
Strong Accumulators from Collision-Resistant Hashing∗

Philippe Camacho† Alejandro Hevia‡ Marcos Kiwi§ Roberto Opazo¶

September 3, 2012

Abstract

Accumulator schemes were introduced in order to repre-
sent a large set of values as one short value called theac-
cumulator. These schemes allow one to generate mem-
bership proofs, i.e. short witnesses that a certain value
belongs to the set. In universal accumulator schemes,
efficient proofs of non-membership can also be created.
Li, Li and Xue [15], building on the work of Camenisch
and Lysyanskaya [7], proposed an efficient accumulator
scheme which relies on a trusted accumulator manager.
Specifically, a manager that correctly performs accumula-
tor updates.

In this work we introduce the notion ofstrong univer-
sal accumulator schemeswhich are similar in functional-
ity to universal accumulator schemes, but do not assume
the accumulator manager is trusted. We also formalize
the security requirements for such schemes. We then give
a simple construction of a strong universal accumulator
scheme which is provably secure under the assumption
that collision-resistant hash functions exist. The weaker
requirement on the accumulator manager comes at a price;
our scheme is less efficient than known universal accumu-
lator schemes — the size of (non)membership witnesses
is logarithmic in the size of the accumulated set in contrast

∗A preliminary version of this work appeared in proceedings ofthe
11th Information Security Conference, ISC’08, Lecture Notes in Com-
puter Science 5222, pages 471-486, Springer-Verlag, 2008.Mr. Cama-
cho gratefully acknowledges the support of CONICYT via FONDAP en
Matemáticas Aplicadas. Mr. Hevia gratefully acknowledges the support
of CONICYT via FONDECYT No. 1070332. Mr. Kiwi is supported
by CONICYT via FONDECYT No. 1010689 and FONDAP-Basal in
Applied Mathematics, and Millenium Nucleus Information and Coordi-
nation in Networks ICM/FIC P10-024F.

†Dept. of Computer Science, University of Chile, Blanco Encalada
2120, 3er piso, Santiago, Chile.pcamacho@dcc.uchile.cl.

‡Dept. of Computer Science, University of Chile, Blanco Encalada
2120, 3er piso, Santiago, Chile.ahevia@dcc.uchile.cl.

§Depto. Ing. Matemática & Ctr. Modelamiento Matemático UMI
2807, U. Chile. Web: www.dim.uchile.cl/∼mkiwi.

¶CEO khipu.com,roberto@opazo.cl

to constant in the scheme of Camenisch and Lysyanskaya.
Finally, we show how to use strong universal accumula-

tors to solve a problem of practical relevance, the so called
e-Invoice Factoring Problem.

keywords: Strong Accumulators, Collision-resistant
Hashing, e-Invoice.

1 Introduction

Accumulator schemes were introduced by Benaloh and
De Mare [4]. These primitives allow to represent a poten-
tially very large set by a short value calledaccumulator.
Moreover, the accumulator together with a so calledwit-
nessprovides an efficiently verifiable proof that a given
element belongs to the accumulated set.

Barić and Pfitzmann [2] refined the security definition
of accumulator schemes, and introduced the concept of
collision-free accumulators. This notion was further ex-
tended by Camenisch and Lysyanskaya [7] to a dynamic
setting where updates (additions and deletions) to the ac-
cumulator are possible. They proposed a new construction
and showed how to use it to efficiently implement mem-
bership revocation in group signatures, and anonymous
credential systems. In particular, they show how to keep
track of valid identities using an accumulator, so proving
membership is done by arguing in zero-knowledge that a
certain secret value was accumulated. For a thorough dis-
cussion of accumulators we refer the interested reader to
the survey of Fazio and Nicolosi [10].

Li, Li and Xue [15] recently introduced the notion of
universal accumulators, which not only allow efficient
generation of membership, but also of non-membership
proofs. Building on [7], Li et al. construct universal ac-
cumulator schemes and point out useful applications, e.g.
proving that a certificate has not been revoked, or that a
patient does not have a disease. Unfortunately, their con-
struction inherits an undesirable property from Camenisch
and Lysyanskaya’s scheme; updates of the set (in partic-

1

ular, deletion of elements) require the accumulator man-
ager to be trusted. This falls short of Benaloh and De
Mare’s initial goal: to provide membership proofs even
if the accumulator manager is corrupted. In both [7] and
[15], a malicious manager can compute witnesses for any
element regardless of whether it was accumulated or not.

We propose a new accumulator scheme based on hash
trees similar to those used in the design of digital time-
stamping systems [4, 3]. Recall that in hash trees, values
are associated to leaves of a binary tree. The values of
sibling nodes are hashed in order to compute the value
associated to their parent node, and so on and so forth,
until a value for the root of the tree is obtained. The tree’s
root value is defined as the accumulator of the set of values
associated to the leaves of the tree. We cannot directly
use hash trees to obtain the functionality of universal and
dynamic accumulators. Indeed, we need to add and delete
elements from the accumulated set (tree node values if
using hash trees) while at the same time be able to produce
non–membership proofs. We solve this last issue using
a trick due to Kocher [14]; instead of associating values
to the tree’s leaves, we associated a pair of consecutive
accumulated set elements. To prove that an elementx is
not in the accumulated set now amounts to showing that
a pair(xα,xβ), wherexα ≺ x≺ xβ, belongs to the tree but
the pairs(xα,x) and(x,xβ) do not.

The drawbacks of using a hash tree based scheme are
twofold. First, the size of witnesses and the update time
are logarithmic in the number of values accumulated. In
contrast, witnesses and updates can be computed in con-
stant time in RSA modular exponentiation based schemes
like the ones of [7, 4, 2, 15]. We believe, nonetheless, that
this problem may in fact not exist for reasonable set sizes
— a claim that we will later support. The second draw-
back is the accumulator’s manager storage space require-
ments which is linear in the number of elements. How-
ever, this is not an issue for the accumulator’s users, since
they only need logarithmic in the accumulated set size
storage space.

Overall, the main advantages of our scheme in com-
parison with Li et al. [15] are: (1) the accumulator man-
ager need not be trusted, and (2) since we only assume
the existence of cryptographic hash functions as opposed
to the Strong RSA Assumption, the underlying security
assumption is (arguably) weaker. (Indeed, collision-re-
sistance can be based on the intractability of factoring or
computing discrete logarithms [9] while Strong-RSA is
likely to be a stronger assumption than factoring [5].)

1.1 Our contributions

Our contribution is threefold. First, we strengthen the
basic definition of universal accumulators by allowing
an adversary to corrupt the accumulator manager. This
gives rise to the notion ofstrong universal accumula-
tors. Second, we show how to construct strong univer-
sal accumulators using only collision-resistant hash func-
tions. Our construction has interesting properties of its
own. As in [7, 15], we use auxiliary information to com-
pute the (non)membership witness, but this information
(called memory) need not be kept private, and does not
allow an adversary to prove inconsistent statements about
the accumulated set. Indeed, the construction provides
almost the same functionality as the (dynamic) universal
accumulators described in [15], namely:

• All the elements of the set are accumulated in one
short value.

• It is possible to add and remove elements from the
accumulated set.

• For every element of the input space there exists a
witness that proves whether the element has been ac-
cumulated or not.

Our last contribution is showing how to apply strong
universal accumulators to solve a multi-party computa-
tional problem of practical relevance which we name the
e-Invoice Factoring Problem. Solving this problem was
indeed the original motivation that gave rise to this work.

1.2 Organization of the paper

In Section 2, we give some background definitions and
formally introduce the notion of strong universal accu-
mulator schemes. In Section 3, we describe our basic
strong universal accumulator scheme and rigorously es-
tablish its security. In Section 4, we discuss the efficiency
of the scheme in practice. The e-Invoice Factoring Prob-
lem is described in Section 5 where it is also shown how
to solved it using strong universal accumulator schemes.
In Section 6, we conclude with some comments.

2 Definitions and notations

Let neg : N → R denote a negligible function, that is,
for every polynomialp(·) and any large enough integer
n, neg(n) < 1/p(n). Let also|| denote the operation of

2

concatenation between binary strings. IfR() is a random-

ized algorithm, we writea
R
← R() to denote the process

of choosinga according to the probability distribution

induced byR. Let Pr
[

x1
R
← R1(), . . . ,xℓ

R
← Rℓ() : E

]

de-

note the probability of eventE after the processesx1
R
←

R1(), . . . ,xℓ
R
← Rℓ() are performed in order. We also de-

note by〈R()〉 the set of all possible valuesa returned by
randomized algorithmRwith positive probability. We dis-
tinguish between anaccumulator scheme(the protocol,
see below), its short representation oraccumulator value,
and its correspondingaccumulated set X. For simplicity,
however, we may use these terms indistinguishably when
it is clear from the context.

SYNTAX . We formally define the syntax of a strong uni-
versal accumulator scheme (with memory). Our definition
differs from that of Li et al. [15] as we consider an algo-
rithm to verify if the accumulator value has been updated
correctly (by adding or deleting a certain value), and we
are not interested in hiding the order in which the elements
are inserted into the accumulated set.

Definition 1 (Strong Universal Accumulators with
Memory) Let M be a set of values. A strong universal
accumulator scheme (with memory) for M is a tupleA =
(Setup,Witness,CheckWitness,Update, CheckUpdate)
where

• Setup(κ) is a randomized algorithm which on in-
put some initialization parameterκ, outputs a public
data structurem0 (also called the memory), a cre-
ation witness w, and an initial accumulator value
Acc0 which is in the set Y= {0,1}k. Value κ is
assumed to include at least a security parameter
k ∈ N in unary, but it may also include some op-
tional system-wide parameters possibly generated by
a trusted initialization process. An empty set X⊆M
is associated to the execution of the scheme, and in
particular, toAcc0. Both the accumulator valueAcc0

and the memorym0 will be typically held and up-
dated by the accumulator manager.

• Witness(κ,x,m) is a randomized algorithm that
takes as input x∈ M and memorym, and outputs a
witness of membership w if x∈ X (x has been accu-
mulated) or a witness of nonmembership w′ if x 6∈ X.

• CheckWitness(κ,x,w,Acc) is a randomized algo-
rithm which on input a value x∈M, a witness w and
the accumulator valueAcc ∈ Y outputs a bit1 if w

is deemed a valid witness that x∈ X, outputs0 if w
is deemed a valid witness that x6∈ X, or outputs the
special symbol⊥ if w is not a valid witness of either
statement.

• Updateop(κ,x,Accbefore,mbefore) is a randomized al-
gorithm that updates the accumulator value by ei-
ther adding an element (op = add) to or remov-
ing an element (op = del) from the accumulated
set. The algorithm takes an element x∈ M, an ac-
cumulator and memory pair(Accbefore,mbefore), and
outputs an updated accumulator and memory pair
(Accafter,mafter), and an update witness wop = (w,
op).

• CheckUpdate(κ,x,Accbefore,Accafter,wop) is a rand-
omized algorithm that takes as input a a pair of
accumulator values(Accbefore,Accafter), a value x∈
M∪{⊥}, and an update witness wop = (w,op) where
op ∈ {add,del,crt}, and returns a bit b. Typically,
this algorithm will be executed by parties other than
the accumulator manager in order to verify correct
update of the accumulator by the manager. If x=⊥,
op = crt, and b= 1, then wop is deemed a valid
creation witness of the accumulated set X= /0. If
b = 1, wop is deemed a valid witness that the up-
date operation (forop∈ {add,del}) which replaced
Accbeforewith Accafter as the accumulator value, was
valid. Otherwise, wop is deemed invalid for the given
accumulator pair.

All the above algorithms are supposed to have complexity
polynomial in the security parameter k.

In the above definition, memorym is a public data struc-
ture which is computed from setX. Although public, this
structure only needs to be maintained (stored) by the ac-
cumulator manager who requires it to update the accumu-
lator, and to generate membership and non-membership
witnesses. In particular, this memory isnot used to verify
correct accumulator updates nor to check the validity of
(non)membership witnesses.

Strong universal accumulators with memory as defined
above are intended for use in a multi-party protocol setting
where proceduresSetup, Witness, andUpdateop are exe-
cuted by a manager andCheckWitness andCheckUpdate
by the other participants of the multi-party protocol.

SECURITY. Universal accumulators as defined in [15]
satisfy a basic consistency property: it must be unfeasi-
ble to find both a valid membership witness and a valid

3

non-membership witness for the same valuex ∈ M. As
mentioned there, this is equivalent to saying that given
X ⊆M it is impossible to findx∈ X that has a valid non-
membership witness or to findx ∈ M\X that has a valid
membership witness.

In order to be able to cope with malicious accumulator
managers, we first need to guarantee that the accumulator
value is consistent with the elements supposedly added
and removed by the manager. We therefore define what it
means for an accumulator to represent a set, and then the
security conditions that guarantee that such representation
is sound even under the presence of malicious (but com-
putationally bounded) managers. Our presentation uses
a formalism based on initialization procedures to accom-
modate protocols whose security may require some setup
assumptions (eg. an initial round of generation of trusted
system-wide parameters1).

Definition 2 An accumulator valueAcc represents the
set X⊆ M under initialization parametersκ, denoted
by Acc

κ
⇒ X, if and only if there exists a sequence

{(Acci ,xi ,mi ,opi)}1≤i≤n, where n= |X|, xi ∈ M for 1≤
i ≤ n, opi ∈ {add,del}, andAcc0 ∈Y andm0 are values
such that

• X = {xi}1≤i≤n ,

• (Acc0,m0) ∈ 〈Setup(κ)〉 ,

• (Acci ,mi ,wi) ∈ 〈Updateopi
(κ,xi ,Acci−1,mi−1)〉 for

all 1≤ i ≤ n.

If no such sequence existsAcc does not represents set X,
denoted byAcc

κ
; X.

Note that, regardless of the choice ofκ, there could be
two different sequences that makeAcc

κ
⇒ X. More im-

portantly, even for fixedκ, the above definition does not
imply that the represented setX is unique for a given ac-
cumulated valueAcc. Our definition of security, how-
ever, will ensure that as long as each accumulator up-
date operation is verified by a honest observer (running
CheckUpdate), such collisions will not happen except
with negligible probability. Before proving this, we need
to introduce our main security notion for accumulators.

We adapt the security definition in [15] as follows.
First, we let the adversary select not only the valuex and
the witnessw but also the accumulated setX ⊆ M, the
accumulator valueAcc ∈Y and whetherx belongs or not

1In fact, our main construction does require trusted selection of a
random hash function.

to X. We restrict the adversary so he must choose a pair
(Acc,X) for which there exists a sequence of valid addi-
tion operations (namely,Updateadd with values inX) that
can produce an accumulated valueAcc. This last restric-
tion can be justified by noticing that, in the scenario we
consider, parties other than the accumulator manager can
externally verify the correctness of each update operation
by using theCheckUpdate algorithm. Finally, to capture
most setup assumptions, we parameterize the security no-
tion with the following notion:

Definition 3 An oracleΩ is an initialization procedure if
given a security parameter k∈ N in unary it generates a
parameterκ = (κ0,1k) whereκ0 is of length polynomial
in k. InvokingΩ will be assumed to take a single time
step.

The initialization procedure will be used to model a setup
process that is not under adversarial control. Clearly, the
case of no setup assumptions corresponds to the special
case whenΩ(1k) = 1k.

Definition 4 (Security of Strong Universal Accumula-
tors with Memory) Let A be a strong universal accu-
mulator scheme (with memory) for universe M, k∈ N

be a security parameter, andΩ be an initialization pro-
cedure. ThenA is secure underΩ if for every proba-
bilistic polynomial-time adversaryA(atk, ·) with atk ∈
{cons,crt,add,del}, the following conditions hold:

• (Consistency)

Pr

κ = (κ0,1k)
R
←Ω(1k),

(x,w1,w2,X,Acc)← A(cons,κ) : Acc
κ
⇒ X,

CheckWitness(κ,x,w1,Acc) = 1,
CheckWitness(κ,x,w2,Acc) = 0

is neg(k) .

• (Secure creation)

Pr

κ = (κ0,1k)
R
←Ω(1k),

(w,Accafter)← A(crt,κ) : Accafter
κ
; /0,

CheckUpdate(κ,⊥,⊥,Accafter,(w,crt)) = 1

is neg(k) .

• (Secure addition)

Pr

κ = (κ0,1k)
R
←Ω(1k),

(Accbefore,X,Accafter,x,w)← A(add,κ) :

Accbefore
κ
⇒ X, Accafter

κ
; X∪{x},

CheckUpdate(κ,x,Accbefore,Accafter,(w,add)) = 1

is neg(k) .

4

• (Secure deletion)

Pr

κ = (κ0,1k)
R
←Ω(1k),

(Accbefore,X,Accafter,x,w)← A(del,κ) :

Accbefore
κ
⇒ X, Accafter

κ
; X\{x},

CheckUpdate(κ,x,Accbefore,Accafter,(w,del)) = 1

is neg(k) .

The type of accumulators we consider in this work is not
necessarilyquasi-commutative[7, 15] as they may not
hide the order in which the elements were added to the
set. More precisely, our definition tolerates that the value
of the accumulator may depend on a particular sequence
of Updateadd andUpdatedel operations that produced a
particular accumulator valueAcc.

At this point, we need to justify our claim that the ac-
cumulated setX represented by an accumulator value is
unique with overwhelming probability as long as honest
parties verify all accumulator updates.

Definition 5 Let A be a strong universal accumulator
scheme for some universe M and initializationΩ, and
k ∈ N a security parameter. Given an adversaryA with
oracle access, consider the following two phase exper-
iment ExpVUAcc

A,Ω,A : First, on input the security parame-
ter k, the experiment generates a system-wide parame-
ter κ by invokingΩ(1k). Second, on inputκ, the adver-
sary outputs a tuple(w,Acc) which is taken to represent
the creation witness, and the accumulated value (respec-
tively) corresponding to the accumulated set X= /0. If
CheckUpdate(κ,⊥,⊥,Acc,w) 6= 1 then the experiment
aborts. In the second phase, the adversary is allowed to
submit as many queries to an oracleO() as it wants and
then stops. The oracleO() is stateful with initial state
(κ,Acc,m,w). For each query of the form(op,x,Acc′,w)
whereop ∈ {add,del}, the oracle proceeds as follows: it
first computes a bit b← CheckUpdate(κ,x,Acc,Acc′,w).
Then, if b= 1, it setsAcc← Acc

′, and X← X ∪ {x} if
op = add (similarly if op = del it sets X← X \ {x}). In
the case b= 0 the oracle does not modifyAcc or X. In
both cases, the oracle returns bit b as the answer to the
adversary. We say that anA is verifiably updatableunder
Ω if for each probabilistic polynomial-time adversaryA ,
after A stops (without the experiment ever aborting), it
holds thatAcc

κ
⇒ X except with negligible probability in

k. If Acc
κ
; X we say adversaryA wins the experiment.

The following proposition shows that the accumulated
set represented by any accumulator value is well defined
(with overwhelming probability) if we use a secure strong
universal accumulator scheme.

Proposition 6 If a strong universal accumulator scheme
A is secure under initialization procedureΩ, thenA is
verifiably updatable underΩ.

Proof: LetA∗ be a probabilistic polynomial-time adver-
sary that winsExpVUAcc

A,Ω,A with non-negligible probability
in k making at mostµ= µ(k) queries for some polynomial
µ. First of all, the initial accumulator valueAcc must rep-
resent the empty set, since otherwise adversaryA∗ would
contradict the secure creation property. Then, for some in-
dex 1≤ i≤ µ there must exist queries(opi−1, xi−1,Acci−1,
wi−1) and (opi ,xi ,Acci ,wi) such thatAcci−1 does repre-
sent some setX∗ while Acci represents neitherX∗ ∪{xi}
norX∗ \{xi}. Clearly, the polynomial-time adversary that
runsA∗ - while simulating the oracle - up to thei-th query
and then outputsAcci−1, X∗, Acci , xi , wi breaks the secure
addition or secure deletion property ofA. �

Our security definition (Definition 4) for the dynamic
scenario (where addition and deletion of elements are al-
lowed) differs from the one in [7] where the adversary is
only able to add and delete elements by querying the ac-
cumulator manager, who is incorruptible. In contrast, in
our definition the adversary is allowed to control the ac-
cumulator. However, we require that during each update
at least an uncorrupted participant verifies the update with
CheckUpdate to guarantee the consistency between the
accumulated value and the history of additions and dele-
tions.

DYNAMIC ACCUMULATORS. The standard definition of
dynamic accumulators (see for example the one in [7])
adds two requirements which so far we have not consid-
ered. First, it requires the existence of an additional effi-
cient algorithm that allows to publicly and efficiently up-
date membership witnesses after a change in the accumu-
lator value so witnesses can be proven valid under the new
accumulator value. And secondly, it requires that both the
accumulator updating algorithm as well as the witness up-
dating algorithm to run in time independent from the size
n of the accumulated set. In our construction, we only
achieve logarithmic dependency onn for the accumulator
updates. In practice, such dependency may be appropriate
for many applications.

3 Our scheme

We assume that there exist a public broadcast channel
with memory. Depending on the required security level,

5

this can be a simple trusted web server, or a bulletin board
that guarantees that every participant can see the pub-
lished information and that nobody can delete a posted
message. For a discussion on bulletin boards and an ex-
ample of their use in another cryptographic protocol, the
interested reader is referred to [8]. We rely on broadcast
channels in order to ensure that the publication of the suc-
cessive accumulator values that correspond to updates of
the set cannot be forged. In particular, an adversary who
controls the manager of the accumulator cannot publish
different accumulator values to different groups of partic-
ipants.

3.1 Preliminaries

Our scheme is inspired by time stamping systems like
those described in [4, 3]. In these systems a document
needs to be associated to a certain moment in time. The
solution proposed there is to divide the time in periods
(e.g. hours, days), and place each document as a leaf at
the bottom of a binary tree (say,T) with other documents
that belong to the same period of time, sayt. Then the val-
ues associated to each pair of leaves with the same parent
node are hashed in order to derive the value of the parent
node. This process is repeated until the valuev of the root
node of the tree is computed. This valuev is then pub-
lished as a representative of the treeT for periodt. Later,
a given documentm can be proven to belong to a certain
period of timet by presenting a valid subtree of treeT
corresponding to time periodt that includes the document
m.

We use the above approach to build an accumulator
scheme that works for dynamic sets and also allows proofs
of nonmembership. In this case, building a proof of non-
membership is somehow similar to the trick of Kocher (in
[14]) — instead of storing elements of the set, we store
pairs of consecutive elements of the set. Then, proving
that an elementx is not in the accumulated setX amounts
to simply proving that there exists elementsxα and xβ,
xα < x< xβ, such that a pair(xα,xβ) is stored in the tree.

BASIC TOOLS. Our solution uses collision-resistant hash
functions, which we formalize as families of functions. In
practice we can use a well-known hash function like SHA-
256, for example. We start recalling the standard notion
of collision-resistant hash functions.

Definition 7 A hash function family is a collection of
functions

{

Hτ : M→Y
}

τ∈K where M and Y are sets of
strings, and K and Y are non-empty sets.

Definition 8 LetH =
{

Hτ : M→Y
}

τ∈K be a hash func-
tion family and k a security parameter, where|K|= |Y|=
2k, Then,H is collision-resistant if and only if for every
polynomial-time probabilistic algorithm A we have:

Pr

[

τ R
← K;(m,m′)← A(τ,k) :

m 6= m′, Hτ(m) =Hτ(m′)

]

= neg(k)

whereτ R
←K means thatτ is selected uniformly at random

in the set of keys K.

Often, we will view a mappingH : K×M→Y as the
hash function family

{

Hτ : M→Y
}

τ∈K whereHτ(·) =

H (τ, ·). Henceforth,M will be the set of all binary strings,
andK andY will be the set{0,1}k, for a large enough se-
curity parameterk∈ N.

NOTATION FOR SETS. We assume the setX we want to
accumulate is ordered and denote byxi thei-th element of
X = {x1,x2, ...,xn}, n∈ N. Let x0 = −∞ andxn+1 = +∞
two special elements such that−∞≺ x j ≺+∞ for all x j ∈
X, where� is the order relation onX (for example, the
lexicographic order on bit strings) anda≺ b if and only if
a� b anda 6= b.

Observe that showingx ∈ X is equivalent to proving
that:

(xα,xβ) ∈ {(xi ,xi+1) : 0≤ i ≤ n} ∧ (x= xα∨x= xβ).

On the other hand, showing thatx /∈ X corresponds to
proving:

xα ≺ x≺ xβ ∧ (xα,xβ) ∈ {(xi ,xi+1) : 0≤ i ≤ n}.

For setsA andB we denote their symmetric difference
by A△B.

LABELED TREES. Our proposal relies on labeled binary
trees. The root node of a treeT will be denotedroot(T).
The left subtree (respectively right subtree) rooted at the
left (respectively right) child node ofT will be denoted
Left(T) (respectivelyRight(T)). The noderoot(T) is
said to be theparent of Left(T) and Right(T). Each
nodeN of T will be labeled by a string henceforth de-
notedLabel(N). Sometimes we identify the treeT with
its root N = root(T) and we writeLabel(T) to denote
Label(root(T)). As usual, a leaf ofT corresponds to
a node ofT that has no children. IfT consists of
only one node, then we say thatT has depth 0 and de-
note it asdepth(T) = 0. Otherwise, letdepth(T) = 1+
max{depth(Left(T)),depth(Right(T))}. A treeT is bal-
ancedif |depth(Left(T))− depth(Right(T))| ≤ 1. It is a

6

H(x6||x7) H(x7||x8)

H(x3||x4) H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x3)

H(−∞||x1)

Figure 1: A tree modelT of the setX = {x1, . . . ,x8}. Only
node values are shown. Note that the place of the values
in the tree is irrelevant.

well-known fact that a balanced tree withn nodes has
maximum depthO(log(n)).

MODEL OF X = {x1, . . . ,xn} UNDER H. Informally, a
model of X under H is a labeled balanced binary tree
such that for every nodeN of T the label ofN is of the
form H(xi ||xi+1) plus some additional information link-
ing H(xi ||xi+1) and the labels of the roots of the left
and right tree whose parent isN. Formally, the set
{H(xi ||xi+1) : 0≤ i ≤ n} will be called thebaseof X un-
der H. A balanced binary treeT is called amodelof X
underH if:

• For every nodeN in T there are stringsValN and
ProofN, called node value and node proof respec-
tively, such thatLabel(N) = (ValN;ProofN).

• The base ofX is {ValN : N is a node ofT}.

• T hasn+1 nodes.

• ProofN = H(ValN||ProofLeft(N)||ProofRight(N)) for
every nodeN of T (whereProofNil corresponds to
the empty string).

If N is the root node of treeT, we abuse the notation and
write ProofT instead ofProofN. The collection of node
values ofT will be denoted byV (T). Figure 1 depicts a
toy example of a model of a set.

M INIMAL SUBTREES GENERATED BY A SET. Let T be
a labeled binary tree. We say thatV ⊆ V (T) generates
a minimal subtree U of Tif U is a subtree ofT obtained
by: (1) taking all nodes inT that belong to all paths from
T ’s root to a node whose value is inV (the paths include
both the root ofT and the nodes of value inV), and (2)
all the (direct) children of the nodes taken in the previous

d e

c

g h

f

b

k l

j

n o

m

i

a

Figure 2: A tree and its minimal subtree (nodes with val-
ues in boldface) generated by the node of valuej. Chil-
dren of the nodes that are on the path fromj to a are un-
derlined.

step. Figure 2 illustrates the concept of minimal subtree.
If U is generated by a singleton{S}, then we say thatU is
generated byS.

FORGING BINARY TREES. We claim that for a setX
andH a uniformly chosen hash function from a collision-
resistance hash function family, given a modelT of X un-
der H it is computationally hard to distill a new labeled
treeT ′ with the same root value but different values else-
where. Formally, we claim the following result.

Proposition 9 LetH :K×M→Y be a collision-resistant
hash function family and H a uniformly chosen function
in H . Let X⊆M be an adversarially-chosen polynomial
size set (on the security parameter k), and T be a model
of X under H. Then, given T , no adversary can efficiently
compute a labeled binary tree T′ and a value V such that
V ∈ V (T ′)△V (T) and ProofT ′ = ProofT , except with
negligible probability.

Proof: Let A be a polynomial-time stateful adversary
which works in two phases. First, on input the security pa-
rameter and a hash functionH ∈H , A outputs a setX⊆M
of size polynomial onk. Then, given a modelT for X un-
derH, it outputs a labeled binary treeT ′ and a valueV sat-
isfying the conditions of the proposition. SinceProofT ′ =
ProofT and valueV is in V (T ′) but not inV (T) there
must exist a nodeN′ in T ′ and a nodeN in T such
thatProofN′ = H(ValN′ ||ProofLeft(N′)||ProofRight(N′)) and
ProofN = H(ValN||ProofLeft(N)||ProofRight(N)) are equal
butValN||ProofLeft(N)||ProofRight(N) 6=ValN′ ||ProofLeft(N′)
||ProofRight(N′). NodesN andN′ can be found efficiently
by simple traversal of both trees in some fixed order.

Now, let B be an adversary that is given a uniformly se-
lected at random collision-resistant hash functionH ∈H .

7

AdversaryB first queriesA to obtain a setX which it uses
to build a modelT for X underH. Then,B runsA as a sub-
routine to obtain another labeled binary treeT ′ and a value
V such thatProofT = ProofT ′ andV ∈ V (T ′)△V (T).
Finally, using the procedure mentioned above,B finds a
collision forH. �

3.2 A Strong Universal Accumulator with
Memory using Hash Trees

In this section we use hash trees to build our proposed uni-
versal accumulator with memory. At a high level, our ac-
cumulator scheme relies on an accumulator manager that
creates and updates a treeT which is a model of the ac-
cumulated setX = {x1,x2, ...,xn} underH. The model
T of X will satisfy two conditions: (1) the accumulator
manager can guarantee thatx ∈ X by proving that there
is a nodeN of T such thatVN = (xα,xβ) wherex= xα or
x= xβ, and (2) to demonstrate thatx 6∈X, the accumulator
proves that there is a nodeN of T such thatVN = (xα,xβ)
wherexα ≺ x ≺ xβ. When adding or deleting elements
from X, the accumulator manager needs to updateT and
guarantee that both of the stated conditions are satisfied.

In terms of setup assumptions, our scheme can be in-
stantiated with any trusted initialization algorithmΩ(1k)
which includes picking a hash functionH uniformly at
random from the familyH (say by computing a random
index i ∈ K where|K| = k and then settingH = Hi). Of
course, such assumption can also be instantiated with an
ephemeral trusted third party runningΩ, or alternative us-
ing standard multiparty computation techniques among all
participants, including the accumulator manager. More-
over, a common heuristic to avoid interaction is to simply
pick H =SHA-256 [16], for example.

A detailed description of the proposed scheme follows.

THE CONSTRUCTION. Let k = 2t ∈ N be the secu-
rity parameter and letX = {x1,x2, ...,xn} be a subset of
M = {0,1}t . We define the accumulator schemeHashAcc

below.

• Setup(κ): The algorithm starts by settingX equal to
the empty set. Then, it extracts the security parame-
ter k and the description (index) of the hash function
H ∈ H from κ. The algorithm then setsm to be the
following model ofX: a tree with a single root node
N with valueValN =H(−∞||+∞) and the accumula-
tor is initialized toProo fN = H(ValN||ε||ε) whereε
is the empty string. Finally, the algorithm sets the

creation witnesswcrt to (m,crt), wherecrt is a
fixed label.

• Witness(κ,x,m): On inputx∈M and memorym, it
computes the witnessw= (w1,w2) as follows. First,
the algorithm setsw1 = (xα,xβ) wherex= xα or x=
xβ if x ∈ X. Otherwise, ifx /∈ X the algorithm sets
w1 = (xα,xβ) wherexα ≺ x≺ xβ. Finally, it setsw2

as the minimal subtree ofm generated by the value
H(xα||xβ).

• CheckWitness(κ,x,w,Acc): On inputx∈M and wit-
nessw= ((x′,x′′),U) whereU is purportedly a mini-
mal subtree of the memory valuem associated to the
accumulator valueAcc, it first checks if the following
conditions hold: (1)ProofU = Acc, (2) H(x′||x′′) ∈
V (U), (3) (x= x′ or x= x′′), and (3’)(x′ ≺ x≺ x′′).
The algorithm outputs 1 if conditions (1), (2), and (3)
hold; it outputs 0 if (1), (2), and (3’) hold. Otherwise,
it outputs⊥.

• Updateop(κ,x,Accbefore,mbefore): On input element
x ∈ M, accumulator valueAccbefore, and memory
mbefore, it proceeds as follows. Consider two cases
depending on whether the update is an addition
(op= add) or a deletion (op= del).

If op = add andx 6∈ X, the algorithm addsx into X
by modifyingmbeforeas follows:

1. It replaces the valueH(xα||xβ) from the appro-
priate node inmbefore (wherexα ≺ x≺ xβ) by
the valueH(xα||x).

2. It augments the treembefore adding a new leaf
N of valueH(x||xβ) so the resulting treemafter

is a balanced tree. LetVPar(N) be the (parent)
node whereN is attached as a leaf.

The resulting tree is denotedmafter. Figure 3 illus-
trates the process of inserting an element intombefore.

Once treemafter is built, the new accumulator is sim-
ply the value of the root of the tree, namelyAccafter=
Proofmafter

. The witnesswadd= (add,Uadd,1,Uadd,2)
that the update (addition) has been done correctly is
computed as follows:

– Uadd,1 corresponds to the minimal subtree
of mbefore generated by{H(xα||xβ),ValVPar(N)

},
and,

– Uadd,2 corresponds to the minimal subtree of
mafter generated by{H(xα||x),H(x||xβ)}.

8

H(x6||x7) H(x7||x8)

H(x3||x4)

H(x||x3)

H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x)

H(−∞||x1)

Figure 3: Insertingx into the tree of Figure 1 wherex2 ≺
x≺ x3.

If op = del, deletingx from X is done in a simi-
lar way as follows. First, the update algorithm lo-
cates the two nodes ofmbefore that containx. Let
Vα and Vβ be those nodes, and letH(xα||x) and
H(x||xβ) be their respective values, for somexα ≺
x≺ xβ. The goal is to remove these nodes and re-
place them with a new node with valueH(xα||xβ)
in a way that the derived tree is still balanced.
This is done by first replacingVα with the sin-
gle node with valueH(xα||xβ), and then replac-
ing Vβ with a leaf nodeL (for example, the right-
most leaf on the last level of the tree). These re-
placements yield a new treemafter whose root la-
bel is set to the value of the accumulatorAccafter =
Proo fmafter. The witnesswdel = (del,Udel,1,wdel,2,
Udel,3) is then computed as follows:

– Udel,1 corresponds to the minimal sub-
tree of mbefore generated by the set
{H(xα||x),H(x||xβ), ValL},

– wdel,2 is the pair(xα||xβ) such thatxα ≺ x≺ xβ,
and

– Udel,3 is the minimal subtree ofmafter generated
by H(xα||xβ).

The algorithmUpdateop outputs the new accumula-
tor valueAccafter, the modified memorymafter, and
the update witnesswop.

• CheckUpdate(κ,x,Accbefore,Accafter,wop): On input
an elementx∈M, two accumulator valuesAccbefore,
Accafter, and an update witnesswop = (w,op) for
op ∈ {add,del,crt}, it proceeds as follows. If
op = crt, then the algorithm outputs 1 ifAccafter =
H(H(−∞|| +∞),ε,ε) andw is a model of the empty
set underH. If w= (add,U1,U2), then the algorithm
returns 1 provided that:

H(x3||x4) H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x3)

H(−∞||x1)

(a)

H(x3||x4)

H(x||x3)

H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x)

H(−∞||x1)

(b)

Figure 4: (a) The minimal subtree of the tree shown in
Figure 1 and generated by{H(x2||x3),H(x4,x5)}. (b) The
minimal subtree of the tree shown in Figure 3 and gener-
ated by{H(x2||x),H(x||x3)}.

– U2 is a tree obtained by adding a leaf toU1,

– Except for the node of valueH(xα||xβ) (for
xα ≺ x≺ xβ) all nodes which are common to
U1 andU2 have the same value in either one of
the trees,

– ProofU1
= Accbefore and ProofU2

= Accafter,
and

– H(xα||x),H(x||xβ) ∈ V (U2).

Otherwise, it outputs 0. We omit the casew= (del,
U1,w2,U3) which is similar.

SECURITY. We now prove that the schemeHashAcc of
the previous section is secure under Definition 4.

First, note that if memorym is a model ofX, then the
memory obtained after executingUpdate in order to add
a new elementx /∈X, is a model ofX∪x. Indeed, suppose
xα ≺ x≺ xβ and letH(xα||xβ) be the value of a nodeN in
m. By replacing nodeN with the node of valueH(xα||x)
and adding the node of valueH(x||xβ), we clearly obtain a
set of values{H(xi ||xi+1), 0≤ i ≤ n+1} that corresponds
to the successive intervals of the setX∪{x} (wheren =
|X|).

9

Intuitively, CheckUpdate must guarantee that the up-
dated memory (tree) used to compute the new accumu-
lated value still has the property of having all the succes-
sive intervals of the accumulated set as node values, that
each interval appears once and only once in the tree, and
that no other node value can belong to the tree.

Definition 10 LetH :K×M→Y be a collision-resistant
hash function family. LetΩH be the initialization proce-
dure that on input k in unary returnsκ = (H,1k) where H
is chosen uniformly at random from the familyH .

Theorem 11 The accumulator schemeHashAcc is a se-
cure strong universal accumulator scheme (with memory)
underΩH .

Proof: We need to prove the propertiesConsistency, Se-
cure creation, Secure addition, andSecure deletion.

• (Consistency)First, we note thatAcc
κ
⇒ X implies

that there exists a memorym which is a model ofX
underH. Let us now suppose that there is an adver-
saryA that can compute a valuex and two witnesses
w1,w2 such thatCheckWitness(κ,x,w1,Acc) = 1
and CheckWitness(κ,x,w2,Acc) = 0. We assume
without lost of generality thatx∈X. Any such adver-
saryA is in fact able to findxα andxβ, xα ≺ x≺ xβ,
such thatH(xα||xβ) belongs toV (m). Sincem is a
model for X, by Proposition 9, this adversary will
only succeed with negligible probability. The argu-
ment forx /∈ X is analogous.

• (Secure Creation)Let A be a probabilistic polyno-
mial-time adversary (playing the role of an accumu-
lator manager) that outputs(w0,Acc0) whereAcc0

κ
;

/0 but CheckUpdate(κ,⊥,⊥,Acc0,(w0,crt)) = 1.
By definition ofSetup, one has thatw0 has the struc-
ture of a model (i.e. must be a labeled balanced bi-
nary tree plus some additional information). Follow-
ing the same line of argument as that of Proposition 9
one reaches a contradiction to the collision-resistant
assumption onH .

• (Secure Addition)Consider the case where the
update is the addition of a valuex such that
xα ≺ x ≺ xβ and H(xα,xβ) belongs to the base

of X, where Accbefore
κ
⇒ X. Assume that

CheckUpdate(κ,x,Accbefore, Accafter,w) = 1 where
both w = (add,Ubefore,Uafter) and x are arbitrar-

ily chosen by the adversary, andAccafter
κ
; X ∪

{x}. Then, for two elementsu,v ∈ M the adver-
sary can effectively build a treeS∗ = Uafter con-
taining a valueH(u||v) that does not belong to
(V (mbefore)∪{H(xα||x),H(x||xβ)})\{H(xα||xβ)} =
V (mafter) and such that in additionProo fS∗ =
Proo fUafter = Accafter = Proo fmafter. This contradicts
Proposition 9.

• (Secure Deletion)This case is similar to the addition
of an element.

�

EFFICIENCY. We analyze the computational efficiency of
the proposed scheme.

Theorem 12 Let n be the size of X. The witnesses of
(non) membership and of updates have size O(log(n)).
The update processUpdate, the verification processes
Belongs andCheckUpdate can be done in time O(log(n)).

Proof: Assuming the accumulator manager uses a
pointer based data structure representation for labeled bi-
nary trees, it is enough to show that a minimal subtreeU
of T generated by a constant number of node values has
sizeO(log(n)). Indeed, first note that a minimal subtree
of a tree generated by a constant number of node values is
the union of the minimal subtrees generated by each of the
values. It is easy to see that the size of a minimal subtree
generated by a node value is proportional to the depth of
the node. This, and the fact thatT is balanced, implies the
desired conclusion. �

4 Efficiency of our scheme and com-
parison with previous proposals

Our solution is theoretically less efficient than the scheme
proposed in [15]. Nonetheless, if one considers practical
instances of these schemes the difference effectively van-
ishes as in most implementations hash function evaluation
is significantly faster than RSA exponentiation – which is
the core operation used by the schemes in [15, 7]. Table 1
shows the time taken by one single RSA exponentiation
versus the time taken by our scheme for update operations
as a function of the number of the accumulated elements.
For the time measurements, we used theopensslbench-
marking command (see [17]) on a personal computer. No-
tice that RSA timings were obtained using signing opera-
tions, as in the scheme proposed in [15] where exponents

10

n RSA-512 RSA-1024 RSA-2048 SHA-256 SHA-512

23 0.85 4.23 25.00 0.37 1.42
210 0.85 4.23 25.00 1.22 4.75
220 0.85 4.23 25.00 2.44 9.50
230 0.85 4.23 25.00 3.66 14.24

Table 1: Comparison of performance between simple
RSA exponentiation and logarithmic number of compu-
tations of SHA wheren is the number of accumulated el-
ements. Time is represented in milliseconds.

may not be small. Timings for SHA operations were mea-
sured using an input block of 1024 bits. The compari-
son is based on the fact that our scheme requires at most
4×2log(n) hash computations, wheren is the number of
accumulated elements, given that at most four branches of
the Merkle tree used in our construction (three forwdel,1

and one forwdel,3, see Section 3.2) will have to be recom-
puted in the case of deletions. We now explain the rele-
vance of Table 1. For clarity’s sake, we focus on the effi-
ciency of witness generation. In [7, 15, 4, 2] schemes, the
time to generate a witness is at least a single RSA signing
operation, independently of the number of accumulated
values. Hence, for both the aforementioned schemes, the
time required to generate a witness is at least the one given
by the columns of Table 1 with headers RSA-512, RSA-
1024, and RSA-2048, depending on the size of the modu-
lus used. In contrast, if we instantiate the hash function of
our proposed scheme by one of the SHA family of hash
functions, the time required to generate then-th witness
is given by the columns of Table 1 with headers SHA-
256 and SHA-512, depending on which version of SHA
is used. A similar situation holds for operations such as
addition or deletion of accumulated values. In conclu-
sion, using our hash-based scheme is still very efficient,
even for large values ofn, in comparison with previous
proposals.

Table 2 compares the functionality provided and sizes
of parameters appearing in aforementioned schemes and
our solution.

ON THE SETUP ASSUMPTIONS: We prove the security
of our scheme under the assumption that there is atrusted
procedure that chooses hash functions uniformly at ran-
dom from a given family. We model such assumption
using an initialization procedureΩ, which cannot be cor-
rupted. Notice that onceΩ finishes execution, no other
trusted process or entity is required. In contrast, both pre-
vious solutions for dynamic accumulators [7, 15] not only

Scheme Strong Dynamic Witness size
Benaloh et al. [4] Yes No O(k)

Barić et al. [2] Yes No O(k)
Camenish et al. [7] No Yes O(k)

Li et al. [15] No Yes O(k)
This work Yes Partially† O(k logn)

Table 2: Comparison of properties of previous and our
scheme, wheren is again the number of accumulated ele-
ments andk is the security parameter. (In all scheme’s the
accumulator size isO(k)). † Our solution allows dynamic
addition and deletion of elements but no witness update.

require a trusted party – the accumulator manager herself
– but also that such trust entity be available for as long as
the accumulator is active. This seems unavoidable since
managers require a trapdoor for the pseudo-collision free
function in order to (efficiently) delete elements from the
accumulator.

In practice, trusted initialization can efficiently be im-
plemented using standard secure multiparty computation
techniques. For our protocol, we only need to generate a
hash function index, that is, ak-bit uniformly distributed
random string. This can be done using standard coin toss-
ing algorithms [18] (or more practical variants [13]) if a
majority of participants during the initialization is honest.
Alternatively, we could cast our results in thehuman igno-
rancesetting proposed by Rogaway [19]. In that case, it
would suffice to takeΩ as the identity function and make
the reductions behind the proof of Theorem 11 more ex-
plicit (that is, detailing how new collision-finding adver-
saries are built from the given protocol adversaries). Note
that all reductions in this paper are in fact constructive.

NONTRIVIALITY OF THE STRONG PROPERTY: Both in
the construction of Camenish et al. [7] as well as the one
by Li et al. [15], a corrupted manager can compute wit-
nesses for arbitrary elements (regardless of whether the
elements belong to the accumulated set or not). For ex-
ample, in both schemes, the manager is able to gener-
ate a valid membership witnessw for an arbitrary ele-
mentx∈ZN by simply computingw= ux−1 mod(p−1)(q−1),
whereN = pq is the RSA modulus andu∈ ZN is the cur-
rent accumulator value.

Note that both these schemes [7, 15] are verifiably up-
datable. Moreover, witness computation is determinis-
tic in the aforementioned schemes, depending only on
the previous and current value of the accumulator at wit-
ness generation time. However, these conditions are not
enough for these schemes to be strong. In Camenish et

11

al. scheme [7], a malicious manager can add an element
x = ab (for somea,b) and then prove eithera or b be-
long to the accumulated set. Similarly, in the scheme by
Li et al. [15], a malicious manager can easily compute
non-membership witnesses for elements even if they are
in the accumulated set. In this case though, a witness ver-
ification algorithm could detect the forgery if the list of
all elements currently in the accumulated set is available.
Yet, this is not a requirement of the protocol and would
likely make such variant inefficient.

In contrast, our solution achieves the strong property as
long as, at any given time, the party verifying a correct
accumulator update is able to remember the current and
previous accumulated values.

5 The e-Invoice Factoring Problem

In this section we describe an application of strong uni-
versal accumulators that yields an electronic analog of a
mechanism calledfactoring through which a company,
henceforth referred to as the Provider (P), sells a right
to collect future payment from a company Client (C).
The ensuing discussion is particularly concerned with the
transfer of payment rights associated with the turn over of
invoices, that is,invoice factoring. The way invoice fac-
toring is usually performed in a country like Chile is thatP
turns over a purchase order fromC to a third party, hence-
forth referred to as Factor Entity (FE). The latter givesP
a cash advance equal to the amount ofC’s purchase order
minus a fee. Later,FE collects payment fromC.

There are several benefits to all the parties involved in
a factoring operation. The provider obtains liquidity and
avoids paying interests on credits that he/she would other-
wise need (it is a common practice for some clients as well
as several trading sectors in Chile to pay up to 6 months
after purchase). The client gets a credit at no cost and is
able to perform a purchase for which he might not have
found a willing provider.

According to the Chilean Association of Factoring
(Asociación Chilena de Factoring -ACHEF) during 2010,
its 19 members accumulated almost 2 million documents
worth more than 18 billion dollars [1]. Factoring’s ori-
gins lie in the financing of trade, particularly international
trade. Factoring as a fact of business life was underway in
England prior to 1400 [11]. The reader is referred to the
website of the International Factors Group [12] for infor-
mation on current trends and practices concerning factor-
ing worldwide. Although factoring is performed in many
contexts, as the reader will see, our proposed solution ex-

Factoring Entity

Provider Client
(2)

(3)

(4)

(1)

(5)

(6)

Figure 5: Steps of a factoring operation.

ploits peculiarities of the way it is locally implemented in
Chile — thus, its applicability in other scenarios, if at all
possible, would require adaptations.

The main phases of an invoice factoring operation are
summarized below and illustrated in Figure 5:

1. C requests fromP either goods or services,

2. P delivers the goods/services toC,

3. P makes a factoring request toFE,

4. FE either rejects or acceptsP’s request — in the lat-
ter caseFE givesP a cash advance onC’s purchase,

5. later,FE asksC to settle the outstanding payment,
and finally,

6. C paysFE.

A risk for FE is thatP can generate fake invoices and
obtain cash advances over them. This danger is somewhat
diminished by the fact that such dishonest behavior has se-
rious legal consequences. More worrisome forFE is that
P may duplicate real invoices and request cash advances
from severalFEs simultaneously. But, Chile’s local prac-
tice makes this behavior hard to carry forth. Indeed, in-
voices are printed in blocks, serially numbered and pres-
sure sealed by the local IRS agency (known asServicio de
Impuestos Internos (SII)). A FE will request the physical
original copy of an invoice when advancing cash toP. It
is illegal, and severely punished, to make fake copies or
issue unsealed invoices.

Less than a decade ago, an electronic invoicing sys-
tem began operating in Chile. Background and techni-
cal information concerning this initiative can be down-
loaded from the website of the SII, specifically from [20].
The deployed electronic invoicing system has been widely
successful. It has been hailed as a major step in the
government modernization. Furthermore, it has created

12

strong incentives for medium-to-small size companies to
enter the so-called information age. Nevertheless, the sys-
tem somewhat disrupts the local practice concerning fac-
toring. Specifically, aFE will not be able to request the
original copy of an invoice, since in a digital world there
is no difference between an original and a copy. This cre-
ates the possibility of short-term large-scale fraud being
committed by unscrupulous providers. Indeed, a provider
can “sell” the same invoice to many distinctFEs. We
refer to the aforementioned situation created by the intro-
duction of electronic invoicing as thee-Invoice Factoring
Problem.

We show below how to address this problem using
strong universal accumulator schemes, but first it is im-
portant to note that there are other issues of concern for
participants of an e-invoice factoring system, among the
most relevant are:

• Privacy of the commercially sensitive information
contained by invoices (e.g. private customer’s infor-
mation like for example tax identification numbers,
volume of transactions, etc.)

• Robustness of the e-invoice factoring system — no
small size colluding party should be able to disrupt
the system’s operation and/or break its security.

• Confidentiality of theFE’s commercially sensitive
information (customer pool, number of transactions,
volume of transactions, etc.)

The latter of these issues arises because theFEs are
in competition among themselves. They have an incen-
tive to collaborate in order to avoid fraud. But, they
do not wish to disclose information about their customer
base and transaction volumes to competitors. Moreover,
a widespread sharing of invoices would not be welcomed
by the providers who issue them, given that they probably
want to maintain confidential the profile of their clients.

In order to describe our proposed strong accumulator-
based solution for the e-Invoice Factoring Problem it is
convenient to introduce additional terminology. A factor-
ing protocolF = (FE1, . . . ,FEn;FA) involvesn≥ 2 par-
ticipantsFE1, . . . ,FEn called factor entities, and a special
participantFA called the factoring authority. The factor-
ing protocolF is defined by the concurrent execution of
several instances of a decision protocol consisting of:

1. The transmission fromFEi to FA of a digestx of an
invoiceInv thatFEi wants to buy.

2. The computation byFA, based onx and the identity
of FEi , of a valueV and its publication through a
public broadcast channel.

3. The decision on whether or not to buy the invoice as-
sociated tox made byFEi based onV and other pos-
sible information previously collected. IfFEi con-
cludes thatInv has not been previously sold, then it
decides to buy and outputsInv||0||i, otherwise it out-
putsInv||1||i.

The previous description of a factoring protocol cap-
tures the fact that theFEi ’s interact concurrently withFA
in order to decide whether or not to buy invoices.

In order to formalize the security requirements involved
in a factoring protocol we proceed as follows. Letk ∈ N

be a security parameter,Ω an initialization procedure, and
let F = (FE1, . . . ,FEn;FA) be a factoring protocol for
n= p(k)≥ 2 wherep is a polynomial. Consider an exper-
iment, denotedExpfac

F ,Ω,A(k), whereA is a polynomial-
time bounded adversary that can corruptFA and choose
the elements for which theFEi ’s want to make a purchase
decision. The adversary can run a polynomial number of
decision protocol instances. Also,FA can invoke the ini-
tialization procedureΩ which is not under the control of
the adversary. We say that the experiment outputs 1 if the
adversary wins, i.e. if either one of the following situa-
tions occur; (1) fori 6= j the adversary obtains a signature
from honest factor entitiesFEi andFE j for the same mes-
sageInv||0, or (2) the adversary obtains a signature from
honest factor entityFEi for a messageInv||1 such that no
honest factor entity has previously generated a signature
of Inv||0.

Definition 13 (Security of a factoring protocol) Let k∈
N be a security parameter and n= p(k) ≥ 2 for
some polynomial p. We say that a factoring pro-
tocol F is secure under initialization procedureΩ
if Pr

[

Expfac
F ,Ω,A(k)

]

= neg(k) for every probabilistic

polynomial-time adversaryA .

5.1 A factoring protocol based on a secure
strong universal accumulator scheme

We now describe how any secure strong universal accu-
mulator scheme can serve as the basis on which a secure
factoring protocol can be built.

For the sake of clarity of exposition, we first describe
a general protocol, calledBase Protocol, that involves all

13

the participants of a factoring transaction: the clientC, the
providerP, the factor entitiesFE1, . . . ,FEn and the factor-
ing authorityFA. In thisBase Protocol, we assume more-
over thatFA is trustworthy. Afterward, we shall show
how to remove this assumption. Also, assume thatFA
has access to a hash functionH uniformly chosen from a
collision-resistant hash function family. In our trustwor-
thy factoring authority-based solution,FA stores the hash
values of all acquired invoices and replies to queries from
the factor entities concerning the status (either acquiredor
available) of an invoice with a given digest value. Hence-
forth, we assume that all messages are digitally signed
by the entity that sends them. Moreover, we assume the
factoring authorityFA and factor entities interact through
a bulletin board (as implemented in other cryptographic
protocols, e.g. [8]).

The Base Protocol is illustrated in Figure 6 and its
phases are described next:

Base Protocol

1. P sends an e-invoiceInv to C.

2. C sends a signed acknowledgment of receipt of
the e-invoiceAck= SignC(Inv).

3. P sends the signed messageInv||Ack to theFEi

of his choice.

4. FEi sends the signed messagex=H(Inv) toFA.

5. FA checks whetherx is in its database. If not,
FA setsStatto 0 and addsx to its database. Oth-
erwise,Stat is set to 1. Then,FA broadcasts
through the public channel the signed message
x||Stat||i. Upon receivingx||Stat||i, the factor
entity FEi agrees to purchaseInv if Stat= 0,
and declines ifStat= 1.

6. FEi sends the signed messageInv||Stat to P.

DISCUSSION. Note that during Step 2 a receipt is signed
byC and then transmitted toFEi during Step 3. This is to
prevent clientC from being framed byP as having made
a purchase whose paymentFEi could try to collect later
on. Also, note thatInv is not transmitted toFA during
Step 4. This is done to allow protocol extensions to sup-
port confidentiality ofP’s andFEi ’s commercially sensi-
tive information.2 The reason for including the identifier

2This is straightforward by using perfectly one-way hash functions

Provider

FE2FE1 FEi FEn

Client
(1) Inv

.

(2) Ack

(4) x= H(Inv)

FA

(5) x||Stat||i

(6) Inv||Stat||i
(3) Inv||Ack

Figure 6:Base Protocol(trustworthyFA).

i in FA’s reply in Step 5 is to guarantee that nobody be-
sidesFEi can exhibit a valid proof, purportedly sent by
FA, claiming thatx was not inFA’s database at a given in-
stant (otherwise, anyone capturingFA’s replies could ob-
tain a certificate that purchase of an invoice with digestx
is warranted).

In the protocol,FA’s signature onx||Stat||i certifies that
an invoice with digestx either is or is not present inFA’s
database. Note also thatFEi ’s signature onInv||0 is a
proof of commitment thatFEi has agreed to acquireInv
from P.

ATTACKS OUTSIDE OF THE MODEL. Observe that col-
lusion betweenC andP is possible. Indeed, it is easy to
see that together they can produce e–invoices not tied to
a real commercial transaction. To avoid this risk, a factor
entity should check the validity of every e–invoice it is of-
fered, before even contactingFA. The current e–factoring
system deployed by the Chilean internal revenue service
provides on–line functionality to check the validity of e–
invoices (every issuer of e–invoices must submit to the tax
collecting agency an electronic copy of every e–invoice it
creates within 12 hours of having issued it).

REFINED PROTOCOL. Now, let us consider a more realis-
tic scenario where the factoring authority is not trustwor-
thy. We now describe a solution for the e-Invoice Factor-
ing Problem that is based on five algorithms that rely on
a secure strong universal accumulator under initialization
procedureΩ, denotedACC. To avoid confusion, each al-
gorithm related to the accumulator will be referred to by
ACC.〈algorithm name〉.

[6] for H in Step 4.

14

• Setup(1k): the factoring authority acts as the accu-
mulator manager. First it invokesΩ on input 1k and
obtainsκ. Then, it runs accumulator setup algorithm
ACC.Setup on κ, and stores the accumulator value
Acc and the memorym.

• Belongs(κ,x,m): the factoring authority setsw =
ACC.Witness(κ,x,m). Then, it setsStat= 1 if x has
been accumulated, andStat= 0 otherwise. Finally,
it returns(Stat,w).

• Checkbelongs(κ,x,Stat,w,Acc): the factor entity that
wants to check whether or not the elementx
belongs to the accumulated set verifies that
ACC.CheckWitness(κ,x,w,Acc) equalsStat.

• Add(κ,x,Accbe f ore,mbe f ore): the factoring author-
ity runsACC.Updateadd(κ,x,Accbe f ore,mbe f ore), re-
turns(Acca f ter,ma f ter) andwadd. Then, it publishes
in the bulletin board(Accbe f ore,Acca f ter,wadd).

• Checkadd(κ,x,Accbe f ore,Acca f ter,wadd): the factor
entity that wants to check whether the elementx
was correctly added to the accumulated set decides
(non)membership ofx based on the result returned by
ACC.CheckUpdate(κ,x,Accbe f ore,Acca f ter, wadd).

Below we describe the refinement of Step 5 of theBase
Protocol which corresponds to a factoring protocol. As in
Section 3 we assume the availability of a public broadcast
channel. We also assume that whenBase Protocolstarts
the procedureSetup(1k) is invoked, wherek is the secu-
rity parameter, thus generating the system-wide parameter
κ.

It is important to point out that everyFEi has to check
each change on the memorym using the values published
in the broadcast channel. Theses checks guaranteeconti-
nuity in the evolution of the history of theFEi ’s decisions
(buy or reject an invoice).

For clarity of exposition, in our proposed solution to
the e-Invoice Factoring Protocol, we have omitted expla-
nations of how to deal with e-invoice digest removals from
FA’s database. However, it should be obvious how to im-
plement this feature relying on the secure deletion func-
tionality provided by secure strong universal accumula-
tors with memory. Implementation of this functionality
is essential for maintaining efficiency. Specifically, to up-
per bound the size of the intermediate outputs and per op-
eration processing time by a logarithm in the number of
accumulated invoices.

Refinement of Step 5

5.0 Assume the current accumulator value is
Accbe f oreand the memory state ismbe f ore.

5.1 Upon receiving x from factoring entity
FEi , the factoring authorityFA determines
(Stat,w) = Belongs(κ,x,mbe f ore) and then
broadcastsx||(Stat,w)||i. If Stat= 0, thenFA
executesAdd(κ,x,Accbe f ore,mbe f ore), obtains
(Acca f ter,ma f ter) and wadd, and broadcasts
x||(Stat,Acca f ter,ma f ter,wadd)||i.

5.2 The following verifications are performed:

(a) FEi runs Checkbelongs with input
(κ,x,Stat,w,Accbefore).

(b) If Stat = 0, then ev-
ery factor entity executes
Checkadd(κ,x,Accbe f ore,Acca f ter,wadd).

5.3 If no factor entity objects by exhibiting a valid
proof that it has previously purchased an invoice
with digest valuex, Stat= 0 in Step 5.1, and no
messagex||(Stat,Acca f ter,ma f ter,wadd)|| j with
j 6= i is published beforeFA updates the accu-
mulator value toAcca f ter (and the memory state
to ma f ter),3 thenFEi agrees to the purchase of
an e-invoice with digestx. Otherwise (Stat= 1
or one of the verification fails),FEi rejects the
invoice with digestx.

We henceforth denote byFACC the protocol described
above (theBase Protocoltogether with its refinement)
when instantiated with a universal accumulator scheme
ACC.

Proposition 14 Let ACC be a secure strong universal
accumulator scheme (with memory) under initialization
procedureΩ. Then,FACC is a secure factoring protocol
underΩ.

Proof: Assume an adversary can make either one of
the following situations to occur: (1) fori 6= j the adver-
sary obtains a signature from honest factor entitiesFEi

and FE j for the same messageInv||0, or (2) the adver-
sary obtains a signature from honest factor entityFEi

3In practice this can be implemented by a round during which each
factor entity that disagrees withFA’s broadcast values has to publish its
complaint.

15

for a messageInv||1 such that no honest factor entity
has previously generated a signature ofInv||0. If situ-
ation (1) occurs, the verification in Step 5.2 of the fac-
toring protocol guarantees that only one message of the
type H(Inv)||(Stat,Acca f ter,ma f ter,wadd)||l can be pub-
lished between two consecutive changes of the accumu-
lated value, the attacker needs to be able to find a witness
of non-membership forH(Inv), althoughH(Inv) has al-
ready been accumulated. SinceFACC is secure, this can
only happen with a negligible probability. If situation (2)
occurs, then for the verification in Step 5.2 to succeed with
non-negligible probability the attacker needs to be able to
find a witness of membership forH(Inv), althoughH(Inv)
has not been previously accumulated. SinceFACC is se-
cure, this can not happen. �

Theorem 11 and Proposition 14 immediately yield,

Corollary 15 The factoring protocolFHashAcc is a secure
factoring protocol underΩH .

6 Conclusion

We introduced the notion of strong universal accumula-
tor scheme which provide almost the same functionality
as do the universal accumulator schemes defined in [15],
namely (1) a set is represented by a short value called ac-
cumulator, (2) it is possible to add and remove elements
dynamically from the (accumulated) set, and (3) proofs
of membership and non-membership can be generated us-
ing a witness and the accumulated value. In this notion,
however, the accumulator manager does not need to be
trustworthy and might be compromised by an adversary.

We also give a construction of a strong universal ac-
cumulator scheme based on cryptographic hash functions
which relies on a public data structure to compute accu-
mulated values and witnesses (of membership and non-
membership in the accumulated set). We argue that the
proposed scheme is practical and efficient for most ap-
plications. In particular, we discuss an application to a
concrete and relevant problem — the e-invoice factoring
problem

References

[1] Asociación Chilena de Factoring (ACHEF). Estadís-
ticas. (http://www.achef.cl/ [June 28, 2011]).

[2] N. Barić and B. Pfitzmann. Collision-free accu-
mulators and fail-stop signed scheme without trees.

In Advances in Cryptology - Proceedings of Euro-
crypt ’97, volume 1233 ofLNCS, pages 480–494.
Springer–Verlag, 1997.

[3] D. Bayer, S. Haber, and W. S. Stornetta. Improv-
ing the efficiency and reliability of digital time-
stamping. InSequences II: Methods in Communi-
cation, Security, and Computer Science, pages 329–
334. Springer–Verlag, 1993.

[4] J. Benaloh and M. De Mare. One-way accumu-
lators: A decentralized alternative to digital signa-
tures. InAdvances in Cryptology - Proceedings of
Eurocrypt ’93, volume 765 ofLNCS, pages 274–
285. Springer–Verlag, 1993.

[5] D. Boneh and R. Venkatesan. Breaking RSA may
not be equivalent to factoring. InAdvances in Cryp-
tology - Proceedings of Eurocrypt ’98, volume 1233
of LNCS, pages 59–71. Springer–Verlag, 1998.

[6] R. Canetti, D. Micciancio, and O. Reingold. Per-
fectly one-way probabilistic hash functions. In30th
Annual Symposium on the Theory of Computing,
pages 131–140, ACM Press, 1998.

[7] J. Camenisch and A. Lysyanskaya. Dynamic accu-
mulators and application to efficient revocation of
anonymous credentials. InAdvances in Cryptology
- Proceedings of Crypto ’02, volume 2442 ofLNCS,
pages 61–76, Springer–Verlag. 2002.

[8] R. Cramer, R. Gennaro, and B. Schoenmakers. A
secure and optimally efficient multi-authority elec-
tion scheme. InAdvances in Cryptology - Proceed-
ings of Eurocrypt ’97, volume 1233 ofLNCS, pages
103–118. Springer–Verlag, 1997.

[9] I. Damgård. Collision free hash functions and public
key signature schemes. InAdvances in Cryptology,
Proceedings of Eurocrypt ’87, volume 308 ofLNCS,
pages 203–216. Springer–Verlag, 1988.

[10] N. Fazio and A. Nicolisi. Cryp-
tographic accumulators: Definitions,
constructions and applications, 2003.
(http://www.cs.nyu.edu/∼nicolosi/papers/
accumulators.ps [June 19, 2008]).

[11] W.H. Hurd. Four Centuries of Factoring. Quarterly
Journal of Economics 53(2):305–311, 1939

[12] International Factors Group (IFG).
(http://www.ifgroup.com/ [June 28, 2011]).

16

[13] A. Kate and I. Goldberg. Distributed Key Generation
for the Internet. In29th IEEE International Confer-
ence on Distributed Computing Systems, June, pages
119–128. IEEE Press, 2009.

[14] P. C. Kocher. On certificate revocation and valida-
tion. In Financial Cryptography, volume 1465 of
LNCS, pages 172–177. Springer–Verlag, 1998.

[15] J. Li, N. Li, and R. Xue. Universal accumulators
with efficient nonmembership proofs. InProceed-
ings of Applied Cryptography and Network Security
- ACNS ’07, volume 4521 ofLNCS, 2007.

[16] National Institute of Standards and Technology
(NIST). FIPS Publication 180: Secure Hash Stan-
dard (SHS), May 1993.

[17] OpenSSL Project. OpenSSL Package, June 2008.
(http://www.openssl.org [June 19, 2008]).

[18] T. Rabin and M. Ben-Or. Verifiable Secret Sharing
and Multiparty Protocols with Honest Majority. In
21st Annual Symposium on the Theory of Comput-
ing, pages 73–85, ACM Press, 1989.

[19] P. Rogaway. Formalizing Human Ignorance.
In Progress in Cryptology - Proceedings of Vi-
etcrypt ’06, volume 4341 ofLNCS, pages 211–228.
Springer–Verlag, 2006.

[20] Servicio de Impuestos Internos. In-
formación sobre factura electrónica.
(https://palena.sii.cl/dte/menu.html [June
24, 2011]).

17

	Introduction
	Our contributions
	Organization of the paper

	Definitions and notations
	Our scheme
	Preliminaries
	A Strong Universal Accumulator with Memory using Hash Trees

	Efficiency of our scheme and comparison with previous proposals
	The e-Invoice Factoring Problem
	A factoring protocol based on a secure strong universal accumulator scheme

	Conclusion

