
Gradual Certified
Programming in Coq

joint work with Nicolas Tabareau (INRIA)

1

Coq

interactive theorem prover with some support for
automation

pure functional programming language

most expressive type system around (CIC)

• type checker ok => program “correct”

2

Certified Programming

Develop programs in Coq with rich semantic properties

1. write programs, specs, prove conformance

2. mix programs and precise specs/proofs

Extract them to practical and efficient languages like
OCaml and Haskell

e-voting???

3

Gradual Certified Programming

Certified programming is great and promising

• but quite challenging!

Support a gradual path to expressive properties

• “typed —> very typed” (not interested in untyped)

4

Refinements in Coq

dependent pairs

• sigma types: Σ t:T. P(t)

• in Coq: written {t : T | P t}, aka. “subset types”

• inhabitant: (x ; p) where p is a proof of P(x)

5

Motivation

Write rich types without necessarily providing all the proofs

• not like plain admit: verify later, when/if needed

• allows to use testing to get evidence for the
(in)correctness of the stated property

6

`

a certified compiler for a small language

+

-

1 2

3

2
eval

stack machine

push 3; push 2; push 1; isub ; iadd
instructions

compile

7

Motivation

Integration of certified components with plain ones

• extract certified components to Ocaml/Haskell/Scheme

• build a whole system by combining components

• protect assumptions of certified components from misuse

8

Illustration

dependently-typed stack machine

stack machine

push 3; push 2; push 1; isub ; iadd
instructions

9

Problem

Properties and type dependencies are lost upon
extraction

Need a way to “protect” extracted components

(note: crash happened with pure code!)

10

Example

:

11

Key ideas

Turn properties into runtime checks

Hide the potential for cast errors to support smooth
integration

12

Decidability

dynamic check only makes sense if P is decidable

• if so, then evaluate its decision procedure

derive complex decision procedures automatically

13

Casts
How to represent the potential for errors?

• error monad

• cast: A → option {a : A | P a}

• changes the interface of components

Seamless, but heretical alternative: pose an axiom!

• cast: A → {a : A | P a}

14

Casts

15

Higher-order Casts, simple

16

Widening the domain of dependently-typed functions
is more tricky

• the “lie” about casts percolates at the type level!

Higher-order Casts, dependent

(need a second axiom, which cannot fail in an eager language)

17

Implicit casts
Gradual typing typically implies implicit cast insertion

• Coq has implicit coercions

• can use them to mimic a more transparent gradual
system

18

Properties
• canonicity of Coq: the only non-canonical terms

come from the use of axioms

• within Coq, a cast failure is a use of an axiom: 
t = E[failed_cast(p)]

• through extraction: gives the usual gradual theorem  
(only errors are cast errors, safe otherwise)

• termination of casts (unlike hybrid typing in Sage)

• interaction with other components: can be broken
through mutation…

19

Perspectives

Can extend this to rich records (eg. algebraic structures)

How to detect the use of lies (axioms)?

How to deal with arbitrary type dependencies?

Can we protect certified components from arbitrary
imperative code?

20

