o$trong universal accumula-

element regardless of whether it was accumulated or néf! )
tors. Second, we show how to construct strong univer-

We propose a new accumulator scheme based on hsslhaccumulators using only collision-resistant hash<func
trees similar to those used in the design of digital timé@ens. Our construction has interesting properties of its
stamping systems§][4] 3]. Recall that in hash trees, valugen. As in [715], we use auxiliary information to com-
are associated to leaves of a binary tree. The valuespafe the (non)membership witness, but this information
sibling nodes are hashed in order to compute the valigalled memory need not be kept private, and does not
associated to their parent node, and so on and so fodlpw an adversary to prove inconsistent statements about
until a value for the root of the tree is obtained. The tredlse accumulated set. Indeed, the construction provides
root value is defined as the accumulator of the set of valu#most the same functionality as the (dynamic) universal
associated to the leaves of the tree. We cannot directcumulators described in[15], namely:
use hash trees to obtain the functionality of universal and
dynamic accumulators. Indeed, we need to add and delete All the elements of the set are accumulated in one
elements from the accumulated set (tree node values if Short value.
using hash trees) while at the same time be able to produce
non—-membership proofs. We solve this last issue using’
a trick due to Kocher[14]; instead of associating values

to the tree’s leaves, we associated a pair of consecutivg ., every element of the input space there exists a

accumulated set elements. To prove that an elemesnt witness that proves whether the element has been ac-
not in the accumulated set now amounts to showing that ., ulated or not

a pair(Xq, Xg), wherexy < x < xg, belongs to the tree but
the pairs(xq, x) and(x,xg) do not. Our last contribution is showing how to apply strong
universal accumulators to solve a multi-party computa-

The drawbacks of using a hash tree based scheme are . :
tional problem of practical relevance which we name the

twofold. First, the size of withnesses and the update timeI . . . .
L -Invoice Factoring ProblemSolving this problem was
are logarithmic in the number of values accumulated. L

contrast, witnesses and updates can be computed in C'Bﬂ?ed the original motivation that gave rise to this work.
stant time in RSA modular exponentiation based schemes
like the ones of [7,4,12,15]. We believe, nonetheless, tHa2  Organization of the paper

this problem may in fact not exist for reasonable set sizes ) ) o
— a claim that we will later support. The second draw? Section2, we give some background definitions and

back is the accumulator's manager storage space requipénally introduce the notion of strong universal accu-
ments which is linear in the number of elements. Ho/Rulator schemes. In Sectigh 3, we describe our basic
ever, this is not an issue for the accumulator’s users, sirftgPNg universal accumulator scheme and rigorously es-

they only need logarithmic in the accumulated set si@Plish its security. In Sectidd 4, we discuss the efficiency
storage space. of the scheme in practice. The e-Invoice Factoring Prob-

lem is described in Sectidd 5 where it is also shown how

Overall, the main advantages of our scheme in cofia-solved it using strong universal accumulator schemes.
parison with Li et al.[[15] are: (1) the accumulator marin Sectior 6, we conclude with some comments.
ager need not be trusted, and (2) since we only assume
the existence of cryptographic hash functions as opposed
to the Strong RSA Assumption, the underlying securi}  Definitions and notations
assumption is (arguably) weaker. (Indeed, collision-re-
sistance can be based on the intractability of factoringlogt neg: N — R denote a negligible function, that is,
computing discrete logarithm51[9] while Strong-RSA ifor every polynomialp(-) and any large enough integer
likely to be a stronger assumption than factoring [5].) n, negn) < 1/p(n). Let also|| denote the operation of

It is possible to add and remove elements from the
accumulated set.



concatenation between binary stringsR(j is a random-

ized algorithm, we writea < R() to denote the process
of choosinga according to the probability distribution

induced byR. Let Pr[xl ER), ... % ER(): E} de-

note the probability of ever after the processes il .
Ri(),...,x & Ry() are performed in order. We also de-
note by(R()) the set of all possible valuesreturned by
randomized algorithRwith positive probability. We dis-
tinguish between amaccumulator scheméhe protocol,

see below), its short representatioraccumulator valug

and its correspondingccumulated set XFor simplicity,
however, we may use these terms indistinguishably when
it is clear from the context.

SYNTAX. We formally define the syntax of a strong uni- ®
versal accumulator scheme (with memory). Our definition
differs from that of Li et al.[[15] as we consider an algo-
rithm to verify if the accumulator value has been updated
correctly (by adding or deleting a certain value), and we
are not interested in hiding the order in which the elements
are inserted into the accumulated set.

Definition 1 (Strong Universal Accumulators with
Memory) Let M be a set of values. A strong universal
accumulator scheme (with memory) for M is a tugile-
(Setup, Witness, CheckWitness, Update, CheckUpdate)
where

e Setup(K) is a randomized algorithm which on in-
put some initialization parametex, outputs a public

is deemed a valid witness thatexXX, outputs0 if w
is deemed a valid witness thatzX, or outputs the
special symbolL if w is not a valid witness of either
statement.

Updateop(K,X,QlCCbefore Mpefore) IS @ randomized al-
gorithm that updates the accumulator value by ei-
ther adding an elementop = add) to or remov-
ing an elementdp = del) from the accumulated
set. The algorithm takes an element M, an ac-
cumulator and memory paiflccpefore Mbefore), @and
outputs an updated accumulator and memory pair
(Accafter, Mafter), and an update witness yw= (w,

op).

CheckUpdate(K, X, ccpefore 2Accafter, Wop ) iS @ rand-
omized algorithm that takes as input a a pair of
accumulator value$2ccpefore Accafier), a value xe
MU{L}, and an update witness,y= (w, op) where
op € {add,del,crt}, and returns a bit b. Typically,
this algorithm will be executed by parties other than
the accumulator manager in order to verify correct
update of the accumulator by the manager. #x._,

op = crt, and b= 1, then w, is deemed a valid
creation witness of the accumulated set=0. |If
b=1, w, is deemed a valid witness that the up-
date operation (fobp € {add,del}) which replaced
Qcepefore With Accatter as the accumulator value, was
valid. Otherwise, y, is deemed invalid for the given
accumulator pair.

data structuremg (also called the memory), a cre-All the above algorithms are supposed to have complexity
ation witness w, and an initial accumulator valugpolynomial in the security parameter k.

2cco which is in the set Y= {0,1}X. Valuek is

assumed to include at least a security parametbt the above definition, memony is a public data struc-
k € N in unary, but it may also include some opture which is computed from s&t. Although public, this

tional system-wide parameters possibly generated $ijucture only needs to be maintained (stored) by the ac-
a trusted initialization process. An empty seEXM cumulator manager who requires it to update the accumu-
is associated to the execution of the scheme, anda#pr, and to generate membership and non-membership
particular, to%cco. Both the accumulator valuccg witnesses. In particular, this memoryrist used to verify
and the memoryng will be typically held and up- correct accumulator updates nor to check the validity of
dated by the accumulator manager. (non)membership witnesses.

Strong universal accumulators with memory as defined
Witness(K,x,m) is a randomized algorithm thatabove are intended for use in a multi-party protocol setting
takes as input x M and memorym, and outputs a where procedureSetup, Witness, andUpdate,,, are exe-
witness of membership w ifeX (x has been accu-cuted by a manager arftheckWitness andCheckUpdate
mulated) or a witness of nonmembershidfu & X. by the other participants of the multi-party protocol.

CheckWitness(k,x,w,2lcc) is a randomized algo- SECURITY. Universal accumulators as defined [n][15]
rithm which on input a value £ M, a witness w and satisfy a basic consistency property: it must be unfeasi-
the accumulator valu@icc € Y outputs a bitl if w ble to find both a valid membership witness and a valid



non-membership witness for the same value M. As to X. We restrict the adversary so he must choose a pair
mentioned there, this is equivalent to saying that givé®icc, X) for which there exists a sequence of valid addi-
X C M itis impossible to findk € X that has a valid non- tion operations (namely/pdate, 4 With values inX) that
membership witness or to firde M\ X that has a valid can produce an accumulated vaflie:. This last restric-
membership witness. tion can be justified by noticing that, in the scenario we

In order to be able to cope with malicious accumulateonsider, parties other than the accumulator manager can
managers, we first need to guarantee that the accumulatdernally verify the correctness of each update operation
value is consistent with the elements supposedly addsdusing theCheckUpdate algorithm. Finally, to capture
and removed by the manager. We therefore define whanibst setup assumptions, we parameterize the security no-
means for an accumulator to represent a set, and thentibie with the following notion:

security conditions that guarantee that such representaBeﬁnition 3 An oracleQ is an initialization procedure if

is sound even under the presence of malicious (but <:om\;en a security parameterd N in unary it generates a
putationally bounded) managers. Our presentation uds yp yitg

a formalism based on initialization procedures to accoffg'ameterk = (KO’;k) whereky is of length polynomial

modate protocols whose security may require some sewtl k. InvokingQ will be assumed to take a single time

assumptions (eg. an initial round of generation of trustdd P

system-wide parametg)s The initialization procedure will be used to model a setup
process that is not under adversarial control. Clearly, the

Definition 2 An accumulator valu&lcc represents the case of no setup assumptions corresponds to the special
set XC M under initialization parameter, denoted .55e wherf(1¥) = 1k,

by 2cc = X, if and only if there exists a sequence
{(Acci, X, mi, op;) b1<i<n, Where n=|X|, x € M for 1 < Definition 4 (Security of Strong Universal Accumula-

i <n,op, € {add,del}, andAcco € Y andmg are values tors with Memory) Let 2( be a strong universal accu-

such that mulator scheme (with memory) for universe Mg KN
be a security parameter, and be an initialization pro-
o X={X}1<i<n, cedure. Therl is secure undef if for every proba-

bilistic polynomial-time adversaryl(atk,-) with atk €

* (3leco,mo) € (Setup(K)), {cons, crt,add,del}, the following conditions hold:

o (Acci,mj,w;) € (Update
al1<i<n.

opy (K, X, 2Aeci—g,mi—q)) for ] (Consistency)

. K = (Ko, 1¥) & Q(1¥),

If no such sequence exislisc does not represents set X, (Ko, 1% 9 ) K

q tod b K % Pr (X, w1, Wo, X, cc) <— A(cons,K): Acc = X,
enoted bylcc # X. CheckWitness(K,X,Wy,fcc) = 1,

. CheckWit K, X,Wop,2lcc) =0
Note that, regardless of the choicewgfthere could be eckWitness( 2,ec)

two different sequences that maRec = X. More im- is negk) .
portantly, even for fixed, the above definition does not

imply that the represented S¥tis unique for a given ac- * (Secure creation)

cumulated valuglcc. Our definition of security, how- K = (ko,1¥) & Q(1%),
ever, will ensure that as long as each accumulator up-  Pr (W, Accafer)  A(crt,K): Accagter 2 0,
date operation is verified by a honest observer (running CheckUpdate(k, 1, I, Accafter, (W, crt)) = 1

CheckUpdate), such collisions will not happen except .

with negligible probability. Before proving this, we need is negk).

to introduce our main security notion for accumulators. ¢ (Secure addition)
We adapt the security definition in_[15] as follows.

First, we let the adversary select not only the vatund K = (Ko, 1) & Q(1¥),
the witnessw but also the accumulated s¥tC M, the  py (mccbeforaXaKQ[CCafterawi) © A(add,K):
accumulator valu@lcc € Y and whethex belongs or not Accpefore= X, Accafter 7 XU {X},

CheckUpdate(K, X, 2lccpefore 2Accafter, (W, add)) = 1

1in fact, our main construction does require trusted seleatiba )
random hash function. is negk).



e (Secure deletion) Proposition 6 If a strong universal accumulator scheme
20 is secure under initialization procedu@, then?l is

_ ky R k
k= (Ko, 1) < Q(T), verifiably updatable undeg.

(Acepefore X, Accatter X, W) < A(del,K):
Qlccbefore:K> X, Accafter S X\{x},
CheckUpdate(K, X, 2ccpefore 2Accatter, (W, del)) = 1 Proof: Let 4* be a probabilistic polynomial-time adver-
is negk) sary tha_t winsExpy' g with nov-negligible probabilit_y
in k making at mosp1 = (k) queries for some polynomial
The type of accumulators we consider in this work is nat First of all, the initial accumulator valuicc must rep-
necessarilyquasi-commutativg?,, [15] as they may not resent the empty set, since otherwise adverskrywould
hide the order in which the elements were added to thentradict the secure creation property. Then, for some in-
set. More precisely, our definition tolerates that the valdex 1< i < pthere must exist queriésp; 1, X1, 2lcci_1,
of the accumulator may depend on a particular sequenge;) and (op;, X, 2lcci,W;) such thatlcci_; does repre-
of Update,q4y and Updatey,; Operations that produced asent some seX* while ccj represents neithet* U {x; }
particular accumulator valucc. nor X*\ {x;}. Clearly, the polynomial-time adversary that
At this point, we need to justify our claim that the acruns4* - while simulating the oracle - up to thigh query
cumulated seK represented by an accumulator value ind then outputicci_1, X*, cc, X;, Wi breaks the secure
unique with overwhelming probability as long as honestidition or secure deletion property2f O
parties verify all accumulator updates.

Pr

Our security definition (Definitiof]4) for the dynamic
Definition 5 Let 2 be a strong universal accumulatorscenario (where addition and deletion of elements are al-
scheme for some universe M and initializatin and |owed) differs from the one iri[7] where the adversary is
k € N a security parameter. Given an adversafywith only able to add and delete elements by querying the ac-
oracle access, consider the following two phase expetimulator manager, who is incorruptible. In contrast, in
iment Exp'g's: First, on input the security parame-our definition the adversary is allowed to control the ac-
ter k, the experiment generates a system-wide pararagmulator. However, we require that during each update
ter k by invokingQ(1*). Second, on input, the adver- gt least an uncorrupted participant verifies the update with
sary outputs a tupléw,2(cc) which is taken to representCheckUpdate to guarantee the consistency between the

the creation witness, and the accumulated value (respggcumulated value and the history of additions and dele-
tively) corresponding to the accumulated se&=X®. If tjons.

CheckUpdate(k, L, L, cc,w) # 1 then the experiment

aborts. In the second phase, the adversary is allowed@¥NAMIC ACCUMULATORS. The standard definition of
submit as many queries to an oradl¥) as it wants and dynamic accumulators (see for example the one_in [7])
then stops. The oracle)() is stateful with initial state adds two requirements which so far we have not consid-
(k,2Acc, m,W). For each query of the forrfop, x,2cc’,w) €red. First, it requires the existence of an additional effi-

whereop € {add,del}, the oracle proceeds as follows: itcient algorithm that allows to publicly and efficiently up-
first computes a bit b— CheckUpdate(k, x, 2cc, Acc’, w). date membership witnesses after a change in the accumu-

Then, if b= 1, it sets2cc + Acc’, and X« X U {x} if latorvalue so witnesses can be proven valid under the new
op = add (similarly if op = del it sets X<— X\ {x}). In accumulator value. And secondly, it requires that both the
the case b= 0 the oracle does not modiftcc or X. In accumulator updating algorithm as well as the witness up-
both cases, the oracle returns bit b as the answer to tfating algorithm to run in time independent from the size
adversary. We say that alis verifiably updatableinder N of the accumulated set. In our construction, we only
Q if for each probabilistic polynomial-time adversa, achieve logarithmic dependency offor the accumulator
after 4 stops (without the experiment ever aborting), #Pdates. In practice, such dependency may be appropriate
holds thatlcc = X except with negligible probability in for many applications.

k. If 2cc & X we say adversargl winsthe experiment.

The following proposition shows that the accumulated ~ Our scheme
set represented by any accumulator value is well defined
(with overwhelming probability) if we use a secure strong/e assume that there exist a public broadcast channel
universal accumulator scheme. with memory. Depending on the required security level,



this can be a simple trusted web server, or a bulletin boddfinition 8 Let H = {5{T M= Y}TGK be a hash func-
that guarantees that every participant can see the ptiba family and k a security parameter, whekg = |Y| =
lished information and that nobody can delete a postg] Then,# is collision-resistant if and only if for every
message. For a discussion on bulletin boards and an gatynomial-time probabilistic algorithm A we have:
ample of their use in another cryptographic protocol, the

interested reader is referred [0 [8]. We rely on broadcast Pl T &K; (mm) ATk : | _ negKk)
channels in order to ensure that the publication of the suc- m=#£ ', H(m) = H(n)

cessive accumulator values that correspond to updates of

the set cannot be forged. In particular, an adversary wiieret & K means that is selected uniformly at random
controls the manager of the accumulator cannot publighthe set of keys K.

different accumulator values to different groups of partic
ipants. Often, we will view a mapping? : K x M — Y as the

hash function family{#4 : M *)Y}TeK where 74 (-) =
H(t,-). HenceforthM will be the set of all binary strings,
andK andY will be the set{0,1}X, for a large enough se-
Our scheme is inspired by time stamping systems likgrity parametek € N.
those described i [4. 3]. In these systems a docum
needs to be associated to a certain moment in time. umulate is ordered and denotexpthei-th element of
solution proposed there is to divide the time in periods N. Letxo — d N
(e.g. hours, days), and place each document as a leg| _tsz{xé’c)i(;i .é.|7exrrr]1}e'nnts€su;:h te}ha?i): ; o:aroo)%rlaﬁ: 060
the bottom of a binary tree (sa¥) with other documents P - - ) !

y X, where= is the order relation oiX (for example, the

that belong tothe same pe_riod of time, 3?%6” the val- lexicographic order on bit strings) aad< b if and only if
ues associated to each pair of leaves with the same pagegtb anda # b

node are hashed in order to derive the value of the parer‘rbb : . . .
. . . serve that showing € X is equivalent to provin
node. This process is repeated until the valoéthe root hat: 8c a P g
node of the tree is computed. This valés then pub- '
lished as a representative of the tieéor periodt. Later,  (xy,Xg) € {(%i,X+1) :0<i<n} A (X=X VX=Xg).
a given documentn can be proven to belong to a certain )
period of timet by presenting a valid subtree of trde ~ On the other hand, showing thet? X corresponds to
corresponding to time periddhat includes the documentProving:
m. .
. X<Xg A Xiy Xi :0<i<n}.
We use the above approach to build an accumulatorxa X208 (@ xp) € {0, %+1) : 0T <n}
scheme that works for dynamic sets and also allows proofsor setsA andB we denote their symmetric difference
of nonmembership. In this case, building a proof of noby AAB.
membership is somehow similar to the trick of Kocher (in ) )
[14]) — instead of storing elements of the set, we stokeABELED TREES Our proposal_rehes on labeled binary
pairs of consecutive elements of the set. Then, proviHﬁeS' The root node of a trdewill be denotedroot(T).
that an element is notin the accumulated sat amounts 1N€ eft subtree (respectively right subtree) rooted at the
to simply proving that there exists elements and xg, left (respectively right) child node of will be denoted

Xq < X < Xg, such that a paifx,, xg) is stored in the tree. Left(T) (respectivelyRightT)). The noderoot(T) is
said to be theparent of Left(T) and Right(T). Each

BAsic TooLs. Our solution uses collision-resistant hashiodeN of T will be labeled by a string henceforth de-
functions, which we formalize as families of functions. InotedLabe(N). Sometimes we identify the tree with
practice we can use a well-known hash function like SHAs root N = root(T) and we writeLabelT) to denote
256, for example. We start recalling the standard noticabelroot(T)). As usual, a leaf off corresponds to
of collision-resistant hash functions. a node of T that has no children. IfT consists of
only one node, then we say th@ithas depth 0 and de-
Definition 7 A hash function family is a collection ofnote it asdeptiT) = 0. Otherwise, letleptHT) = 1+
functions{#4 : M —>Y}TeK where M and Y are sets ofmax{depthLeft(T)),deptHRightT))}. A treeT is bal-
strings, and K and Y are non-empty sets. ancedif |deptH{Left(T)) — depth(Right(T))| < 1. Itis a

3.1 Preliminaries

TATION FOR SETS. We assume the set we want to
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Figure 2: A tree and its minimal subtree (nodes with val-
theSS in boldface) generated by the node of vglu€hil-
dF&n of the nodes that are on the path frpho a are un-
derlined.

Figure 1: A tree modeT of the seiX = {xy,...,Xg}. Only
node values are shown. Note that the place of the val
in the tree is irrelevant.

well-known fact that a balanced tree withnodes has

) step. FiguréR illustrates the concept of minimal subtree.
maximum depttO(log(n)).

If U is generated by a singletdi$}, then we say thad is
MODEL OF X = {Xi,...,X,} UNDER H. Informally, a 9enerated b
model of X underH is a labeled balanced binary re@5RrGING BINARY TREES We claim that for a seK

such that for every nodd of T the label ofN is of the 54y 3 yniformly chosen hash function from a collision-
form H (x|x+1) plus some additional information link-regjstance hash function family, given a modiedf X un-
ing H(x|[x11) and the labels of the roots of the lefyq 1y it js computationally hard to distill a new labeled

and right tree whose parent N. Formally, the set yoq1/ yith the same root value but different values else-
{H(|xi+2) : 0 <i < nj will be called thebaseof X un- \yhare Formally, we claim the following result.
derH. A balanced binary tre@& is called amodelof X

underH if: Proposition 9 LetH:K x M — Y be a collision-resistant
hash function family and H a uniformly chosen function
e For every nodeN in T there are string¥aly and iy 7/, Let X C M be an adversarially-chosen polynomial
Proofy, called node value and node proof respegize set (on the security parameter k), and T be a model
tively, such that.abe(N) = (Valn; Proofy). of X under H. Then, given T, no adversary can efficiently
compute a labeled binary tre€¢ &nd a value V such that
V e V(TAYV(T) and Proof, = Proof;, except with
e T hasn-+ 1 nodes. negligible probability.

e The base oK is {Valy : N is a node ofT }.

e Proofy = H(Val||Proof e ||Proofgigngny) for Proof:  Let A be a polynomial-time stateful adversary
every nodeN of T (whereProofy; corresponds to which works in two phases. First, on input the security pa-
the empty string). rameter and a hash functibhe #, Aoutputs a seX C M

of size polynomial ork. Then, given a model for X un-

If N'is the root node of tre€, we abuse the notation andyerH;, it outputs a labeled binary trd@é and a valug/ sat-
write Proof; instead ofProofy. The collection of node isfying the conditions of the proposition. SinBeoof; =
values ofT will be denoted by?(T). Figurell depicts & proof, and valueV is in %(T') but not in ¥/(T) there
toy example of a model of a set. must exist a nodeN’ in T’ and a nodeN in T such

MINIMAL SUBTREES GENERATED BY A SET LetT be thatProofy = H(Valy[[Proof ey:)|[Proofrignin) ) and

a labeled binary tree. We say thatC /(T) generates Pro0fn = H(Valn|[Proof e ||Proofgignqy)) are equal

a minimal subtree U of Tif U is a subtree of obtained PUtVain||Proofiefn)||Proofrignin) 7 Val|[Proof er)

by: (1) taking all nodes iff that belong to all paths from ||PTO0frignin)- NodesN andN’ can be found efficiently
T's root to a node whose value is # (the paths include by simple traversal of both trees in some fixed order.
both the root ofT and the nodes of value i), and (2) Now, let B be an adversary that is given a uniformly se-
all the (direct) children of the nodes taken in the previolscted at random collision-resistant hash functibe 4.



AdversaryB first queriesA to obtain a seX which it uses
to build a modeT for X underH. Then,BrunsAas a sub-
routine to obtain another labeled binary tfléend a value
V such thatProof;y = Proof, andV € V(T )AV(T).
Finally, using the procedure mentioned aboBejnds a
collision forH. O

3.2 A Strong Universal Accumulator with
Memory using Hash Trees

In this section we use hash trees to build our proposed unis
versal accumulator with memory. At a high level, our ac-
cumulator scheme relies on an accumulator manager that
creates and updates a tréavhich is a model of the ac-

cumulated seX = {xi,%,...,xn} underH. The model

T of X will satisfy two conditions: (1) the accumulator
manager can guarantee that X by proving that there

is a nodeN of T such thaMy = (Xq,Xg) wherex = Xy or

X=xg, and (2) to demonstrate tha¢ X, the accumulator

proves that there is a nodeof T such thaty = (Xa,Xg)

wherexy < X < xg. When adding or deleting elements

from X, the accumulator manager needs to updasnd

guarantee that both of the stated conditions are satisfied.
In terms of setup assumptions, our scheme can be in-

stantiated with any trusted initialization algorith@(1X)
which includes picking a hash functidd uniformly at

random from the family# (say by computing a random

indexi € K where|K| = k and then settingd = H;). Of

course, such assumption can also be instantiated with an

ephemeral trusted third party runnifg or alternative us-

ing standard multiparty computation techniques among all
participants, including the accumulator manager. More-
over, a common heuristic to avoid interaction is to simply

pick H =SHA-256 [16], for example.

A detailed description of the proposed scheme follows.

THE CONSTRUCTION Let k=2' € N be the secu-

rity parameter and leX = {x1,%,...,Xxn} be a subset of

M = {0, 1}'. We define the accumulator schehgshAcc
below.

e Setup(K): The algorithm starts by setting equal to

the empty set. Then, it extracts the security parame-
terk and the description (index) of the hash function

H € # from k. The algorithm then sets to be the

following model ofX: a tree with a single root node
N with valueValy = H (—oo|| + ) and the accumula-

tor is initialized toProofy = H(Valy||€||€) wheree

is the empty string. Finally, the algorithm sets the

creation witnessw,,; to (m,crt), wherecrt is a
fixed label.

Witness(K,x, m): On inputx € M and memorym, it
computes the witness = (wy,ws) as follows. First,
the algorithm seta/; = (Xq,Xg) Wherex = Xy or x =
xg if x € X. Otherwise, ifx ¢ X the algorithm sets
W1 = (Xq,Xg) Wherexg < X < Xg. Finally, it setsw,
as the minimal subtree afi generated by the value
H (Xa] [Xg).

CheckWitness(K, x,w,2(cc): On inputx € M and wit-
nessw= ((X,x"),U) whereU is purportedly a mini-
mal subtree of the memory valueassociated to the
accumulator valu@lcc, it first checks if the following
conditions hold: (1Proofy = 2cc, (2) H(X||X") €
PYU), B) (x=x orx=x"),and (3") (X < x < x").
The algorithm outputs 1 if conditions (1), (2), and (3)
hold; it outputs 0 if (1), (2), and (3’) hold. Otherwise,
it outputs_L.

Updateop(Kaxamccbeforembefore): On input element

X € M, accumulator valu€lccpefore @nd memory
Mpefore it proceeds as follows. Consider two cases
depending on whether the update is an addition
(op = add) or a deletion §p = del).

If op = add andx ¢ X, the algorithm adds into X
by modifying mpefore as follows:

1. Itreplaces the valu (xq||xg) from the appro-
priate node inmpefore (Wherexy < X < Xg) by
the valueH (Xq||X).

2. It augments the trempefore adding a new leaf
N of valueH (x||xg) so the resulting tre@aer
is a balanced tree. L&) be the (parent)
node whereN is attached as a leaf.

The resulting tree is denotadaper. Figurel3 illus-
trates the process of inserting an element ingerore

Once treangser is built, the new accumulator is sim-
ply the value of the root of the tree, namélycasier =
Proof;, ... The witnessagq = (add,Uadd1,Uadd2)

that the update (addition) has been done correctly is
computed as follows:

— Uadq1 corresponds to the minimal subtree
of mpefore geNErated by H (xq||xg), Valy,

ar(N) }’
and,

— Uadd2 corresponds to the minimal subtree of
matter generated by H (Xq|[X),H (X[|xg) }.



H (—oo]|x1) H(—o|[x1)

H (x1][%2) H(xz|[%3)

H (xq|[%2) H (x2||X) /\
T~ RN H(xglxs) H(xil[x6) H(xs]]x6) H(xg]|+c0)

H (Xg|[xa) H (xa[%s) H (Xs][X6) H (x| + ) @

H (xe|[x7) H(x7|Ixs) H(X||x3)

Figure 3: Inserting into the tree of FigurEl1l where < H (X1]|%2)
X< Xa. N N

If op = del, deletingx from X is done in a simi-

lar way as follows. First, the update algorithm lo- H (x][x3)

cates the two nodes @fipefore that containx. Let

Vo and Vg be those nodes, and Iét(xq|[x) and (b)

H(x||xg) be their respective values, for somre <

X < Xg. The goal is to remove these nodes and re-

place them with a new node with valu(Xy||Xg) Figure 4: (a) The minimal subtree of the tree shown in
in a way that the derived tree is still balancedrigurell and generated B¥ (xz|[x3),H (x4, Xs)}. (b) The
This is done by first replacingy/y, with the sin- minimal subtree of the tree shown in Figlile 3 and gener-
gle node with valueH (xq|[Xg), and then replac- ated by{H (xz[[x),H(x|[x3)}.

ing Vg with a leaf nodeL (for example, the right-

most leaf on the last level of the tree). These re-

placements yield a new tre@aner Whose root la- — Uz is atree obtained by adding a leadg,

bel is set to the value of the accumulafbrcaser = — Except for the node of valuél(xq||xg) (for
Proofu,- The withesswge = (del,Udel1, Wdel2, Xa < X < xg) all nodes which are common to
Ugel3) is then computed as follows: U1 andU; have the same value in either one of
— Ugel1 corresponds to the minimal sub- the trees,
tree of mpefore generated by the set — Proofy, = Accpefore and Proofy, = Accafer,
{H | [x),H(x][x3), Val_}, and
— Wgel2 is the pair(xq|[Xg) such thaky < x < Xg, — H(Xa[[x),H(X||xg) € V(Uz).
and
— Ugel3 is the minimal subtree afiarer generated 8 thv?/rwljsi’v\l/ri)curfl?gtssin%ilz\r/e omit the cage= (del,
byH(XaHXB)- 1, W2,U3 .

The algorithmUpdate,, outputs the new accumula-
tor valueQccaer, the modified memorynaer and SECURITY. We now prove that the schenktashAcc of

the update witness, . the previous section is secure under Definifibn 4.
°p First, note that if memoryn is a model ofX, then the

o CheckUpdate(K, X, ccpefore Accafter, Wop): ON input memory obtained after executingpdate in order to add
an elemenk € M, two accumulator value3ccpefore @ New element ¢ X, is a model o)X Ux. Indeed, suppose
Accatter, and an update witness,, = (W,op) for Xq <X < xg and letH (xq|[xz) be the value of a nodd in
op € {add,del,crt}, it proceeds as follows. If m. By replacing nodé with the node of valudd (xq/||X)
op = crt, then the algorithm outputs 1#ccarer = and adding the node of vall(x||xg), we clearly obtain a
H(H(—oo|| +0),€,€) andw is a model of the empty set of valuedH (x||xi+1), 0 <i < n+ 1} that corresponds
setundeH. If w= (add,U,U,), then the algorithm to the successive intervals of the %t {x} (wheren=
returns 1 provided that: [X]).




Intuitively, CheckUpdate must guarantee that the up-  {x}. Then, for two elements,v € M the adver-
dated memory (tree) used to compute the new accumu- sary can effectively build a tre& = Ugser CON-
lated value still has the property of having all the succes- taining a valueH(u||v) that does not belong to
sive intervals of the accumulated set as node values, that (7/(mpefore) U {H (Xa|[X), H (X|[Xg) })\{H (Xa||Xg) } =
each interval appears once and only once in the tree, and ¥ (maser) and such that in additiorProofs: =
that no other node value can belong to the tree. Proo fy,g,, = Accatter = Proof This contradicts

Mafter*
Propositiori .
Definition 10 Let H:K x M — Y be a collision-resistant

hash function family. Le®,, be the initialization proce- ~® (Secure DeletionThis case is similar to the addition
dure that on input k in unary returns= (H,1¥) where H of an element.

is chosen uniformly at random from the famg. -

Theorem 11 The accumulator schent¢ashAcc is a se-
cure strong universal accumulator scheme (with memofgFFICIENCY. We analyze the computational efficiency of
underQg,. the proposed scheme.

Theorem 12 Let n be the size of X. The witnesses of
(non) membership and of updates have siZéo@in)).
The update procesbBpdate, the verification processes
Belongs andCheckUpdate can be done in time @og(n)).

Proof: We need to prove the properti€®nsistencySe-
cure creation Secure additionandSecure deletian

e (Consistency¥irst, we note tha®lcc £ X implies

that there exists a memorny which is a model oK proor.  Assuming the accumulator manager uses a
underH. Let us now suppose that there is an advelainter hased data structure representation for labeled bi
saryA that can compute a valueand two WItnesses 5y rees; it is enough to show that a minimal subtiee
wi, Wz such thatCheckWitness(k,X,wi,%ec) = 1 of T generated by a constant number of node values has
and CheckWitness(K, X, Wz, cc) = 0. We assume gjzq (|og(n)). Indeed, first note that a minimal subtree
withoutlost of generality that< X. Any such adver- ¢ 5 yree generated by a constant number of node values is
saryAis in fact able to findk, andxs, X« <X =< X3, the unjon of the minimal subtrees generated by each of the
such that (x«|[xg) belongs to?(m). Sincem is @ \qjyes; It is easy to see that the size of a minimal subtree
model for X, by Propositior, this adversary willyenerated by a node value is proportional to the depth of

only succeed with negligible probability. The arguge node. This, and the fact tHais balanced, implies the
ment forx ¢ X is analogous. desired conclusion. 0

e (Secure Creation).et 4 be a probabilistic polyno-

mial-time adversary (playing the role of an accumu- ..
lator manager) that outpugeip, 2Acco) wherelccg £ 4 EfﬂC'enCy of our scheme and com-

0 but CheckUpdate(k, L, L, Acco, (Wo, crt)) = 1. parison with previous proposals
By definition ofSetup, one has thatiy has the struc-

ture of a model (i.e. must be a labeled balanced Igqur solution is theoretically less efficient than the scheme
nary tree plus some additional information). Followproposed in[[15]. Nonetheless, if one considers practical
ing the same line of argument as that of Proposfiiorifstances of these schemes the difference effectively van-
one reaches a contradiction to the collision-resistaghes as in most implementations hash function evaluation
assumption or#{. is significantly faster than RSA exponentiation — which is
the core operation used by the schemeBin[i5, 7]. Table 1
&hows the time taken by one single RSA exponentiation
versus the time taken by our scheme for update operations
p as a function of the number of the accumulated elements.
of X, where Accpetore = X.  Assume that For the time measurements, we used dpenssbench-
CheckUpdate(K, X, Accpefore Accafter, W) = 1 where marking command (se€[1L7]) on a personal computer. No-
both w = (add,Upefore Uafter) and x are arbitrar- tice that RSA timings were obtained using signing opera-
ily chosen by the adversary, arfficcaer = X U tions, as in the scheme proposed.inl [15] where exponents

e (Secure Addition)Consider the case where th
update is the addition of a valug such that
Xa < X < Xg and H(Xq,xg) belongs to the base
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n RSA-512 | RSA-1024 | RSA-2048 | SHA-256 | SHA-512 Scheme Strong Dynamic Witness size
2] 085 | 423 | 2500 | 037 | 1.42 Benaloh etal[[4] |  Yes No 0(k)
21077085 | 423 | 2500 | 1.22 | 475 Baric etal. [2] Yes No o(k)

20 Camenish etal(]7] No Yes O(k)
iem i Tme i Tes ] Maam | | ve | o

' . . . - This work Yes | Partially’ O(klogn)

Table 1:  Comparison of performance between sSimplgy o . comparison of properties of previous and our

RSA exponentiation and logarithmic number of compy ame whera is again the number of accumulated ele-

tations of _SHA_Wheren is the n_umb_e_r of accumulated eI'ments and is the security parameter. (In all scheme’s the
ements. Time is represented in milliseconds.

accumulator size i©(k)). T Our solution allows dynamic
addition and deletion of elements but no witness update.

may not be small. Timings for SHA operations were mea-

sured using an input block of 1024 bits. The compatiequire a trusted party — the accumulator manager herself
son is based on the fact that our scheme requires at moptit also that such trust entity be available for as long as
4 x 2log(n) hash computations, whergs the number of the accumulator is active. This seems unavoidable since
accumulated elements, given that at most four branchesrinagers require a trapdoor for the pseudo-collision free
the Merkle tree used in our construction (threewi@g;1  function in order to (efficiently) delete elements from the
and one fomge 3, see Section 31 2) will have to be recomaccumulator.

puted in the case of deletions. We now explain the rele-|n practice, trusted initialization can efficiently be im-
vance of Tabléll. For clarity’s sake, we focus on the effitemented using standard secure multiparty computation
ciency of witness generation. Inl[7.115[4, 2] schemes, th&hniques. For our protocol, we only need to generate a
time to generate a witness is at least a single RSA signiigsh function index, that is, kabit uniformly distributed
operation, independently of the number of accumulatgghdom string. This can be done using standard coin toss-
values. Hence, for both the aforementioned schemes, it algorithms[[18] (or more practical varianfs [13]) if a
time required to generate a witness is at least the one givieajority of participants during the initialization is haste

by the columns of Tablgl 1 with headers RSA-512, RSAdternatively, we could cast our results in theman igno-
1024, and RSA-2048, depending on the size of the moggnce setting proposed by Rogawdy [19]. In that case, it
lus used. In contrast, if we instantiate the hash function@buld suffice to take as the identity function and make
our proposed scheme by one of the SHA family of haghe reductions behind the proof of TheorEm 11 more ex-
functions, the time required to generate thtéh witness plicit (that is, detailing how new collision-finding adver-

is given by the columns of Tablg 1 with headers SHAsaries are built from the given protocol adversaries). Note

256 and SHA-512, depending on which version of SHeat all reductions in this paper are in fact constructive.
is used. A similar situation holds for operations such as

addition or deletion of accumulated values. In conclNONTRIVIALITY OF THE STRONG PROPERTY Both in
sion, using our hash-based scheme is still very efficiefte construction of Camenish et all [7] as well as the one

even for large values df, in comparison with previousbY Li et al. [15], a corrupted manager can compute wit-
proposals. nesses for arbitrary elements (regardless of whether the

Table[2 compares the functionality provided and Sizggements belong to the accumulated set or not). For ex-

of parameters appearing in aforementioned schemes QHlP'e’ n both schemgs, t.he manager 15 aple 1o gener-
our solution. ate a valid membership witness for an arbitrary ele-

mentx € Zy by simply computingv = uX " mod (P-1)(a-1),
ON THE SETUP ASSUMPTIONS We prove the security whereN = pqis the RSA modulus and € Zy is the cur-
of our scheme under the assumption that therdiisssed rent accumulator value.
procedure that chooses hash functions uniformly at ranNote that both these schemEgs|[[7] 15] are verifiably up-
dom from a given family. We model such assumptiotatable. Moreover, withess computation is determinis-
using an initialization procedur@, which cannot be cor- tic in the aforementioned schemes, depending only on
rupted. Notice that onc® finishes execution, no otherthe previous and current value of the accumulator at wit-
trusted process or entity is required. In contrast, both preess generation time. However, these conditions are not
vious solutions for dynamic accumulatdrs([7] 15] not onlgnough for these schemes to be strong. In Camenish et
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al. schemel[][7], a malicious manager can add an element Factormg Entlty
x = ab (for somea,b) and then prove eithea or b be-

long to the accumulated set. Similarly, in the scheme by
Li et al. [15], a malicious manager can easily compute

non-membership witnesses for elements even if they are
in the accumulated set. In this case though, a witness ver-

ification algorithm cou_ld detect the forgery if _the Iis_t of Provider Client

all elements currently in the accumulated set is available. (1)

Yet, this is not a requirement of the protocol and would

likely make such variant inefficient. ) . i
In contrast, our solution achieves the strong property as Figure 5: Steps of a factoring operation.

long as, at any given time, the party verifying a correct

accumulator update is able to remember the current afigs peculiarities of the way it is locally implemented in
previous accumulated values. Chile — thus, its applicability in other scenarios, if at all
possible, would require adaptations.

_ ; ; The main phases of an invoice factoring operation are
> The e-Invoice Factorlng Problem summarized below and illustrated in Figlite 5:

In this section we describe an application of strong uni-1 . ¢ requests fron either goods or services,
versal accumulators that yields an electronic analog of a

mechanism calledactoring through which a company, 2. P delivers the goods/services@
henceforth referred to as the Provid®),(sells a right
to collect future payment from a company Clie@).(
The ensuing discussion is particularly concerned with they, FE either rejects or accepBs request — in the lat-
transfer of payment rights associated with the turn over of  ter caseéFE givesP a cash advance d®is purchase,
invoices, that isjnvoice factoring The way invoice fac-
toring is usually performed in a country like Chile is titat - 1ater,FE asksC to settle the outstanding payment,
turns over a purchase order frd@rto a third party, hence- and finally,
forth referred to as Factor EntitfF ). The latter give$?
a cash advance equal to the amountsfpurchase order
minus a fee. Latel;E collects payment frort. A risk for FE is thatP can generate fake invoices and
There are several benefits to all the parties involvedabtain cash advances over them. This danger is somewhat
a factoring operation. The provider obtains liquidity andiminished by the fact that such dishonest behavior has se-
avoids paying interests on credits that he/she would otheous legal consequences. More worrisomeR&r is that
wise need (itis a common practice for some clients as welimay duplicate real invoices and request cash advances
as several trading sectors in Chile to pay up to 6 montinem severaF Es simultaneously. But, Chile’s local prac-
after purchase). The client gets a credit at no cost andic® makes this behavior hard to carry forth. Indeed, in-
able to perform a purchase for which he might not haveices are printed in blocks, serially numbered and pres-
found a willing provider. sure sealed by the local IRS agency (knowisasvicio de
According to the Chilean Association of Factoringmpuestos Internos (S)I)A FE will request the physical
(Asociacion Chilena de Factoring - ACHEHuring 2010, original copy of an invoice when advancing castPtolt
its 19 members accumulated almost 2 million documenssillegal, and severely punished, to make fake copies or
worth more than 18 billion dollar$ [1]. Factoring’s oriissue unsealed invoices.
gins lie in the financing of trade, particularly internat@n Less than a decade ago, an electronic invoicing sys-
trade. Factoring as a fact of business life was underwayté@m began operating in Chile. Background and techni-
England prior to 1400 [11]. The reader is referred to tlel information concerning this initiative can be down-
website of the International Factors Grolpl[12] for infoteaded from the website of the SlI, specifically frdm][20].
mation on current trends and practices concerning factdhe deployed electronic invoicing system has been widely
ing worldwide. Although factoring is performed in manyuccessful. It has been hailed as a major step in the
contexts, as the reader will see, our proposed solution gevernment modernization. Furthermore, it has created

3. P makes a factoring request i,

6. C paysFE.
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strong incentives for medium-to-small size companies t@®. The computation bizA, based orx and the identity
enter the so-called information age. Nevertheless, the sys of FE;, of a valueV and its publication through a
tem somewhat disrupts the local practice concerning fac- public broadcast channel.
toring. Specifically, &E will not be able to request the
original copy of an invoice, since in a digital world there 3- The decision on whether or not to buy the invoice as-
is no difference between an original and a copy. This cre- Sociated tocmade byFE; based oV and other pos-
ates the possibility of short-term large-scale fraud being Sible information previously collected. KE; con-
committed by unscrupulous providers. Indeed, a provider cludes thainv has not been previously sold, then it
can “sell” the same invoice to many distinEEs. We decides to buy and outputsv||0||i, otherwise it out-
refer to the aforementioned situation created by the intro-  PutsInv||1[]i.
duction of electronic invoicing as ttesInvoice Factoring . e .

The previous description of a factoring protocol cap-

Problem - )
. . tures the fact that thEE;’s interact concurrently witfA
We show below how to address this problem usi ' y

. DIEM USING - der to decide whether or not to buy invoices.
strong universal accumulator schemes, but first it is im-
portant to note that there are other issues of concern fotn order to formalize the security requirements involved
participants of an e-invoice factoring system, among thea factoring protocol we proceed as follows. ket N
most relevant are: be a security parametd®, an initialization procedure, and
let ¥ = (FEy,...,FEs;FA) be a factoring protocol for
e Privacy of the commercially sensitive informatiom = p(k) > 2 wherep is a polynomial. Consider an exper-
contained by invoices (e.g. private customer’s infofment, denoteixﬁ;?gﬂ(k), where 4 is a polynomial-
mation like for example tax identification numbersime bounded adversary that can corré&t and choose
volume of transactions, etc.) the elements for which theE;’s want to make a purchase
. . decision. The adversary can run a polynomial number of
° Robustpess of the e-invoice factoring system — Rxcision protocol instances. AlsBA can invoke the ini-
small size colluding party should be able to disrupljization procedure which is not under the control of
the system’s operation and/or break its security.  he aqversary. We say that the experiment outputs 1 if the
e Confidentiality of theFE’s commercially sensitive e}dversary Yvins, i'.e' hf either one of the fpllowing situa-
information (customer pool, number of transaction%!?ns oceur, (1) for 7 ! t_he adversary obtains a signature
volume of transactions, etc.) rom honest factor entitieSE; andFE; for the same mes-
sagelnv||0, or (2) the adversary obtains a signature from

The latter of these issues arises becauseFte are Nonestfactor entitfE; for a messagénv||1 such that no

in competition among themselves. They have an incé??neSt factor entity has previously generated a signature

tive to collaborate in order to avoid fraud. But, the! INVII0-
do not wish to disclose information about their customer . . . . .
base and transaction volumes to competitors. Moreo Efmmon 13 (Sgcurlty of a factoring protocol) Letke
a widespread sharing of invoices would not be welcom be a Isecur!t); paran\;\t/ater anctihfj[: p(kf) Zt 2 for
by the providers who issue them, given that they probatﬁ me polynomial p. ¢ say that a facloring pro-

want to maintain confidential the profile of theirclients._t col ¥ 'sac secure under initialization proced.u.réz.
if Pr[Ex fQﬂ(k)} = negk) for every probabilistic
In order to describe our proposed strong accumulator- e
. . ) .. polynomial-time adversaryi.
based solution for the e-Invoice Factoring Problem it is
convenient to introduce additional terminology. A factor- )
ing protocol ¥ = (FE;,...,FEn;FA) involvesn > 2 par- 5.1 A factoring protocol based on a secure
ticipantsFEy, ..., FE, called factor entities, and a special strong universal accumulator scheme

participantFA called the factoring authority. The factor-

ing protocol ¥ is defined by the concurrent execution of/e now describe how any secure strong universal accu-
several instances of a decision protocol consisting of: Mulator scheme can serve as the basis on which a secure

factoring protocol can be built.
1. The transmission froRE; to FA of a digestx of an For the sake of clarity of exposition, we first describe
invoicelnv thatFE; wants to buy. a general protocol, calleBase Protoco] that involves all
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the participants of a factoring transaction: the cliénthe
providerP, the factor entitie§ Ey, . . ., FE, and the factor-
ing authorityFA. In thisBase Protoco] we assume more-
over thatFA is trustworthy. Afterward, we shall show @ x=H(Inv)
how to remove this assumption. Also, assume fhat
has access to a hash functidruniformly chosen from a [ FE, } [ FE, } .
collision-resistant hash function family. In our trustwor

thy factoring authority-based solutioRA stores the hash (3) InvljAck
values of all acquired invoices and replies to queries from
the factor entities concerning the status (either acqured D inv
available) of an invoice with a given digest value. Hence-
forth, we assume that all messages are digitally signed (2) Ack

by the entity that sends them. Moreover, we assume the

factoring authority=A and factor entities interact through

a bulletin board (as implemented in other cryptographic Figure 6:Base Protocol(trustworthyFA).
protocols, e.g[18]).

The Base Protocolis illustrated in Figur and its
phases are described next: guré 6 i in FA's reply in Sted’b is to guarantee that nobody be-

sidesFE; can exhibit a valid proof, purportedly sent by
FA, claiming thatx was not inFA’s database at a given in-
stant (otherwise, anyone capturiR§'’s replies could ob-
1. P sends an e-invoickwv to C. tain a certificate that purchase of an invoice with digest
is warranted).
2. C sends a signed acknowledgment of receipt of  In the protocol FA's signature orx||Stat |i certifies that
the e-invoiceAck= Sigrr(Inv). an invoice with digesk either is or is not present iRA's
database. Note also thRE;'s signature oninv||0 is a
proof of commitment thaFE; has agreed to acquitev
from P.

FEn

(6) Inv||Stati

Base Protocol

3. P sends the signed messdge||Ackto theFE;
of his choice.

4. F& sends the signed message H(Inv) to FA. ATTACKS OUTSIDE OF THE MODEL Observe that col-

5. FA checks whethex is in its database. If not, lusion betweer€ andP is possible. Indeed, it is easy to
FA setsStatto 0 and adds to its database. Oth-  S€€ that together they can produce e-invoices not tied to
erwise, Statis set to 1. ThenFA broadcasty @ real commercial transaction. To avoid this risk, a factor
through the public channel the signed message €Ntity should check the validity of every e—invoice itis of-
x/|Stat]|i. Upon receivingx||Stat|i, the factor|  fered, before even contactii. The current e~factoring

entity FE; agrees to purchasev if Stat= 0, system deployed by the Chilean internal revenue service
and declines iBtat= 1. provides on-line functionality to check the validity of e—
invoices (every issuer of e—invoices must submit to the tax
6. FE; sends the signed messdge||Statto P. collecting agency an electronic copy of every e—invoice it

creates within 12 hours of having issued it).

DiscussioN Note that during Stepl 2 a receipt is signeRErFINED PROTOCOL Now, let us consider a more realis-
by C and then transmitted #6F; during StefiB. This is to tic scenario where the factoring authority is not trustwor-
prevent clienC from being framed by as having made thy. We now describe a solution for the e-Invoice Factor-
a purchase whose paymehE; could try to collect later ing Problem that is based on five algorithms that rely on
on. Also, note thatnv is not transmitted td=A during a secure strong universal accumulator under initialipatio
Step[4. This is done to allow protocol extensions to suprocedureQ, denotedACC. To avoid confusion, each al-
port confidentiality ofP’s andFE;'s commercially sensi- gorithm related to the accumulator will be referred to by
tive informatior] The reason for including the identifierACC.(algorithm name).

2This is straightforward by using perfectly one-way hashctions  [6] for H in Sted3.
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e Setup(1¥): the factoring authority acts as the accu _
mulator manager. First it invoke® on input ¥ and | Refinement of Stef b
obtainsk. Then, it runs accumulator setup algorithm

ACC.Setup on k, and stores the accumulator value 30 Assume the current accumulator value | is
Qlcc and the memorw mccbeforeand the memory State mbefore
- - . .

e Belongs(k,x,m): the factoring authority sete/ = B1 Upon receiving x from _factorlng er_mty
ACC.Witness(k,x,m). Then, it setStat= 1 if x has FE;, the factoring authorityFA determines
been accumulated, artat= 0 otherwise. Finally, (Statw) = Belongs(K,X, mpefore) and then
it returns(Stat w) broadcasts||(Statw)||i. If Stat= 0, thenFA

' executesAdd (K, X, Accpe fore Mpefore), ObAINS

e CheckpelongdK, X, Stat w,2cc): the factor entity that (Qlc;aftehmafter) and Waqg, and broadcasts
wants to check whether or not the element X||(Stat Accafter, Mafter, Wadd) i
belongs to the accumulated set verifies thalg > The following verifications are performed:
ACC.CheckWitness(K, X, w,lcc) equalsStat

(@) FEi runs Checkpeiongs With input

o Add(K,X,Accpefore Mbefore): the factoring author- (K, X, Stat, W, 2ccpefore) -
|ty runsACC.Updateadd(KéX,Qlccb%ﬁ)renl-beforte))lz r:' (b) If Stat — 0, then ev-
turns (Accafter, Mafter) @Ndwaqg. Then, it publishes ery factor entity executes

in the bulletin boardAccpe fore Accatter, Wadd)- Checkaga (K, X, 2Acche fore Accafter Wadd)-
e Checkadd(K; X, Acchefore Accatter, Wadd): the factor | [B.3 If no factor entity objects by exhibiting a valid

entity that wants to check whether the elemant proof that it has previously purchased an invojce
was correctly added to the accumulated set decides  with digest value, Stat= 0 in Sted 5.1, and no

(non)membership ofbased on the result returned by message| |(Stat Accafter, Mafter, Wadd)|| ] With

ACC.CheckUpdate(K, X, ccpe fore Accafter, Wadd)- j # i is published befor&A updates the accu-
mulator value t®lccaier (ANd the memory state
Below we describe the refinement of Sfgp 5 of Base to matier) B then FE; agrees to the purchase of

Protocol which corresponds to a factoring protocol. Asin an e-invoice with digest. Otherwise Gtat= 1
Sectior B we assume the availability of a public broadcast  or one of the verification fails)F E; rejects the
channel. We also assume that wtigaise Protocolstarts invoice with digesi.

the procedur&etup(1¥) is invoked, where is the secu-

rity parameter, thus generating the system-wide paramete\y\le henceforth denote bfiacc the protocol described

K. L 2
above (theBase Protocoltogether with its refinement)

It is important to point out that evetiyE; has to check : . . )
; , when instantiated with a universal accumulator scheme
each change on the memanyusing the values published

in the broadcast channel. Theses checks guaraotae ACC.

nuity in the evolution of the history of thEE;’s decisions Proposition 14 Let ACC be a secure strong universal

(buy or reject an invoice). accumulator scheme (with memory) under initialization
For clarity of exposition, in our proposed solution tprocedureQ. Then, Facc is a secure factoring protocol

the e-Invoice Factoring Protocol, we have omitted explanderQ.

nations of how to deal with e-invoice digest removals from

FA's database. However, it should be obvious how to ifRroof:  Assume an adversary can make either one of

plement this feature relying on the secure deletion furttre following situations to occur: (1) far# j the adver-

tionality provided by secure strong universal accumulaary obtains a signature from honest factor entif&s

tors with memory. Implementation of this functionalityand FE; for the same messadav||0, or (2) the adver-

is essential for maintaining efficiency. Specifically, to ugary obtains a signature from honest factor enfity;

per bound the size of the intermediate outputs and per W3y practice this can be implemented by a round during which each

eration proce;sing time by a logarithm in the number gor entity that disagrees wit\'s broadcast values has to publish its
accumulated invoices. complaint.
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for a messagénv||1 such that no honest factor entity

has previously generated a signaturelmf||0. If situ-

ation (1) occurs, the verification in Stép 5.2 of the fac-
toring protocol guarantees that only one message of t

type H(Inv)||(Stat ccatter, Mafter, Wadd)||l can be pub-

lished between two consecutive changes of the accumu-
lated value, the attacker needs to be able to find a witness

of non-membership foH (Inv), althoughH (Inv) has al-

ready been accumulated. Sin€gcc is secure, this can
only happen with a negligible probability. If situation (2) [4]
occurs, then for the verification in St€p 5.2 to succeed with
non-negligible probability the attacker needs to be able to

find a witness of membership fet(Inv), althoughH (Inv)
has not been previously accumulated. Siffaec is se-
cure, this can not happen. O

Theoren Il and Propositionl14 immediately yield,

Corollary 15 The factoring protocolfashacc IS @ secure
factoring protocol undef ;.

6 Conclusion

We introduced the notion of strong universal accumula-
tor scheme which provide almost the same functionalit 7]
as do the universal accumulator schemes defined’in [15],
namely (1) a set is represented by a short value called ac-
cumulator, (2) it is possible to add and remove elements
dynamically from the (accumulated) set, and (3) proofs
of membership and non-membership can be generated us-
ing a witness and the accumulated value. In this notior§]
however, the accumulator manager does not need to be
trustworthy and might be compromised by an adversary.
We also give a construction of a strong universal ac-
cumulator scheme based on cryptographic hash functions
which relies on a public data structure to compute acc
mulated values and witnesses (of membership and no
membership in the accumulated set). We argue that the
proposed scheme is practical and efficient for most ap-
plications. In particular, we discuss an application to a
concrete and relevant problem — the e-invoice factorifig0]

problem
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