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Abstract

Let A be a set of size m. Obtaining the first k& < m elements of A in ascending order can be
done in optimal O(m + klogk) time. We present Incremental Quicksort (IQS), an algorithm
(online on k) which incrementally gives the next smallest element of the set, so that the first
k elements are obtained in optimal expected time for any k. Based on IQS, we present the
Quickheap (QH), a simple and efficient priority queue for main and secondary memory. Quick-
heaps are comparable with classical binary heaps in simplicity, yet are more cache-friendly. This
makes them an excellent alternative for a secondary memory implementation. We show that the
expected amortized CPU cost per operation over a Quickheap of m elements is O(logm), and
this translates into O((1/B)log(m/M)) 1/O cost with main memory size M and block size B, in
a cache-oblivious fashion. As a direct application, we use our techniques to implement classical
Minimum Spanning Tree (MST) algorithms. We use IQS to implement Kruskal’s MST algo-
rithm and QHs to implement Prim’s. Experimental results show that IQS, QHs, external QHs,
and our Kruskal’s and Prim’s MST variants are competitive, and in many case better in practice
than current state-of-the-art alternative (and much more sophisticated) implementations.

Keywords: Kruskal’s MST algorithm, Prim’s MST algorithm, Incremental sorting, Priority
Queues, External Priority Queues.

1 Introduction

There are cases where we need to obtain the smallest elements from a fixed set without knowing
how many elements we will end up needing. Prominent examples are Kruskal’s Minimum Spanning
Tree (MST) algorithm [24] and ranking by Web search engines [3]. Given a graph, Kruskal’s MST
algorithm processes the edges one by one, from smallest to largest, until it forms the MST. At this
point, remaining edges are not considered. Web search engines display a very small sorted subset
of the most relevant documents among all those satisfying the query. Later, if the user wants more
results, the search engine displays the next group of most relevant documents, and so on. In both
cases, we could sort the whole set and later return the desired objects, but obviously this is more
work than necessary.

This problem can be called Incremental Sorting. It can be stated as follows: Given a set A of m
numbers, output the elements of A from smallest to largest, so that the process can be stopped after
k elements have been output, for any k£ that is unknown to the algorithm. Therefore, Incremental
Sorting is the online version of a variant of the Partial Sorting problem: Given a set A of m numbers
and an integer k < m, output the smallest k elements of A in ascending order. This can be easily
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solved by first finding the k-th smallest element of A using O(m) time Select algorithm [5], and
then collecting and sorting the elements smaller than the k-th element. The resulting complexity,
O(m + klog k), is optimal under the comparison model, as every cell must be inspected and there
are Ilp<jcp(m — j) = (mmf'k), possible answers, thus a lower bound is m+log m%'k), = Q(m+klogk).

A practical version of the above method uses Quickselect and Quicksort as the selection and
sorting algorithms, obtaining O(m + k log k) expected complexity. Recently, it has been shown that
the selection and sorting steps can be interleaved, which improves the constant terms [26].

To solve the online problem (incremental sort), we have to select the smallest element, then the
second smallest, and so on until the process finishes at some unknown value k € [0,m — 1]. One
can do this by using Select to find each of the first k elements, for an overall cost of O(km). This
can be improved by transforming A into a min-heap [42] in time O(m) [15] and then performing k
extractions. This premature cut-off of the heapsort algorithm [42] has O(m + klogm) worst-case
complexity. Note that m + klogm = O(m + klogk), as they can differ only if k = o(mc) for any
¢ > 0, in which case m dominates klogm. However, according to experiments this scheme is much
slower than the offline practical algorithm [26] if a classical heap is used.

P. Sanders [32] proposes sequence heaps, a cache-aware priority queue, to solve the online prob-
lem. Sequence heaps are optimized to insert and extract all the elements in the priority queue at a
small amortized cost. Even though the total CPU time used for this algorithm in the whole process
of inserting and extracting all the m elements is pretty close to the time of running Quicksort, this
scheme is not so efficient when we want to sort just a small fraction of the set. Then the quest for
a practical online algorithm for partial sorting is raised.

In this paper we present Incremental Quicksort (IQS), a practical and efficient algorithm for
solving the online problem, within O(m + klogk) expected time. Based on IQS, we present
the Quickheap (QH), a simple and efficient data structure for implementing priority queues in
main and secondary memory. Quickheaps are comparable with classical binary heaps in simplicity,
yet are more cache-friendly. This makes them an excellent alternative for a secondary memory
implementation. QHs achieve O(logm) expected amortized time per operation when they fit in
main memory, and O((1/B)log(m/M)) I/O cost when there are M bytes of main memory and the
block size is B in secondary memory, working in a cache-oblivious fashion. IQS and QHs can be
used to improve upon the current state of the art on many algorithmic scenarios. In fact, we plug
them in the classic Minimum Spanning Tree (MST) techniques: We use incremental quicksort to
boost Kruskal’s MST algorithm [24], and a quickheap to boost Prim’s MST algorithm [31]. Given
a graph G(V, E), we compute its MST in O(|E| 4 |V|log? |V|) average time.

Experimental results show that IQS, QHs, external QHs and our Kruskal’s and Prim’s MST
variants are extremely competitive, and in many case better in practice than current state-of-
the-art (and much more sophisticated) alternative implementations. IQS is approximately four
times faster than the classic alternative to solve the online problem. QHs are competitive with
pairing heaps [16] and up to four times faster than binary heaps [42] (according to [27], these are
the fastest priority queue implementations in practice). Using the same amount of memory, our
external QH perform up to 3 times fewer I/O accesses than R-Heaps [1] and up to 5 times fewer
than Array-Heaps [8], which are the best alternatives tested in the survey by Brengel et al. [6].
External-memory Sequence Heaps [32], however, are faster than QHs, yet these are much more
sophisticated and not cache-oblivious. Finally, our Kruskal’s version is much faster than any other
Kruskal’s implementation we could program or find for any graph density. As a matter of fact, it
is faster than Prim’s algorithm [31], even as optimized by B. Moret and H. Shapiro [27], and also



competitive with the best alternative implementations we could find [22, 23]. On the other hand,
our Prim’s version is rather similar to our Kruskal’s one, yet it is resistant to some Kruskal’s worst
cases, such as the lollypop graph.

The rest of this paper is organized as follows. In the following subsections of the Introduction we
briefly review some of the related work. In Section 2 we present our incremental sorting algorithm.
Then, in Sections 3 and 4 we build on it to design Quickheaps in main memory. Next, in Section
5 we show how to adapt our priority queue to work in secondary memory. In Section 6 we apply
our basic algorithms and structures to boost the construction of the MST of a graph. Section 7
gives our experimental results. Finally, in Section 8 we give our conclusions and some directions
for further work. Pseudo-codes and more experiments can be found in [28].

1.1 Priority Queues

A priority queue (PQ) is a data structure which allows maintaining a set of elements in a par-
tially ordered way, enabling efficient element insertion (insert), minimum finding (findMin) and
minimum extraction (extractMin) —or alternatively, maximum finding and extraction. In the
following we focus on obtaining the minima, that is in min-order PQs. The set of operations can
be extended to construct a priority queue from a given array A (heapify), increase or decrease
the priority of an arbitrary element (increaseKey and decreaseKey, respectively), delete an
arbitrary element from the priority queue (delete), and a long so on.

The classic PQQ implementation uses a binary heap [42, 11]. Wegener [41] proposes a bottom-
up deletion algorithm, which addresses operation extractMin performing only log, m + O(1) key
comparisons per extraction on average, in heaps of m elements. Other well-known priority queues
are sequence heaps [32], binomial queues [40], Fibonacci heaps [17], pairing heaps [16], skew heaps
[34], and van Emde Boas queues [38]. All are based on binary comparisons, except the latter which
handles an integer universe [0, m)].

1.2 External Memory Priority Queues

When working in the secondary memory scenario, we assume that we have M bytes of fast-access
internal memory and an arbitrary large slow-access external memory located in one or more in-
dependent disks. Data between the internal memory and the disks is transferred in blocks of size
B, called disk pages. In this model, the algorithmic performance is usually measured by counting
the number of disk access performed, which we call 1/Os. Thus, to improve the I/O performance,
external memory techniques focus on guaranteeing good locality of reference. Therefore, external
memory PQs usually offer just the basic operations, namely, insert, findMin and extractMin.
This is because others, like delete or decreaseKey, need at least one random access to the queue.

Some external memory PQs are buffer trees [2, 20], M/B-ary heaps [25, 14], and Array Heaps
8], all of which achieve the lower bound of ©((1/B)logy;/z(m/B)) amortized I/Os per operation
[39]. Those structures, however, are rather complex to implement and heavyweight in practice (in
extra space and time) [6]. Other techniques are simple but do not perform so well (in theory or in
practice), for example those using B-trees [4]. A practical comparison of existing secondary memory
PQs was carried out by Brengel et al. [6], where in addition they adapt two-level radix heaps [1] to
secondary memory (R-Heaps), and also simplify Array-Heaps [8]. The latter stays optimal in the
amortized sense and becomes simple to implement. The experiments in [6] show that R-Heaps and
Array-Heaps were the best choices for secondary memory. In the same issue, Sanders introduced



sequence heaps [32], which can be seen as a simplification of the improved Array-Heaps of [6].
Sanders reports that sequence heaps are faster than the improved Array-Heaps [12, 13].

1.3 Minimum Spanning Trees

Assume that G(V, E) is a connected undirected graph with a nonnegative cost function weight,
assigned to its edges e € E. A minimum spanning tree mst of the graph G(V, F) is a tree composed
of n — 1 edges of E connecting all the vertices of V' at the lowest total cost ) ..., weight..

The most popular algorithms to solve this problem are Kruskal’s [24] and Prim’s [31], whose
basic versions have complexity O(mlogm) and O(nz), respectively. There are several other MST
algorithms compiled by Tarjan [35]. Recently, B. Chazelle [9] gave an O(ma(m,n)) time algo-
rithm. Later, S. Pettie and V. Ramachandran [30] proposed an algorithm that runs in optimal
time O(7*(m,n)), where 7*(m,n) is the minimum number of edge-weight comparisons needed to
determine the MST of any graph G(V,E) with m edges and n vertices. Its best known upper
bound is also O(ma(m,n)). These algorithms almost reach the lower bound (m), yet they are so
complicated that their interest is mainly theoretical.

Experimental studies on MST are given in [27, 22, 23]. Moret and Shapiro [27] compare several
versions of Kruskal’s, Prim’s and Tarjan’s algorithms, concluding that the best in practice (albeit
not in theory) is Prim’s using pairing heaps [16]. Their experiments show that neither Cheriton and
Tarjan’s [10] nor Fredman and Tarjan’s algorithm [17] ever approach the speed of Prim’s algorithm
using pairing heaps. Moreover, they show that it is possible to use heaps to improve Kruskal’s
algorithm. The idea is to min-heapify the set F, and then to perform as many min-extractions of
the lowest-cost edge as needed (they do this in their Kruskal’s demand-sorting version [27]). The
result is a rather efficient MST version with complexity O(m + klogm), being k < m the number
of edges reviewed by Kruskal. However, they also show that the worst-case behavior of Kruskal’s
algorithm stays poor: If the graph has two distinct components connected by a single, very costly
edge, incremental sorting is forced to process the whole edge set. Katriel et al. [22, 23] present the
algorithm iMaz, whose expected complexity is O(m + nlogn).

Final remarks on Kruskal’s and Prim’s algorithms are in order. If we are using either full
or random graphs whose edge costs are assigned at random independently of the rest (using any
continuous distribution), the subgraph composed by V' with the edges reviewed by the Kruskal’s
algorithm is a random graph [21]. Therefore, based on [21, p. 349], we expect to finish the MST
construction (that is, to connect the random subgraph) upon reviewing %n Inn+ %yn + i +0 (%)
edges, which can be much smaller than m. For each of these edges, we use O(logm) time to
select and extract the minimum element of the heap. So, the average complexity of Kruskal with
incremental (or demand) sorting is O(m + nlognlogm) = O (m +nlog?n) (asn —1 < m < n?).

On the other hand, a practical, fast implementation of Prim’s algorithm uses binary heaps,
reducing the time to O(mlogn), which is relevant when m = o(n?/logn). Alternatively, Prim’s
can be implemented using Fibonacci Heaps [17] to obtain O(m + nlogn) complexity.

2 Optimal Incremental Sorting

Let A be a set of size m. Obtaining the first k£ < m elements of A in ascending order can be done
in optimal O(m + klog k) time. We present Incremental Quicksort (IQS), an algorithm (online on
k) which incrementally gives the next smallest element of the set, so that the first k elements are



obtained in optimal time for any k. As explained in the Introduction, this is not a big achievement
because the same can be obtained using a priority queue. However, IQS performs better in practice
than the best existing online algorithm.

Essentially, IQS calls Quickselect [19] to find the smallest element of arrays A[0, m — 1], A[1,m — 1],

.., A[k —1,m — 1]. This naturally leaves the k smallest elements sorted in A[0,k — 1]. The key

point to avoid the O(km) complexity is to note that when we call Quickselect on A[1,m — 1], we
can reuse the sequence of decreasing pivots that has already been used in the previous invocation
on A[0,m — 1]. To do that, it suffices with considering an auxiliary stack S in order to manage this
sequence of decreasing pivot positions, as they will be relevant for the next calls to Quickselect.

Figure 1 (left) shows how IQS searches for the smallest element (12) of an array by using a
stack initialized with a single value m = 16. To find the next minimum, we first check whether p,
the top value in S, is the index of the element sought, in which case we pop it and return A[p].
Otherwise, because of previous partitionings, it holds that elements in A[0,p — 1] are smaller than
all the rest, so we run Quickselect on that portion of the array, pushing new pivots into S.

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(G181 74 12 58 92 86 25 67 33 18 41 49 63 29 37| (29)25 [33 41 49 37 51] 67 86 92 58 63 74 81]
S = {16} S =1{16, 8, 4}
0 1 2 3 4 5 6 798 9 10 11 12 13 14 15 2
(33)37 29 12 49 41 18 2551(67 86 92 58 63 74 81] 29
S =116, 8 S={16 8 4, 3}
0 1 2 4 5 6 7
(18) 25 29 12{33 41 49 37| 25 _
S = {16, 8, 4} $={16 8 4 3 %

3 4 5 6 7 8 9 10 11 12 13 14 15

o 2 3 3 4
?18 29 33 [41 49 37|51 67 86 92 58 63 74 81
12

S = {16, 8, 4, 1} S =116, 8, 4, 3]

S={16 8 4, 1,
2 3 4 5 6 7 8 9 10 11 12 13 14 15

18| 29 25|?_,3|41 49 37|5_1|67 86 92 58 63 74 81|
S=T116 8, 4, T

Figure 1: Example of IQS. Each line corresponds to a new partition of a sub-array. In the example
we use the first element of the current partition as the pivot, but it could be any other element.
The bottom line shows the array with the partitions generated by the first call to IQS and the
pivot positions stored in S. On the left, finding the first element. On the right, finding the third
element. Using the pivot information IQS only works on the current first chunk ({29, 25}).

As can be seen in Figure 1 (left), the second minimum (18) is the pivot on the top of S, so we
pop it and return A[1]. Figure 1 (right) shows how IQS finds the third minimum using the pivot
information stored in S. Notice that IQS just works on the current first chunk ({29,25}). In this
case it adds one pivot position to S and returns the third element (25) in the next recursive call.
The incremental sorting process will continue as long as needed, and it can be stopped in any time.

The algorithm is given in Figure 2. Stack S is initialized to S = {|A|}. IQS receives the set A,
the index idx! of the element sought (that is, we seek the smallest element in Afidz, m — 1]), and
the current stack S (with former pivot positions). First it checks whether the top element of S is

1Since we start counting array positions from 0, the place of the k-th element is k — 1, so idx = k — 1.



the desired index idz, in which case it pops idx and returns Afidz]. Otherwise it chooses a random
pivot index pidz from [idx, S.top()—1]. Pivot Alpidx] is used to partition Alidx,S.top()—1]. After
the partitioning, the pivot has reached its final position pidz’, which is pushed in S. Finally, a
recursive invocation continues the work on the left hand of the partition.

IQS (Set A, Index idx, Stack S)
// Precondition: idx < S.top()
If idz = S.top() Then S.pop(), Return A[idz]
pidz «— random/[idz, S.top()—1]
pidx’ — partition(A, Alpidzx], idz, S.top()—1)
// Invariant: A[0] < ... < Alide — 1] < Alidz, pide’ — 1] < A|pida’]
/] < Alpida’ +1,5.top()—1] < A[S.top(),m — 1]
4. S.push(pidz’)
5. Return IQS(A, idzx, 5)

Figure 2: Algorithm Incremental Quicksort (IQS). Stack S is initialized to S < {|A|}. Both S and
A are modified and rearranged during the algorithm. Note that the search range is limited to the
array segment Alidz, S.top()—1]. Procedure partition returns the position of pivot A[pidz] after
the partition completes. Note that the tail recursion can be easily removed.

Recall that partition(A, A[pidz], i, j) rearranges Ali, j] and returns the new position pidz’ of
the original element A[pidz], so that, in the rearranged array, all the elements smaller/larger than
Alpidz'] appear before/after pidz’. Thus, pivot A[pidx'] is left at the correct position it would have
in the sorted array A[i, j]. The next lemma shows that it is correct to search for the minimum just
within A[i, S.top() — 1], from which the correctness of IQS immediately follows.

Lemma 2.1 (pivot invariant). Afteri minima have been obtained in Al0,i—1], (1) the pivot indices
in S are decreasing bottom to top, (2) for each pivot position p # m in S, Alp] is not smaller than
any element in Ali,p — 1] and not larger than any element in Alp + 1,m — 1].

Proof. Initially this holds since i = 0 and S = {m}. Assume this is valid before pushing p, when
p’ was the top of the stack. Since the pivot was chosen from Ali,p’ — 1] and left at some position
i < p < p/ — 1 after partitioning, property (1) is guaranteed. As for property (2), after the
partitioning it still holds for any pivot other than p, as the partitioning rearranged elements at the
left of all previous pivots. With respect to p, the partitioning ensures that elements smaller than p
are left at A[i,p — 1], while larger elements are left at A[p + 1,p" — 1]. Since A[p] was already not
larger than elements in A[p’,m — 1], the lemma holds. It obviously remains true after removing
elements from S. O

The worst-case complexity of IQS is O(m?), but it is easy to derive a worst-case optimal version
from it. The only change is in line 2 of Figure 2, where the random selection of the next pivot
position must be changed to choosing the median of Afidz, S.top() — 1], using the linear-time
selection algorithm [5]. See [28] for details.

Let us now consider the expected case complexity. In IQS, the final pivot position p af-
ter the partitioning of A[0,m — 1] distributes uniformly in [0,m — 1]. Let T'(m, k) be the ex-
pected number of key comparisons needed to obtain the k smallest elements of A[0,m — 1].



After the m — 1 comparisons used in the partitioning, there are three cases depending on p:
(1) k¥ < p, in which case the right partition remains until the end of the process, and the to-
tal extra cost will be T(p,k) to solve A[0,p — 1]; (2) & = p + 1, in which case the left par-
tition will be fully sorted at cost T'(p,p); and (3) & > p + 1, in which case we pay T(p,p)
on the left partition, whereas the right partition, of size m — 1 — p, will be sorted incremen-
tally so as to obtain the remaining k — p — 1 elements. Thus IQS expected cost is T'(m, k) =

m— 1+ & (55 T k) + T =1,k = 1) + 573 (T(.p) + T(m— 1 =p.k—p—1)) ). This
can be rewritten as T'(m, k) = ©(m + klog k), see [28].

Theorem 2.1 (IQS’s expected case complexity). Given a set A of m numbers IQS finds the k
smallest elements, for any unknown value k < m, in O(m + klogk) expected time. O

3 Quickheaps

Let us go back to the last line of Figure 1 (left), drawn in Figure 3, where we add ovals indicating
pivots. For the sake of simplifying the following explanation, we also add a co mark signaling a
fictitious pivot in the last place of the array.

0 10 11 4 15 16

1 2 3 4 5 6 7 8 9 12 13 1 16
8|20 25 |@|41 49 37|@| 67 86 92 58 63 74 81 |() S={16 8 4 1}

Figure 3: Last line of Figure 1.

By virtue of the IQS invariant (see Lemma 2.1), we see the following structure in the array. If
we read the array from right to left, we start with a pivot (the fictitious pivot oo at position 16)
and at its left side there is a chunk of elements smaller than it. Next, we have another pivot (pivot
51 at position 8) and another chunk. Then, another pivot and another chunk and so on, until we
reach the last pivot (pivot 18 at position 1) and a last chunk (in this case, without elements).

This resembles a heap structure, in the sense that objects in the array are semi-ordered. In
the following, we exploit this property to implement a priority queue over an array processed with
algorithm IQS. We call this IQS-based priority queue Quickheap (QH). From now on we explain
how to obtain a min-order quickheap. For practical reasons, elements within the quickheap are
stored in a circular array, so that we can handle arbitrary large sequences of operations as long as
we maintain no more elements than the capacity of the circular array.

3.1 Data Structures for Quickheaps
To implement a quickheap we need the following structures (we use Figure 3 as an example):
1. An array heap to store the elements. In the example it is {18,29,...,81,00}.

2. A stack S to store the positions of pivots partitioning heap. Recall that the bottom pivot
index indicates the fictitious pivot oo, and the top one the smallest pivot. In the example,
the stack S is {16,8,4,1}.

3. An integer idx to indicate the first cell of the quickheap. In the example idx = 1. Note that
the last cell of the quickheap (the position of the fictitious pivot co) is maintained in S[0].



4. An integer capacity to indicate the size of heap. We can store up to capacity — 1 elements in
the quickheap (as we need a cell for the fictitious pivot co).

Note that in the case of circular arrays, we must take into account that an object whose position
is pos is actually located in the cell pos mod capacity of the circular array heap.

We add elements at the tail of the quickheap (the cell heap[S[0] mod capacity]), and perform
min-extractions from the head of the quickheap (the cell heap[idz mod capacity]). So, the quickheap
slides from left to right over the circular array heap as the operation progresses. From now on, we
will omit the expression mod capacity in order to simplify the reading.

Throughout this section we assume that we know beforehand the value of capacity, that is,
the maximum number of elements we store in the priority queue. If this is not the case, we can
implement array heap as a dynamic table [11, Section 17.4], just adding a constant amortized factor
to the cost of quickheap operations.

3.2 Quickheap Operations

Creation of quickheaps. We create the array heap of size capacity with no elements, and
initialize both S = {0} and idz = 0. The value of capacity must be sufficient to store simultaneously
all the elements we need in the array plus a fictitious cell. On the other hand, to create a quickheap
from an array A, we copy it to heap, and initialize both S = |A| and idx = 0. The value of capacity
must be at least |A| + 1.2 This operation can be done in time O(1) if we can take array A and use
it as array heap.

Finding the minimum. To find the minimum of the heap, we focus on the first chunk, which
is delimited by the cells idz and S.top() — 1. For this sake, we just call IQS(heap,idx,S) and
then return the element heaplidz]. However, in this case IQS does not pop the pivot on top of S.
Remember that an element whose position is pos is located at cell pos mod capacity, thus we have
to slightly change algorithm IQS to manage the positions in the circular array.

Extracting the minimum. To extract the minimum, we first make sure that the minimum is
located in the cell heaplidx]. (Once again, in this case IQS does not pop the pivot on top of S.)
Next, we increase idx and pop S. Finally, we return the element heaplidx — 1].

Inserting elements. To insert a new element z into the quickheap we need to find the chunk
where we can insert x in fulfillment of the pivot invariant (Lemma 2.1). Thus, we need to create an
empty cell within this chunk in the array heap. Note that we do not need to move every element
in the array one position to the right, but only some pivots and elements to create an empty cell
in the appropriate chunk. We first move the fictitious pivot, updating its position in S, without
comparing it with the new element x, so we have a free cell in the last chunk. Next, we compare x
with the pivot at cell S[1]. If the pivot is smaller than or equal to x we place z in the free place left
by pivot S[0]. Otherwise, we move the first element at the right of pivot S[1] to the free place left
by pivot S[0], and move the pivot S[1] one place to the right, updating its position in S. We repeat
the process with the pivot at S[2], and so on until we find the place where x has to be inserted, or
we reach the first chunk. Figure 4 shows an example.

2Indeed we do not really need that further cell, we just let the fake pivot S [0] point to a nonexistent cell.
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Figure 4: Inserting a new element into a quickheap. The figure shows the pivots we have to compare
with the new element to insert it into the quickheap, and the elements we have to move to create
the free cell to allocate the new element.

Deleting arbitrary elements. Given a position pos, this operation removes from the quickheap
the element at that cell. When we delete a non-pivot element we move some pivots and elements
one cell to the left. If we remove a pivot element, we drop it, join the two chunks and continue as
if it were a non-pivot deletion.

This operation, as well as increaseKey and decreaseKey, requires to know the internal posi-
tions of elements in the quickheap, not only their identifiers. Thus we might have to augment the
quickheap with a dictionary which, given an element identifier, answers its respective position, and
to maintain this mapping upon changes in the quickheap. There are several options for implement-
ing this dictionary, depending on the application, which range from constant to O(logm) time per
update. We do not include this possible extra cost in our analysis.

Using the dictionary we obtain the element position pos. To delete the element, we first need
to find its chunk. Note that each chunk has a pivot at its right, so we reference the chunk by that
pivot, pidx. Therefore, we traverse the stack S to find the smallest pivot that is > pos.

Once we have a pivot pidx at a position greater than pos, we repeat the following process. We
place the element previous to the pidz-th pivot in the position pos, that is, we move the element
heap|S[pidz] — 1] to position heaplpos]|, so we have a free cell at position S[pidx] — 1. Then, we
move the pivot heap[S[pidx]] one place to the left, and update its position in S. Then we update
pos to the old pivot position, pos = S[pidx] + 1. Then we process the next chunk at the right. We
continue until we reach the fictitious pivot.

Note that, if the element at position pos is originally a pivot, we extract it from S (by moving
every pivot above it in the stack one position towards the bottom) and go back to the previous
pivot, so we always have a pivot at a position greater than pos. Thus, extracting a pivot effectively
merges the two chunks at the left and right of the removed pivot.

An application of operation delete is to implement operation extractMin by calling delete(0).
This way we obtain a quickheap version that does not slide on the array heap. In this case we
do not need the dictionary, as we want to delete the element at position zero. Yet, preliminary
experiments show that this alternative is less efficient than the sliding one proposed above.

Decreasing and increasing a key can be done via a delete plus insert operations. Nevertheless,
next we show a more efficient direct implementation.



Decreasing a key. Given a position pos of some element in the quickheap and a value § > 0,
we change the priority of the element heap[pos| to heap[pos| — §, and adjust its position in the
quickheap so as to preserve the pivot invariant (Lemma 2.1). As we are decreasing the key, the
modified element either stays in its current place or it moves chunk-wise towards position idz. Thus
operation decreaseKey is similar to operation insert.

To decrease a key, we first need to find the chunk pidz of the element to modify. If the element
at position pos is a pivot, we extract it from S and go back to the previous pivot, so we always
have a pivot at a position greater than pos.

Let newValue = heap[pos] — § be the resulting value of the modified element. Once we have a
pivot pidx at a position greater than pos, we do the following. If we are working in the first chunk,
that is |S| = pidz + 1, we update the element heap|pos| to newV alue and we are done. Otherwise,
we check whether newValue is greater than or equal to the preceding pivot (heap[S[pidz + 1]]). If
so, we update the element heap[pos| to newV alue and we have finished. Else, we place the element
at the right of the next pivot in the current position of the element. That is, we move the element
heap|S[pidz+ 1]+ 1] to position heap[pos]. As we have an empty space next to the pivot delimiting
the preceding chunk, we start the pivot movement procedure from that chunk.

Increasing a key. Analogously, given a position pos of some element in the quickheap, and a
value 6 > 0, this operation changes the value of the element heap[pos| to heaplpos|+ 8, and adjusts
its position in the quickheap so as to preserve the pivot invariant. As we are increasing the key,
the modified element either stays in its current place or moves chunk-wise towards position S[0].
Thus, operation increaseKey is similar to operation delete, but without removing the element.
Similarly to operations decreaseKey or delete, we first need to find the chunk pidz of the element
to modify. If the element at position pos is a pivot, we remove it from the stack S and go back to
the previous pivot, so we have a pivot in a position greater than pos.

4 Analysis of Quickheaps

In the following, we prove that quickheap operations cost O(log m) expected amortized time, where
m is the maximum size of the quickheap. This analysis is based on a key observation: statistically,
quickheaps exhibit an exponentially-decreasing structure, which means that the pivot positions form
on average an exponentially decreasing sequence. We start by proving that exponential-decrease
property. Then, we introduce the potential debt method for amortized analysis. Finally, exploiting
the exponential-decrease property, we analyze quickheaps using the potential debt method.

4.1 The Quickheap’s Exponential-Decrease Property

In this section we introduce a formal notion of the exponentially-decreasing structure of quickheaps.
We show that this property is true at the beginning, and that it holds after extractions of minima,
as well as insertions or deletions of elements that fall at independent and uniformly distributed po-
sitions in the heap. It follows that the property holds after arbitrary sequences of those operations,
yet the positions of insertions and deletions cannot be arbitrary but uniformly distributed.

More precisely, our uniformity assumptions are stated as follows. When inserting a new element
into a heap of n — 1 elements, we assume that the rank of the new element in the existing set
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distributes uniformly in [1,n]. When deleting an element from a heap with n + 1 elements, we
assume each of the elements is chosen for deletion with uniform probability.

From now on, we consider that array segments are delimited by idx and the cell just before
each pivot position S[pidz] (heaplidz, S[pidz] — 1], thus segments overlap), and array chunks are
composed by the elements between two consecutive pivot positions (heap[S|[pidz]+1, S[pidz—1]—1])
or between idr and the cell preceding the pivot on top of S (heaplidx,S.top()—1]). We call
heaplidz, S.top()—1] the first chunk, and heap[S[1] 4+ 1, S[0] — 1] the last chunk. Analogously, we
call heaplidz, S.top()—1] the first segment, and heap[idz, S[0] — 1] the last segment. The pivot of a
segment will be the rightmost pivot within such segment (this is the one used to split the segment
at the time partition was called on it). Thus, the pivot of the last segment is S[1], whereas the
first segment is the only one not having a pivot. Figure 5 illustrates this.

first second

chunk  chunk other chunks last chunk
| [] ] - ]

idx  S[]] . S[j-1] S[] =--_ S[0]

S ~
~ o N
~ \

first | segment el
second segment second égment pivot N

last segment pivot

[
other segments

last segment

Figure 5: Segments and chunks of a quickheap.

Using the traditional definition of the median of a n-element set —if n is odd the median is the
"Tﬂ—th largest element, else it is the average of the §-th and (5 + 1)-th largest ones—, let us call
an element not smaller than the median of the array segment heaplidz, S[pidx] — 1] a large element
of such segment. Analogously, let us call an element smaller than the median a small element.

The exponential-descrease property is formally defined as follows:

Definition 4.1 (quickheap’s exponential-decrease property). The probability that the pivot of each
array segment heaplidz, S[pidx] — 1] is large in its segment is smaller than or equal to % That is,
for all the segments P(pivot is large) < %

We prove the property by analyzing each individual element in isolation, and considering the
operations that affect it. So from now on we refer to any individual segment and analyze its
evolution (note segments contain each other, but we can still analyze each of them regardless of
the rest). Let P;;n, 1 < i < mn, j >0, n > 0, be the probability that the i-th element of the
segment, of size n, is the pivot of the segment after the j-th operation (IP; ;, = 0 outside bounds).
In the following we prove by induction on j that P; ;, < P;_ j,, for all j, n and 2 < i < n, after
performing any sequence of operations insert, delete, findMin and extractMin. That is, the
probability of the element at cell ¢ being the pivot is non-increasing from left to right. Later, we

use this to prove the exponential-decrease property and some consequences of it.
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Note that the pivot appears for the first time in the segment when it is the shortest one
and operations extractMin or findMin partition it. Note also that, just after the segment is
partitioned, the probabilities are IP; o ,, = %, as the pivot is chosen following a uniform distribution,
so we have proved the base case.

Lemma 4.1. For each segment, the property P; ;,, < P;_1 ., fori > 2 is preserved after inserting

a new element x at a position uniformly chosen in [1,n].

Proof. We suppose that after the (j —1)-th operation the segment has n — 1 elements. As we insert
x in the j-th operation, the resulting segment contains n elements. The probability that after the
insertion the pivot p is at cell ¢ depends on whether p was at cell i — 1 and we have inserted = at
any of the first ¢ — 1 positions 1,...,7— 1, so the pivot moved to the right; or the pivot was already
at cell ¢ and we have inserted z at any of the last n — ¢ positions ¢ + 1,...,n. So, we have the
recurrence of Eq. (1).

1 —1 n—1
+ P,] 1,n—1

(1)

From the inductive hypothesis we have that P; ;_1,-1 < IP’,-_Lj_l,n_l. Multiplying both sides
by *~, adding Pi—l,j—l,n—l% and rearranging terms we obtain the inequality of Eq. (2), whose

left side corresponds to the recurrence of P; ;.

Pijn = Pi1j-1n-1

1—1 n—1 1 —2 n+1—1
]Pz 1, j—1n—-17—"_ +]P,] 1,n—1 < ]Pz 1j—1n—-17—"_— n +Pz 1,7—1n— 17 (2)

By the inductive hypothe51s again, ]P’,-_lvj_l,n_l < P;_2j—1n-1, for i > 2. So, replacing on the
right side above we obtain the inequality of Eq. (3), where, in the right side we have the recurrence
for ]P)i—l,j,n'

1—2 n+1—1
]P)i,j,n < ]Pz 27—1ln—17"_— n + ]Pz 1,j—1,n— 17 = ]Pi—l,j,n (3)
With respect to ¢ = 2, note that the term i_2 from Egs. (2) and (3) vanishes, so the replacement
made for ¢ > 2 holds anyway. Thus, this equatlon can be rewritten as Py j, <Py j_1,-1"—. Note
that the right side is exactly Py j, according to the recurrence Eq. (1) evaluated for i = 1 O

Lemma 4.2. For each segment, the property P; j , < Pi_1 ;y for i > 2 is preserved after deleting

an element at a position chosen uniformly from [1,n + 1].

Proof. Suppose that after the (5 — 1)-th operation the segment has n + 1 elements. As we delete
an element in the j-th operation, the resulting segment contains n elements.

We start by proving the property when the deleted element is not a pivot. The probability that
after the deletion the pivot p is at cell i depends on whether p was at cell 7 + 1 and we delete an

element from positions 1,...,7, so the pivot moved to the left; or the pivot was already at cell i,
and we have deleted from the last n + 1 — ¢ elements ¢ 4+ 1,...,n + 1. So, we have the recurrence
of Eq. (4).
i n+1—1
Pijn = Pipij-1nt1—— I + Pi,j—1,n+1n7+1 (4)

From the inductive hypothesis we have that P; ;1,41 < Pi_1j—1,+1. Multiplying both sides

by ”;’_EIZ, adding ]I”i7j_1,n+1£;+11 and rearranging terms we obtain the inequality of Eq. (5), whose

right side corresponds to the recurrence of P;_1 ;.

7 n+1—1 1—1 n+2-—1
Pi,j—l,n+ln—H +Pij—inpi——— < Pi,j—l,n—i—ln—H + ]P’i—l,j—l,m-lni_i_l

n+1 (5)
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By the inductive hypothesis again, P11 j—1,n41 < P;j—1,n+1, S0 we can replace the first term
above to obtain the inequality of Eq. (6), where in the left side we have the recurrence for P; ;.
On the right we have P;_1 ;.

Pi-ﬁ-l,j—l,n-ﬁ-l%_i_l + Pi,j—l,n—i—l% = Pijn < Pisijn (6)

In the case of deleting a pivot p we have the following. If we delete the pivot on top of S, then
the first and the second chunk get merged and the lemma does not apply to the (new) first segment
because it has no pivot.

Otherwise, we must have (at least) two pivots p; and p, at the left and right of p. Let pos;, pos
and pos, be the positions of the pivots p;, p, p,. before deleting p, respectively, as it is shown in
Figure 6. Note that p; and p are pivots of segments heaplidx, pos — 1] and heaplidz, pos, — 1] with
n’ and n elements (n’ < n), respectively.

P p o}
I [] - O
idx pos, pos pos; S[0]

Figure 6: Deleting an inner pivot of a quickheap.

Once we delete pivot p, the segment heaplidx, pos — 1] is “extended” to position pos, — 2 (as
we have one cell less). As the n —n' — 1 new elements in the extended segment were outside of the
old segment heaplidx, pos — 1], they cannot be the pivot in the extended segment. On the other
hand, the probabilities of the old segment elements holds in the new extended segment. Therefore,
for each idx < i < pos, P; i, = P; j_1,, and for each pos < i < pos, — 2, P; ; , = 0. Thus the
invariant is maintained. O

In order to analyze whether the property P; ; , < P;_1 ; , is preserved after operations findMin
and extractMin we need consider how IQS operates on the first segment. For this sake we
introduce operation pivoting, which partitions the first segment with a pivot and pushes it into
stack S. We also introduce operation takeMin, which increments idx, pops stack S and returns
element heaplidz — 1].

Using these operations, we rewrite operation extractMin as: execute pivoting as many times
as we need to push idz in stack S and next perform operation takeMin. Likewise, we rewrite
operation findMin as: execute pivoting as many times as we need to push idz in stack S and
next return element heaplidz].

Operation pivoting creates a new segment and converts the previous first segment (with no
pivot) into a segment with a pivot, where all the probabilities are P;, = % The next lemma
shows that the property also holds after taking the minimum.

Lemma 4.3. For each segment, the property IP; ; , <IPi_q j, fori > 2 is preserved after taking the
minimum element of the quickheap.

Proof. Due to previous calls to operation pivoting, the minimum is the pivot placed in idz. Once

we pick it, the first segment vanishes. After that, the new first segment may be empty, but all the

others have elements. For the empty segment the property is true by vacuity. Else, within each
nt1

segment probabilities change as follows: P; j, = Piy1j 10417 O
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Finally, we are ready to prove the quickheap’s exponential-decrease property.

Theorem 4.1 (quickheap’s exponential-decrease property). Given a segment heaplidz, S|pidx]—1],
the probability that its pivot is large is smaller than or equal to %, that is, P(pivot is large) < %

Proof. When the segment is created, all the probabilities are IP; ; ,, = % Lemmas 4.1 to 4.3 guaran-
tee that the property IP; ;,, < P;_qj, for ¢ > 2 is preserved after inserting or deleting elements, or
taking the minimum. So, the property is preserved after any sequence of operations insert, delete,
findMin and extractMin. Therefore, adding up the probabilities P; ; ,, for the large elements, that
is, for the ([2] 4 1)-th to the n-th element, we obtain that P(pivot is large) = z:z:[ﬂ 11 Pign < 5.

O

In the following, we use the exponential-decrease property to show two additional facts we use
in the analysis of quickheaps. They are (i) the height of stack S is O(logm), and (ii) the sum of
the size of the array segments is O(m).

Lemma 4.4. The expected value of the height H of stack S is O(logm).

Proof. Notice that the number H of pivots in the stack is monotonically nondecreasing with m.
Let us make some pessimistic simplifications (that is, leading to larger H). Let us take the largest
value of the probability P(pivot is large), which is % Furthermore, let us assume that if the pivot
is taken from the large elements then it is the maximum element. Likewise, if it is taken from the
small elements, then it is the element immediately previous to the median.

With these simplifications we have the following. When partitioning, we add one pivot to stack
S. Then, with probabilities % and % the left partition has m — 1 or L%J elements. So, we write
the following recurrence: H = T(m) =1+ $T(m — 1) + 3T(|2]), T(1) = 1. Once again, using the
monotonicity on the number of pivots, the recurrence is simplified to T'(m) < 1 + %T(m) + %T(%),
which can be rewritten as T'(m) < 2+ T(%) < ... <2j+T(%). AsT(1) = 1, choosing j = logy(m)
we obtain that ‘H = T'(m) < 2logym + 1. Finally, adding the fictitious pivot we have that H =
2(logy m 4+ 1) = O(log m). O

Lemma 4.5. The expected value of the sum of the sizes of array segments is ©(m).

Proof. Using the same reasoning of Lemma 4.4, but considering that when partitioning the largest
segment has m elements, we write the following recurrence: T'(m) =m + $T(m — 1) + 3T(|2]),
T(1) =0. Using the monotonicity of 7'(m) (which also holds in this case) the recurrence is
simplified to T'(m) < m + $T(m) + $T(%), which can be rewritten as T'(m) < 2m +T(Z) < ...
<2m4+m+ g+t tags T+ T(zm]) As T(1) =0, choosing j = log,(m) we obtain that
T(m) <3m+mY 2, & < 4m = O(m). Therefore, the expected value of the sum of the array

segment sizes is ©(m). O

4.2 The Potential Debt Method

To carry out the amortized analysis of quickheaps we use a slight variation of the potential method
([36] and [11, Chapter 17]), which we call the potential debt method.

In the potential method, the idea is to determine an amortized cost for each operation type.
The potential method overcharges some operations early in the sequence, storing the overcharge
as “prepaid credit” on the data structure. The sum of all the prepaid credit is called the potential
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of the data structure. The potential is used later in the sequence to pay for operations that are
charged less than what they actually cost.

Instead, in the case of the potential debt method, the potential function represents a total cost
that has not yet been paid. At the end, this total debt must be split among all the performed
operations. The potential debt is associated with the data structure as a whole.

The potential debt method works as follows. It starts with an initial data structure Dy on
which operations are performed. Let ¢; be the actual cost of the i-th operation and D; the data
structure that results from applying the i-th operation to D;_1. A potential debt function ® maps
each data structure D; to a real number ®(D;), which is the potential debt associated with data
structure D; up to then. The amortized cost ¢; of the i-th operation with respect to potential debt
function ® is defined by

G = ¢ — (I)(Dz) + (I)(Di_l) . (7)

Therefore, the amortized cost of i-th operation is the actual cost minus the increase of potential

debt due to the operation. Thus, the total amortized cost for N operations is
N

N
da = > (ci— D)+ (D ch (Dy) + ®(Dy) . (8)
i=1

i=1
If we define a potential function ® so that ®(Dy) > ®(Dy), then the total amortized cost
sz\i 1 G is a lower bound on the total actual cost Zf\i 1 ¢i- However, if we sum the positive cost
®(Dy) — ®(Dp) to the amortized cost SN | &, we compensate for the debt and obtain an upper
bound on the actual cost ZZJ\LI ¢;. That is, at the end we share the debt among the operations.
Thus, in Eq. (9) we write an amortized cost ¢; considering the potential debt, by assuming that we
perform N operations during the process, and the potential due to these operations is ®(Dy).

P @(DN)]; Do) _ . _ 4D+ (D) + <I>(DN)]; (Dy) )

This way, adding up for all the N  operations, we obtain that
S @ = SN (- B(D) + o(Diy) + HELEED) 5N o,

4.3 Expected-case Amortized Analysis of Quickheaps

In this section, we consider that we operate over a quickheap gh with m elements within heap and
a pivot stack S of expected height H = O(logm), see Lemma 4.4.

We define the quickheap potential debt function as twice the sum of the sizes of the segments
delimited by idz and pivots in S[0] to S[H]. Eq. (10) shows the potential function ®(gh), which is
illustrated in Figure 7.

H
®(gh) =2- Z —idr) = ©(m) expected, by Lemma 4.5 (10)
=0

Thus, the potential debt of an empty quickheap ®(qhg) is zero, and the expected potential
debt of an m-elements quickheap is ©(m), see Lemma 4.5. Note that if we start from an empty
quickheap gh, for each element within gh we have performed at least operation insert, so we can
assume that there are more operations than elements within the quickheap. Therefore, in the case
of quickheaps, the term w is O(1) expected. So, we can omit this term, writing the
amortized costs directly as ¢; = ¢; — ®(qh;) + ®(qhi—1).
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Figure 7: The quickheap potential debt function is computed as twice the sum of the lengths
of the segments (drawn with lines) delimited by idx and pivots in S[0] to S[H]. In the figure,
®(qh) =2 - (S[0] + S[1] + S[2] — 3idx).

Operation insert. The difference of the potential debt ®(gh;—1) — ®(¢h;)(< 0) depends on how
many segments are extended (by one cell) due to the insertion (recall that segments contain each
other, so one insertion extends several segments). Note that for each key comparison, we extend one
segment —which increases by 2 the potential debt—, yet the final key comparison might extend one
more segment (if it is the shortest one). Thus, it holds ¢; — ®(gh;) + ®(ghi;—1) < 0, which means
that all the cost is absorbed by the increase in the potential debt.

However, we can prove that also the expected (individual) cost of operation insert is O(1).
When inserting an element, we always extend the last segment. Later, with probability P; > %
the position of the inserted element is greater than the position of the pivot S[1] —that is, the
element is inserted at the right of the pivot S[1]— (from Theorem 4.1), in which case we stop. If
not, we compare the pivot of the second last segment, and once again, with probability Py > %
the element is inserted at the right of the pivot S[2], in which case we stop. Else, we compare the
third pivot, and this goes on until we stop expanding segments. Thus, the expected number of
key comparisons is 14 (1 —Py)(1+ (1 —P2)(1 + (1 —P3)(1+...))). This sum is upper bounded,
by taking the lowest value of P; = 3, to 1+ 1 (1+3 (1+35(1+...))) = O(1).

Operation delete. The decrease of the potential debt ®(gh;—1) — ®(gh;)(> 0) depends on how
many segments are contracted (by one cell) due to the deletion. Note that it is also possible to
delete a whole segment if we remove a pivot.

The worst case of operation delete (without considering pivot deletions) arises when deleting
an element in the first chunk. This implies to contract by one cell all the segments, which is
implemented by moving all the pivots —whose expected number is H— one cell to the left. So, the
actual cost of moving pivots and elements is H. On the other hand, the term 