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Mix-net based voting scheme

Recover ’s secret key.
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Zero-Knowledge Shuffle Argument

We want to prove that each c,d belongs to

Lshuffle := {(c,d) : ∃π ∈ Sn s.t. ∀i ∈ [n] ci − dπ(i) is an encryption of 0}.

We are interested in a Non-Interactive Zero Knowledge Shuffle Argument:

Efficiency.
Public verifiable.
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Non-Interactive Zero-Knowledge Proofs for L ∈ NP

Peggy
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Victor

x

Completeness: If x ∈ L Peggy convinces Victor.
Soundness: If x /∈ L no one can make Victor output 1 with

non-negligible probability.
Zero-Knowledge: If x ∈ L, θ can be simulated without knowledge of w.

σ
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Our approach

NIZK for some
cryptographic protocol

Quadratic Equations

Groth Sahai proofs

GS proofs for n equations on m
variables cost O(n + m).
NIZK for NP with O(1) proof size.
Unlike NIZK for NP, is based of mild
assumptions (falsifiable assumptions).
Recent results have further optimized
proofs to O(m) for some linear
equations.
Previous work: Optimize GS proofs to
O(m) for other linear equations and
quadratic equations.
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Bilinear Groups

3 additive cyclic groups Ĝ, Ȟ and T with a bilinear map or pairing

e : Ĝ× Ȟ→ T

Type I: Ĝ = Ȟ a.k.a Symmetric.
Type II: Ĝ 6= Ȟ with an efficiently computable

homomorphism ψ : Ȟ→ Ĝ is known.
Type III: Ĝ 6= Ȟ but no efficiently computable

homomorphism. Most desirable
[Jou13, CM11, GPS06]
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Type II: Ĝ 6= Ȟ with an efficiently computable

homomorphism ψ : Ȟ→ Ĝ is known.
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Decisional Diffie-Hellman Assumption

Notation:
〈g〉 = Ĝ, 〈h〉 = Ȟ and q = |Ĝ| = |Ȟ|.

Given a ∈ Zq , âg := ag and ǎh := ah
We omit sub-index so 1̂ = g and 1̌ = h.

Definition (DDH Assumption as Subset Membership Problem)
Every adversary A has at most negligible probability of wining in the next
experiment:

Pick â←
(
Ĝ
1̂

)
and b ← {0, 1}.

If b = 1, pick û← Span(â) and compute b′ ← A(â, û).
If b = 0, pick û← Ĝ2 and compute b′ ← A(â, û).
A wins iff b′ = b.
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Ĝ
1̂

)
and b ← {0, 1}.
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A wins iff b′ = b.
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(
Ĝ
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Ĝ
1̂

)
and b ← {0, 1}.

If b = 1, pick û← Span(â) and compute b′ ← A(â, û).
If b = 0, pick û← Ĝ2 and compute b′ ← A(â, û).
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ElGamal in Ĝ

Let û←
(
Ĝ
1̂

)
and r ← Zq .

ĉ :=
(

m̂
0̂

)
+ rû is an encryption of m̂ ∈ Zq

Security:
Decryption: The row vector (1,−u2,1) ∈ Z1×2

q allows to recover m̂.
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Alonso González Ulloa (DCC - U. de Chile) Eff. NIZK and Applications April, 2015 10 / 29



ElGamal in Ĝ
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Commitment Schemes

A commitment to a value w is a safe-box for w.

Hiding : The safe box “hides” w.
Binding : The value inside the box can not be

changed.
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Commitments in Zq

Let û2 ←
(
Ĝ
1̂

)
and û1 ← Span(û2), and r , s ← Zq .

ĉ := w
(

1̂
0̂

)
+ sû1 + rû2 is a commitment to w ∈ Zq

Hiding:
Binding: The row vector (1,−u2,1) ∈ Z1×2

q allows to recover ŵ.
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+ sû1 + rû2 is a commitment to w ∈ Zq

Hiding: ≈ random vector in Ĝ2.≈ random vector in Ĝ2.
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Groth-Sahai Proofs [GS08]

Groth-Sahai (GS) Proofs are NIZK proofs for the satisfiability of equations
of the form∑

j∈[my ]
α̂j y̌j +

∑
i∈[mx ]

x̂i , β̌i +
∑

i∈[mx ]

∑
j∈[my ]

γi,j x̂i y̌j = t, (PPE)

∑
j∈[my ]

α̂jyj +
∑

i∈[mx ]
x̂i , βi +

∑
i∈[mx ]

∑
j∈[my ]

γi,j x̂iyj = t,

(MME)

∑
j∈[my ]

αjyj +
∑

i∈[mx ]
xi , βi +

∑
i∈[mx ]

∑
j∈[my ]

γi,jxiyj = t

(QE)
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Example: Shuffles

How to prove that (ĉ, d̂) ∈ Lshuffle?

Show satisfiability of

pi,j(pi,j − 1) = 0 for all (i, j) ∈ [n]2 (1)∑
j∈[n]

pi,j = 1 for all i ∈ [n] (2)

∑
i∈[n]

pi,j = 1 for all i ∈ [n] (3)

∑
j∈[n]

pi,j ĉj − d̂i = δi û for all i ∈ [n]. (4)

P is a
perm. matrix

Given a solution P, δ and CRS σ := {û1, û2}, compute commitments
p̌v,i,j := pi,j ě1 + ri,j v̌1 + si,j v̌2, δ̌v,i := δi ě1 + r ′i v̌1 + s′i v̌2 and compute
proofs for each equations
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p̌v,i,j := pi,j ě1 + ri,j v̌1 + si,j v̌2, δ̌v,i := δi ě1 + r ′i v̌1 + s′i v̌2
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Efficiency of the proofs

What is the cost of n of the previous proofs?

Total proof size = |commitments|+ |proofs|

= O(n2)︸ ︷︷ ︸
P

+ O(n)︸ ︷︷ ︸
δ

+ O(n2)︸ ︷︷ ︸
(1)

+ O(n)︸ ︷︷ ︸
(2),(3) and (4)

While the CRS size is |ck| = O(1).
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Proofs of Membership in Linear Sub-spaces of Ĝn

Observation 1
Ciphertexts ĉ := ŵ1e1 + r1û and d̂ := ŵ2e1 + r2û open to the same value
iff there exists some r ∈ Zq s.t. ĉ− d̂ = rû.

Observation 2
The vectors of commitments ĉ = (ĉ1|| . . . ||ĉn)> ∈ Ĝ2n and
d̂ = (d̂1|| . . . ||d̂n)> ∈ Ĝ2n open to the same value iff ∃w ∈ Zn

q s.t.

ĉ− d̂ =
(

û 0̂
. . .

0̂ û

)
w.

LM̂ := {(ĉ, d̂) : ∃w ∈ Zt
q and ĉ− d̂ = M̂w}, where M̂ =

(
û 0̂

. . .
0̂ û

)
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LM̂ := {(ĉ, d̂) : ∃w ∈ Zt
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Quasi-Adaptive NIZK (QA-NIZK)
Recently (Libert et al EuroCrypt 2013, Jutla and Roy Crypto 2014, Abdalla
et al. and Kiltz and Wee EuroCrypt 2015) it has been shown how to:
Linear Subspaces Constant size proofs of membership in the in linear

subspaces of Ĝn

LM̂ = {ĉ : ∃w ∈ Zt
q s.t. ĉ = M̂w}.

Aggregation of GS proofs Prove satisfiability of n one-sided linear
equations using only one GS proof.∑

i∈[mx ]
α̂i , x̂i = t

In both cases

|proof| = O(1)

|CRS| = O(n).
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Kernel Assumptions

The security of the constructions for Linear Subspaces can be based on the
next assumption.

Definition (Simultaneos Pairing Assumption)
Any adversary A has at most negligible probability of winning in the next
game:

Pick a←
(
Zq
1

)
.

Compute x̂← A(ǎ).
A wins iff a>x = 0 and x 6= 0.
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Membership in Linear Subspaces of Ĝn

Prove membership in LM̂, where M̂ ∈ Ĝn×t .

Consider a MSK
∆← Z2×(n)

q ,
∆ : Ĝn → Ĝ2.

QA-NIZK for LM̂ from [LPJY14]

The CRS contains M̂∆ := ∆M̂ and ǎ∆ := ǎ>∆
Proof for x̂ = M̂w is ρ̂ := M̂∆w.
Victor checks ǎ>ρ̂ = ǎ>∆x̂
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Returning to Shuffles

(ĉ, d̂) ∈ Lshuffle iff

 ĉ1−d̂π(1)
...

ĉn−d̂π(n)

 ∈ LM̂,

Consider a MSK ∆← Z2×(n)
q ,

QA-NIZK for Lshuffle

The CRS contains M̂∆ := ∆M̂ and ǎ∆ := ǎ>∆ and
b̌∆ = (ǎ∆,π(1), . . . , ǎ∆,π(n)).
Proof for (ĉ, d̂) s.t. ĉ− d̂ = M̂δ is ρ̂ := M̂∆δ.
Victor checks ǎ>ρ̂ = ǎ>∆ĉ− b̌>∆d̂.
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ĉn−d̂π(n)

 ∈ LM̂, Consider a MSK ∆← Z2×(n)
q ,

QA-NIZK for Lshuffle

The CRS contains M̂∆ := ∆M̂ and ǎ∆ := ǎ>∆ and
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Returning to Shuffles

The permutation is fixed!

Include commitment to b̌∆

How to prove that commitment f̌1, . . . , f̌n to b̌∆ was correctly
computed?
Groth and Lu (AsiaCrypt 2007) basically assumed that f̌1, . . . , f̌n s.t.
f̂i − ǎ∆,i opens to 0 suffices.
Groth and Lu’s construction is the most efficient construction under
mild assumptions with O(n) communication.
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Proving that a commitment opens to a permutation

Prove that each f̌i opens to an element from the list
{ǎ∆,1, . . . , ǎ∆,n}.*

Prove that
∑

i f̌i −
∑

i ǎ∆,i opens to 0.
Note that

∑
i f̌i =

∑
i `i ǎ∆,i for `i ∈ Zn .

If there is some `i 6= 1 then (`1 − 1, . . . , `n − 1) ∈ Ker(ǎ>∆).
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GS aggregation and QA-NIZK in asymmetric groups

We construct constant-size QA-NIZK proofs of membership in the
language

LM̂,Ň =
{

(x̂, y̌) ∈ (Ĝm × Ȟn) : ∃w ∈ Zt
q s.t.

(
x
y

)
=
(

M
N

)
w
}
.

Which allows us to construct:

Constant-size proofs that two set set of commitments, even in
different groups, opens to the same value.
Similar techniques allows to aggregate the proof of n two-sided linear
equations into only two GS proofs.
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q s.t.

(
x
y

)
=
(

M
N

)
w
}
.

Which allows us to construct:

Constant-size proofs that two set set of commitments, even in
different groups, opens to the same value.
Similar techniques allows to aggregate the proof of n two-sided linear
equations into only two GS proofs.
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Aggregation of Quadratic equations over Zq

We construct constant size QA-NIZK proofs of membership in the
language

LÛ1,Û2,bits = {ĉ ∈ Ĝn : ∃b ∈ {0, 1}n ,w ∈ Zm
q s.t ĉ = Û1b + Û2w}.

Equivalently, show satisfiability of

bi(bi − 1) = 0 ∀i ∈ [n]

No such construction was known even in Symmetric Groups!
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Higher degree equations

Show satisfiability of l equations of the form∏
i∈[n]

(x − ai) = 0

Which can be reformulated as

L{a1,...,an} = {ĉ : ∀i ∈ [l] ĉi opens to a value in {a1, . . . , an}}

How to reduce to the satisfiability of quadratic equations?

∏
i∈[n](x − ai) = 0 ⇐⇒ (x − a1)(x − a2) = y1, y1(x − a3) = y2,. . .

O(n) proof for a single equation.
Proof for l equations can be aggregated into a single O(n) proof.
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L{a1,...,an} = {ĉ : ∀i ∈ [l] ĉi opens to a value in {a1, . . . , an}}

How to reduce to the satisfiability of quadratic equations?∏
i∈[n](x − ai) = 0 ⇐⇒ (x − a1)(x − a2) = y1, y1(x − a3) = y2,. . .

O(n) proof for a single equation.
Proof for l equations can be aggregated into a single O(n) proof.
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Conclusion

We reviewed NIZK Shuffle Arguments.

We reviewed NIZK proofs of membership in linear subspaces.
We reviewed aggregation of quadratic equations.
We showed how to construct efficient NIZK Shuffle Arguments under
mild assumptions.
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