
ALGEBRAIC MESH QUALITY METRICS∗

PATRICK M. KNUPP†

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 193–218

Abstract. Quality metrics for structured and unstructured mesh generation are placed within
an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based
on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating
mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally
invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from
the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh
quality metrics are defined. The singular value decomposition is used to study relationships between
metrics. Equivalence of the element condition number and mean ratio metrics is proved. The
condition number is shown to measure the distance of an element to the set of degenerate elements.
Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly,
with specific examples given. Two combined metrics, shape-volume and shape-volume orientation,
are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are
extended to nonsimplicial elements. A series of numerical tests verifies the theoretical properties of
the metrics defined.
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1. Introduction. Mesh quality metrics for assessing the results of a meshing
process have been in use almost since the beginning of meshing. Metrics are or can be
used in a number of ways. First, metrics can serve as mesh requirement specifications
prior to mesh creation. Element volume, shape, and orientation in various parts of the
geometric domain can be specified in advance of meshing to enable the mesh generator
to select proper algorithms and concentrate on the most difficult areas. Second, mesh
improvement techniques such as smoothing, optimization, and edge swapping depend
heavily on the use of quality metrics. Third, metrics often serve as a quality control
mechanism. Given a mesh, is it of sufficient quality that it can be passed on to the
consumer? Nonadaptive, a priori meshing of complex geometries is difficult, especially
with nonsimplicial elements. As a result, mesh quality is not assured. Consumers of
meshes for adaptive purposes should also be interested in quality metrics because
h-adaptive mesh refinement will rarely improve initial mesh quality. R-type adaptive
procedures, in which mesh nodes are moved, can also make good use of mesh quality
metrics. Given these uses, mesh quality metrics will be needed for the foreseeable
future.
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For the most part, mesh quality metrics are based on geometric criteria. For
example, does a given element possess positive volume and a good shape? Element
volume, aspect ratio, skew, angles, stretching, and orientation are common geomet-
ric quality metrics. Surprisingly, a mathematical theory of geometric mesh quality
metrics has not been developed until now. Such a theory should include a discussion
of what a mesh quality metric is, what properties it should possess, a capability for
analyzing and classifying various metrics, including a way to show how metrics are
related and a means of identifying redundant metrics. This attempt at such a theory
is based on element Jacobian matrices and an algebraic framework that uses matrix
norm, trace, and determinant. A crucial feature introduced in this theory is the idea
that metrics don’t exist in a vacuum but need to be referenced to an ideal element.
The metric then measures the deviation from the ideal. The ideal may vary from
one application to another. For example, some applications can do well with isotropic
elements while others may need anisotropic elements with particular orientations. We
thus construct our theory for arbitrary reference elements.

We do not attempt a comprehensive survey of all the work that has been done
on metrics but refer the reader to the early work of Robinson on quality metrics
for quadrilaterals [22], [23], [24], the distortion measure of Oddy [20], the “flatness”
measure of Ives [11], the summary of tetrahedral measures in [6], [21], the measures
in Canann, Tristano, and Staten [3], and the paper [7]. The work reported here is an
extension of the ideas of the author presented in [13], [14], [8], [15], and [16] in which
the use of matrices, norms, and the condition number for mesh quality measures were
introduced.

2. Preliminary observations. For both structured and unstructured meshes
we can refer to mesh nodes and mesh elements. A mesh element is a geometric object
topologically equivalent to some geometrically regular object such as a cube/square,
tetrahedron/triangle, wedge, or pyramid. The boundary of the element is defined in
terms of mesh nodes with given spatial coordinates.1 Given a mesh element we define
an element quality metric as follows.

Definition. An element quality metric is a scalar function of node positions
that measures some geometric property of the element.

If a three-dimensional element has K nodes with coordinates xk ∈ R3, k =
0, 1, . . . ,K − 1, then we denote a mesh quality metric by f̂ | R3K → R.

A host of mesh quality metrics have been defined over the years. Many of the
metrics are redundant. Others may lack one or more of the following properties of
quality metrics (also given in Table 1).

Definitions. A metric is dimension-free if its definition in three dimensions is
an unambiguous, natural generalization of its definition in two dimensions; otherwise
it is dimension-specific. Example: Volume metrics are dimension-free while angle
metrics are dimension-specific.

A metric is element-free if its definition on one element type is an unambigu-
ous, natural generalization of its definition on another element type; otherwise it is
element-specific. Example: Maximum angle is element-free on two-dimensional ele-
ments while the ratio of quadrilateral diagonal lengths is element-specific.

A metric on a fixed element type is domain-general if it is meaningful over a wide
range of possible shapes of the element; otherwise it is domain-specific. Example:
Aspect ratio is domain specific. Although aspect ratio may be defined for any quadri-

1In this paper attention is restricted to linear elements having no midside nodes.
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lateral [24] it is not meaningful for any shape of quadrilateral. The minimum angle of
a quadrilateral is domain-general.

A metric on a fixed element type is versatile if it is sensitive to more than one
distortion mode (e.g., skew and aspect ratio); otherwise it is specialized. Example:
Tetrahedral shape measures are versatile while skew is specialized. Versatile metrics
are useful when one does not need to know the specific mode of distortion.

A metric is scale-free if its value does not depend on the volume of the element;
otherwise it is scale-sensitive. A metric is orientation-free if its value does not depend
on the orientation of the element in space; otherwise it is orientation-sensitive. Exam-
ple: Rectangle aspect ratio is scale-free and orientation-free. Volume is orientation-
free, but scale-sensitive.

A metric is unitless if it has no units. Example: Aspect ratio and skew are unitless
while volume is not. Unitless measures do not depend upon the physical units of the
problem (such as length in feet vs. meters).

A metric is referenced if it incorporates an explicit comparison to a reference
element, which may determine volume, shape, or orientation; otherwise it is unref-
erenced. Example: Aspect ratio h/(sw) is referenced to a rectangle with aspect ratio
s > 0. By necessity, referenced metrics are unitless.

Table 1
Quality metric property summary.

Property Restricted metric General metric
Dimension dimension-specific dimension-free

(n = 2 vs. n = 3) (e.g., only applies to n = 2) (applies to both n = 2 and n = 3)
Element type element-specific element-free

(e.g., tri or quad) (e.g., only defined for quad) (e.g., both tri and quad)
Domain domain-specific domain-general

(e.g., shape of quad) (e.g., rectangles only) (e.g., all quads)
Versatility specialized versatile

(# qualities measured) (only one) (e.g., volume-shape orientation)
Element size scale-sensitive scale-free
(or volume) (size-dependent) (size-invariant)
Orientation orientation-sensitive orientation-free

(orientation-dependent) (orientation-invariant)
Units has-units unitless

(of metric) (dimensional) (nondimensional)
Reference unreferenced referenced

(ideal element) (implicit ideal) (explicit ideal)

Before proceeding, we make a few general comments. First, many of the proposi-
tions noted have trivial proofs, which are omitted. Proofs are given for less straight-
forward results. Second, although many of the ideas presented in this paper can be
generalized, we prefer to remain concrete since the meshing application demands it.
Accordingly, we work over the field of real numbers, with objects in two or three di-
mensions (n = 2 or n = 3). We will work primarily with simplicial elements in mind
and concentrate on three dimensions since this is more difficult than two dimensions.
Most results we present hold in both two and three dimensions, even though only
one case or the other is presented. Differences are noted. Extension of our results to
nonsimplicial elements is given in section 14. We rely heavily on results from linear
algebra to develop the theory of metrics. It is important to keep in mind that our
emphasis differs from that of numerical linear algebra. The matrices with which we
work are 2 × 2 or 3 × 3, so efficiency of computation is not the main issue. Instead,
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the issue is to define algebraic metrics having the desired properties and to show how
they are related.

Various sets of matrices are used extensively in our presentation. LetMn be the
set of all n × n real matrices. Let M+

n be the set of all n × n real matrices with
positive determinant. The boundary of this latter set is ∂M+

n , the set of all n × n
singular matrices. Let In be the n× n identity matrix and O the n× n zero-matrix.
Let Z(n) be the set of all matrices inM+

n whose determinant is unity. Let SO(n) be
the set of all n×n orthogonal matrices with determinant 1. Let D(n) be the set of all
n× n nonsingular diagonal matrices and U(n) the set of all n× n nonsingular upper
triangular matrices. Let SR(n) be the set of all n × n nonsingular matrices of the
form ρΘ, where ρ > 0 and Θ ∈ SO(n). Each of these sets forms one of the classical
matrix groups. Recognition of these groups is important because we rely heavily upon
the closure, identity, and inverse properties of these matrix groups throughout this
exposition.

Consider the affine map associated with a tetrahedron. Let xk ∈ R3, k = 0, 1, 2, 3,
be the coordinates of the four vertices of the tetrahedron in physical space. Let ξk,
with 0 ≤ ξk ≤ 1 and ξ0+ ξ1+ ξ2+ ξ3 = 1, be four logical space coordinates and define
the mapping from logical space to physical space by

x(ξ) =
∑

ξk xk

with x ∈ R3.
This can be explicitly written as

x = (1− ξ1 − ξ2 − ξ3)x0 + ξ1 x1 + ξ2 x2 + ξ3 x3,

giving

x = A0 u0 + x0

with x = (x, y, z)t, u0 = (ξ1, ξ2, ξ3)
t, and

A0 =


 x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0


 .

Written in this form, one sees that x is an affine map which takes points u0 in the
right tetrahedron with node coordinates (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) to
points in a tetrahedron in physical space with the four nodes xk. The vector x0

controls translation of the element while the matrix A0 controls volume, shape, and
orientation of the element. We refer to A0 as the Jacobian matrix because the columns
xk − x0 of the matrix form the Jacobian of the affine map with respect to the logical
variables, i.e., Aij = dxi/dξj . The Jacobian matrix has units of length and is, in
general, nonsymmetric. The formulation above also applies to triangular elements on
a surface, provided the surface has a well-defined normal at every point.

3. Geometric significance of the Jacobian matrix. The Jacobian matrix of
an element is important because it is well-defined for both n = 2 and n = 3. Basing
element metrics on the Jacobian matrix thus makes it easy to devise metrics that
are dimension-free. Furthermore, the Jacobian matrix contains information relating
to the volume, shape, and orientation of an element. This can be understood more
clearly by performing the QR factorization of the Jacobian matrix. The factorization
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decomposes the Jacobian matrix into several matrices with clear geometric interpre-
tations. These matrices will be used to build mesh quality metrics in sections 9, 10,
11, 12, and 14.

Let A be the Jacobian matrix and λij = [A
tA]ij be the elements of the “metric

tensor.” Let α = det(A). It is assumed that 0 <| A |< ∞ and α ≥ 0. Elements with
α < 0 are inverted and will not be considered.

Proposition 3.1. Let A be the n = 2 or n = 3 Jacobian matrix. Then one can
decompose A as follows:

A = RU = µRS = µRQD = RQ∆,

where
• R ∈ SO(n) defines “orientation,”
• U = µS with U ∈ U(n) and Uii > 0,
• µ is a nonnegative scalar,
• S = QD with S ∈ U(n), S11 = 1, and S defines “shape,”
• Q ∈ U(n) has unit column vectors, and defines “skew,”
• D,∆ ∈ D(n) defines “aspect ratio.”

Proof. We explicitly construct the factorizations for n = 2 and n = 3, as they are
needed for computation of the various metrics to be defined later. For n = 2,

R =
1√
λ11

(
A11 −A21

A21 A11

)
,

U =

( √
λ11 λ12/

√
λ11

0 α/
√
λ11

)
,

µ =
√

λ11,

S =

(
1 λ12/λ11

0 α/λ11

)
,

Q =

(
1 λ12/

√
λ11λ22

0 α/
√
λ11λ22

)
,

D =

(
1 0

0
√

λ22/λ11

)
,

∆ =

( √
λ11 0
0

√
λ22

)
.

For n = 3, let xξk , k = 1, 2, 3, be the kth column vector of A.

R =

(
xξ1√
λ11

,
λ11xξ2 − λ12xξ1√
λ11 | xξ1 × xξ2 | ,

xξ1 × xξ2

| xξ1 × xξ2 |
)
,
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U =




√
λ11

λ12√
λ11

λ13√
λ11

0
|xξ1

×xξ2
|√

λ11

λ11λ23−λ12λ13√
λ11|xξ1

×xξ2
|

0 0 α
|xξ1

×xξ2
|


 ,

µ =
√

λ11,

S =



1 λ12

λ11

λ13

λ11

0
|xξ1

×xξ2
|

λ11

λ11λ23−λ12λ13

λ11|xξ1
×xξ2

|
0 0 α√

λ11|xξ1
×xξ2

|


 ,

Q =



1 λ12√

λ11λ22

λ13√
λ11λ33

0
|xξ1

×xξ2
|√

λ11λ22

λ11λ23−λ12λ13√
λ11λ33|xξ1

×xξ2
|

0 0 α√
λ33|xξ1

×xξ2
|


 ,

D = diag

(
1,

√
λ22√
λ11

,

√
λ33√
λ11

)
,

∆ = diag(
√

λ11,
√

λ22,
√

λ33).

The orientation matrix R rotates the first column vector of A to the x-axis (and,
for n = 3, rotates the second column vector to the x-y plane). The volume matrix U
contains volume and shape information about the element, but not orientation. The
scale factor µ is the length of the first column vector in the Jacobian matrix. The
shape matrix S contains length ratio and skew information. The length ratio matrix D
gives the ratio of element edge lengths while the skew matrix Q contains information
about the angles in the element. The matrices R, S, Q, and D have units of (length)0

while U, ∆, and µ have units of (length)1.

Orientation, volume, shape, length ratio, and skew are a complete list of the ele-
ment properties embodied in the Jacobian matrix. Other properties such as curvature
or relationships between adjacent elements are not contained in this matrix.

4. Multiple Jacobian matrices. To obtain the Jacobian matrix A0 of the
affine map in the previous section we replaced ξ0 with 1 − ξ1 − ξ2 − ξ3. A0 is thus
referenced to the node at x0. One could just as well refer to any of the four nodes in the
tetrahedron, giving four Jacobian matrices per tetrahedral element. Let k = 0, 1, 2, 3
and let

Ak = (−1)k
(

ek+1,k ek+2,k ek+3,k

)
be the kth Jacobian matrix, where ek,� = xk − x� with k �= " and " = 0, 1, 2, 3
(note that e�,k = −ek,�). Node k has three attached edge vectors, ek+1,k, ek+2,k,
and ek+3,k, where the indices are taken modulo four. The (−1)k factor ensures that
αk > 0 according to the right-hand-rule.
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Definitions. Let xk be the nodes of a simplicial element εn. Let the centroid of
the element be

xc =
1

n+ 1

∑
k

xk.

Element translation. Let x̃k be the corresponding nodes of the element translated
in space by a vector b. Then x̃k = xk + b and the centroid of the translated element,
x̃c, is x̃c = xc + b.

Element scaling. Let x̃k be the corresponding nodes of an element uniformly
scaled by ρ > 0 about the centroid. Then x̃k = xc + ρ(xk − xc) and the centroid is
x̃c = xc.

Element rotation. Let x̃k be the corresponding nodes of the element rotated about
its centroid. Then, if the rotation is given by Θ ∈ SO(n), x̃k = xc +Θ(xk − xc) and
the centroid of the rotated element is x̃c = xc.

Element scaling and rotation. Let x̃k be the corresponding nodes of the scaled
and rotated element. Then x̃k = xc +B(xk − xc) where B ∈ SR(n) and the centroid
is preserved.

Proposition 4.1. The Jacobian matrices Ak transform under element trans-
lation, scaling, rotation, or both scaling and rotation as Ãk = Ak (translation),
Ãk = ρAk (uniform scaling), Ãk = ΘAk (rotation), and Ãk = BAk (scaling and
rotation).

Proposition 4.2. If Ak is given, the nodal coordinates are known relative to one
another but not relative to the origin of the coordinate system.

The fact that Ak is not invariant to k would appear to be a serious obstacle to
using the Jacobian matrix as a basis for measuring element quality because metrics
based on Ak will vary with k.2 This difficulty will be addressed in the next section
but first we show how the four Jacobian matrices are related.

Let M ∈ Z(n) be the following constant matrix

M =


 1 1 1

−1 0 0
0 −1 0


 .

Proposition 4.3. The set I3,M,M2,M3 is a cyclic group under matrix multi-
plication.

Proposition 4.4. The four Jacobian matrices are related to one another by
Ak = A0 M

k. This can be verified by a direct calculation.3

Proposition 4.5. The Jacobian determinant αk is invariant to k.

Proof. This follows directly from Proposition 4.4 since the determinant of M
equals 1.

The result in Proposition 4.5 is to be expected since the volume of a tetrahedron
is one-sixth of the Jacobian determinant [9], and hence αk cannot depend on k.

2The matrices R,U, S,Q,D, and ∆ in the factorization of A are also not invariant to k.
3For n = 2,

M =

( −1 −1
1 0

)
.
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5. A nodally invariant Jacobian matrix. In this section we exhibit a weighted
Jacobian matrix that is nodally invariant.4 We consider linear transformations be-
tween certain simplicial elements. Figure 1 illustrates the situation in two dimensions.
Three triangular elements are shown in the figure: the logical triangle, the reference
triangle, and the physical triangle. The physical triangle is the triangle defined by
an element of the mesh. The reference triangle is the ideal triangle one wants to
obtain (for example, an equilateral triangle). The logical triangle is constructed by
placing one node at the origin and the other nodes at unit lengths along Cartesian
axes. The physical triangle has three Jacobian matrices Ak, defined in the previous
section. Similarly, the reference triangle has three Jacobian matrices Wk, computed
in the same manner. The logical triangle also has three Jacobian matrices, In, M ,
and M2, corresponding to k = 0, 1, 2. The three triangles can be related via the three
matrices Wk, Tk = AkW

−1
k , and Ak. The matrix Wk is taken to have the same units

as Ak (length); therefore Tk is unitless.

Logical element Reference element Physical element

❅
❅

❅
❅

❅
❅

✡
✡

✡
✡✡

❏
❏

❏
❏❏

❆
❆

❆
❆

❆
❆

❆

✂
✂
✂
✂
✂
✂
✂✂

✲ ✲

✲

Wk AkW
−1
k

Ak

Fig. 1.

Proposition 5.1. Given any tetrahedron with Jacobian matrices Ak, k =
0, 1, 2, 3, let Tk be the linear transformation that takes Wk to Ak. Assume det(Wk) �=
0. Then Tk = A0 W

−1
0 , that is, Tk is independent of k.

Proof. By definition, TkWk = Ak. Proposition 4.4 applies to the matrices Wk.
Thus Wk =W0 M

k. Since Ak = A0 M
k, we have the stated result.

The matrix T = AW−1 between the reference and physical elements does not
depend on which node one chooses to compute; therefore one may use T (instead of
A) to define nodally invariant element quality measures.

A consequence of the nodal invariance of T is that, unlike geometrically based
tetrahedral metrics [21], we do not use all the edges of the tetrahedron, but only three
(however, we also use three edges of the reference element).

From here on, then, we suppress the subscripts k, with the understanding that A
and W must be computed with respect to the same node. This implies a one-to-one
correspondence between the nodes of the reference element and the physical element.
The matrix W is not only useful for making T nodally invariant but, as will be seen,
it permits the construction of referenced quality metrics. Because W is derived from

4Some of the results of this section were foreshadowed in [19].
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an ideal reference element, it is reasonable to assume that w = det(W ) > 0.
The following associated derived matrices are useful in a theory of quality metrics:

T t, T−1, T−t, adj(T ), T tT (the metric matrix), (T tT )−1, and TT tT .

6. Algebraic mesh quality measures. We have shown that, given W , the
nodally invariant Jacobian matrix T can be computed using any node of a simplicial
element. The Jacobian matrix A was factored into four matrices controlling orienta-
tion, volume, skew, and length ratio. We now turn to the question of how to build
mesh quality metrics from these matrices. Determinant, trace, and norm are the most
useful means to convert matrices to scalar quantities.

Definition. Let τ = det(T ) = det(AW−1) = det(A)det(W−1) = α/w.
Proposition 6.1. α and τ are invariant to element rotation because det(ΘT ) =

det(T ).
Another useful means to convert a matrix to a scalar is the trace function.
Definition.

trace(T ) =
∑
i

Tii.

Proposition 6.2. trace(T ) is a linear map from Mn to the real numbers, i.e.,
trace(ρT ) = ρ trace(T ) and trace(T1 + T2) = trace(T1) + trace(T2).

The matrix inner product B · C, defined in terms of the trace, is trace(BtC).
For example, At ·W−1 = trace(T ). The inner product leads to the Frobenius matrix
norm

| T |2 = trace(T tT ).

The Frobenius norm is the sum of the squares of the matrix elements. The Frobenius
norm is preferred for mesh quality metrics because (1) it is less expensive to compute
than the p-norms and (2) many well-known mesh quality measures can be written in
terms of the Frobenius norm. For some of the results in this paper it is necessary to
use the 2-norm, which we will denote by | T |2. The 2-norm of T is the square-root
of the maximum eigenvalue of T tT .

Definition. Let f | Bi ∈ Mn, i = 0, . . . , I → R, be a continuous function from
sets of real matrices to the real numbers. Then f is an algebraic mesh quality metric
if (1) the matrices Bi are constructed from Ak, Wk, or factorizations thereof; (2)
the matrices Bi are converted to scalars by means of the matrix norm, determinant,
or trace; and (3) f is invariant to the element node at which the matrices are com-
puted. The algebraic metric f is referenced if the domain of f is restricted to weighted
matrices that make use of W or factorizations thereof.

Let A be the set of all algebraic mesh quality metrics.
Examples of algebraic metrics are given in Table 2. They are inspired by the

sources cited, but these sources did not pose the metrics in terms of the Jacobian
matrix, nor were they explicitly referenced.

Algebraic mesh quality metrics are, in general, no more expensive to compute
than geometrically based metrics, especially if the Frobenius norm is used.

An advantage of the algebraic metrics is that, using matrix theory and linear
algebra, they are in general easier to analyze than are nonalgebraic metrics.

Proposition 6.3. Assume det(W ) and | W |> 0. Then (1) τ = 0 if and only if
α = 0, (2) τ > 0 if and only if α > 0, (3) | T |= 0 if and only if | A |= 0, and (4)
| T |> 0 if and only if | A |> 0.

Let f({Bi}) be shorthand for f(B1, B2, . . . , BI).
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Table 2
Examples of algebraic mesh quality metrics.

Algebraic metric Comments/source

trace(T )

T ·B with B some constant matrix

| T |2 Laplace

| T tT |2 Liao [17]

τ2 Volume [4]

| adj(T ) |2 Jacquotte and Cabello [12]

τ | T−1 |2 Winslow [2]

| T |2 /τ Tinico-Ruiz and Barrera-Sanchez [1]

τ−4/3{| T tT |2 −(1/3) | T |4} Oddy et al. [20]

τ2/3 | T−1 |2 Nondimensional Winslow

τ−2/3 | T |2 Mean ratio−1 [18]

| T | | T−1 | Condition number [16]

Definition. f is scale-invariant if f({ρBi}) = f({Bi}) for ρ > 0.
Example. For n = 3, τ−2/3 | T |2 is scale-invariant, while for n = 2 it is not.
Let Θ ∈ SO(n). From the definition of the Frobenius norm it is easy to show that

| TΘ |=| T | and | ΘT |=| T |, i.e., the Frobenius norm is invariant to rotations of the
element. Because of this property, many natural algebraic metrics are orientation-free.

Definition. Let f be an algebraic metric. Then f is orientation-invariant if
f({Θ1 BiΘ2}) = f({Bi}) for Θ1,Θ2 ∈ SO(n).5

Examples.

f(T ) =| T |,
f(T ) = det(T ).

Definition. f is scale and orientation-invariant if f({H1BiH2}) = f({Bi}),
where H1, H2 ∈ SR(n).

Example. κ(T ) =| T | | T−1 |.
Definition. f is positive if f({Bi}) > 0 for all Bi �= O.
Example. f(T ) =| T |.
Definition. f is even if f({−Bi}) = f({Bi}). f is odd if f({−Bi}) = −f({Bi}).
Example. trace(T ) is odd, | T | is even, and det(T ) is odd when n is odd and

even when n is even.
Definition. f is transpose-invariant if f({Bt

i}) = f({Bi}).
Example. f(T ) =| T |.
Since norm, determinant, and trace are all invariant to matrix transpose, the

majority of mesh quality metrics are transpose-invariant. An example of a metric
that is not transpose-invariant is f(T ) =| T − C |, where C is an arbitrary constant
matrix.

Definition. The conjugate metric of f({Bi}) is f∗({Bi}) = f({B−t
i }). Note

that f∗∗ = f .
Example. For n = 3, µ(T ) = τ−2/3 | T |2 has conjugate µ∗(T ) = τ2/3 | T−1 |2.

Thus the mean ratio metric is conjugate to the modified Winslow metric.
Definition. f is self-conjugate if f∗ = f .

5f is left orientation-invariant if f({Θ1Bi} = f({Bi}). Example: f(T ) =| T tT − I |.
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Examples.

f(T ) = κ(T ) =| T | | T−1 |,
f(T ) = τ−2/3 | T |2 +τ2/3 | T−1 |2 .

7. Singular values. In this section we show that algebraic mesh quality metrics
may be expressed in terms of singular values and that this provides a useful tool in
analyzing properties of such metrics.

The singular value decomposition of a matrix T says there exists Θ,Φ ∈ SO(n)
such that

T = Θt DΦ,

where D = diag(σ1, σ2, σ3) ∈ D(n). The singular values σk(T ), k = 1, 2, 3, are real
and positive. They are related to the eigenvalues of T tT by σk(T ) =

√
λk(T tT ).

Hence | T |2=
√
λmax = σmax.

Let σ(T ) = (σ1, σ2, σ3)
t ∈ R3 be the vector of singular values of T. Let λ(T tT ) =

(λ1, λ2, λ3)
t ∈ R3 be the vector of eigenvalues of T tT . Then σ(T ) and λ(T ) map

T ∈ Mn to vectors in R3.
Proposition 7.1. For τ > 0, Ψ ∈ SO(n), and ρ > 0,

σ(T t) = σ(T ),

σ(ΨT ) = σ(T ),

σ(ρT ) = ρ σ(T ),

σk(T
−1) = 1/σk(T ),

σk(T
tT ) = σ2

k(T ).

Proposition 7.2.

| T |2 =
∑
k

σ2
k(T ) =

∑
k

λk(T
tT ),

τ =
∏
k

σk(T ) =

√∏
k

λk(T tT ).

Thus τ = 0 if and only if σmin = 0.
One can express algebraic metrics f(T ) as functions of the singular values f̃(σ(T )).

Note that f̃(σ) maps a vector in R3 to a scalar. Thus f = f̃ ◦σ maps T to a scalar, i.e.,
it is the composition of the two maps. For example, if f̃(σ) =| σ |2, then f(T ) =| T |2.
Some other examples are

| T tT |2 =
∑
k

σ4
k =

∑
k

λ2
k,

| T |4 = | σ |4=
(∑

k

λk

)2

,

| adjT |2 =
∑
l

∏
k �=�

σ2
k =

∑
�

∏
k �=�

λk,

| T−1 |2 =
∑
k

(1/σk)
2 =

∑
k

1/λk.
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Given f(T ), the corresponding function f̃(σ) always exists because the SVD of T
always exists. Thus, algebraic mesh quality metrics may always be expressed in terms
of singular values. On the other hand, given some arbitrary function f̃ of σ, there may
not correspond an algebraic mesh quality metric f(T ). For example, f̃(σ) =

∑
k sinσk

cannot be derived from a mesh quality metric.
Proposition 7.3. f(T ) = trace(T ) gives rise to a linear function f̃ of its

singular values of the form f̃(σ) = t·σ. The vector t has components t� =
∑

k Θ�,kΦ�,k.
Definition. f is homogeneous of degreem if for ρ > 0, f({ρBi}) = ρm f({Bi}).

Metrics with no such property are inhomogeneous.
Examples. f(T ) = τ is homogeneous of degree n. f(T ) = trace(T ) and | T | are

homogeneous of degree 1. | T |2 +τ2 is inhomogeneous for both n = 2, 3.
Proposition 7.4. Let f(T ) be homogeneous of degree m. Then the product f∗f

is homogeneous of degree 0, i.e., scale-invariant.
Example. f(T ) =| T |2 gives (f∗f)(T ) = κ2(T ).
Definition. Let Am

H ⊂ A be the set of all homogeneous algebraic metrics of
degree m.

Proposition 7.5. Let f1 ∈ Am
H and f2 ∈ A�

H . Then f1 f2 ∈ Am+�
H . From this

we observe that we can generate metrics having any degree of homogeneity.
Proposition 7.6. Let f1 ∈ Am

H and f2 ∈ Am
H . Then f1 + f2 ∈ Am

H .

Definition. Let Ã be the set of functions f̃(σ) derived from the set A of algebraic
mesh quality metrics. Let Ãm

H ⊂ Ã be the set of functions in Ã that are homogeneous
of degree m.

Proposition 7.7. If f ∈ Am
H , then f̃ ∈ Ãm

H .
Proof. If f({ρBi}) = ρm f({Bi}), then by definition

f̃(σ({ρBi})) = ρm f̃(σ({Bi})).
However, Proposition 7.1 then implies

f̃(ρσ) = ρm f̃(σ).

Proposition 7.8. If f is positive, so is f̃ . If f is even/odd, so is f̃ . If f is
self-conjugate, so is f̃ .

Singular values can be used to prove two important identities which hold for
Frobenius norms of 3× 3 matrices:6

Proposition 7.9.

| T tT |2 +2 τ2 | T−1 |2 ≡ | T |4,
3 | T |2 | T tT |2 − | T |6 +6 τ2 ≡ 2 | TT tT |2 .

These identities give the following bounds for T3×3:

| adjT | ≤ | T tT | ≤ | T |2,
| TT tT |2 − 1

2
| T |6 ≤ 3τ2 ≤ | TT tT |2 + 1

2
| T |6 .

6The corresponding identities for T2×2 are

| T |2 ≡ 1

2
| T − T t |2 + trace(T 2),

| T |4 ≡ | T tT |2 +2τ2.
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One can also relate κ(T tT ) to κ(T ) using singular values:

κ2(T tT ) ≡ κ4(T ) + 4κ2(T )− 2(τ−2 | T |6 + τ2 | T−1 |6).

Singular values have an important application in analyzing the equivalence of certain
quality metrics.

8. Shape measures and equivalences. Tetrahedral shape measures for de-
tecting distorted elements abound in the literature [6]. The list of measures includes
such well-known quantities as the radius ratio [9], mean ratio [18], solid angle, and
several aspect ratios [21].

A tetrahedral shape measure is formally defined in [6] as
“. . . a continuous function that evaluates the quality of a tetrahe-
dron. It must be invariant under translation, rotation, reflection,
and uniform scaling of the tetrahedron. It must be maximum for the
regular tetrahedron and it must be minimum for a degenerate tetra-
hedron. There is no local maximum other than the global maximum
for a regular tetrahedron and there is no local minimum other than
the global minimum for a degenerate tetrahedron. For the ease of
comparison, it should be scaled to the interval [0,1], and be 1 for the
regular tetrahedron and 0 for a degenerate tetrahedron.”

This definition was used to show that mean ratio and radius ratio are shape
measures while minimum dihedral angle and edge ratio are not [6].

Shape measures are clearly mesh quality metrics but, in general, they are not
algebraic mesh quality metrics. One exception is the mean ratio shape measure η,
whose definition is given in [18]:

η(T ) =
3τ2/3

| T |2 .

Definition. Let a, b, c be elements in a set. Recall that an equivalence relation
∼ on this set holds if

• a ∼ a for any a,
• a ∼ b if b ∼ a,
• a ∼ b and b ∼ c implies a ∼ c.
Definition (see Liu and Joe [18]). Let M1 and M2 be tetrahedral shape measures.

Then M1 ∼ M2 if there exist constants 0 < c1 ≤ c2 and 0 < p ≤ q such that

c1M
p
1 ≤ M2 ≤ c2M

q
1 .

The equivalence is strong if p = q. We use the notation M1 � M2 for strong equiva-
lence.

Informally, equivalent shape metrics sense the same shape distortions, grow large
together, and grow small together. The original motivation for introducing the idea
of equivalences was to reduce the list of shape measures to some manageable number.
For example, the shape measures radius ratio, mean ratio, and sine of solid angle are
equivalent [18].

Definition. The definition of shape measure equivalence can be generalized to
include all positive algebraic mesh quality measures. The definition for the latter is
the same as the former, except the phrase “tetrahedral shape measures” is replaced by
“positive algebraic mesh quality measures.”
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Proposition 8.1. | T |2�| T tT | and neither is a shape measure.
Proof. From a well-known equivalence that can be found in [10],

| T |2 ≤ | T | ≤ √
n | T |2,

we have

| T tT |2 ≤ | T tT | ≤ √
n | T tT |2,

that is,

σ2
max(T ) ≤ | T tT | ≤ √

nσ2
max(T ).

From Proposition 7.2 one can show

σ2
max(T ) ≤ | T |2 ≤ nσ2

max(T );

thus,

1

n
| T |2 ≤ | T tT | ≤ √

n | T |2 .

Proposition 8.2. Let ν > 0 be given and M be an algebraic mesh quality mea-
sure. Then Mν � M . Strong equivalence thus does not force homogeneous metrics to
have the same degree of homogeneity.

Proposition 8.3. Let ν > 0. Then M1 ∼ M2 if and only if Mµ
1 ∼ M2.

The statement that if two metrics are equivalent, then it does not matter which
one is used is an exaggeration. For example,

κ(A)/κ(W ) ≤ κ(T ) ≤ κ(A)κ(W )

shows the strong equivalence of κ(A) and κ(T ), yet the weight matrix W is a critical
factor in assessing the quality of an element.

Metrics with the same degree of homogeneity need not be equivalent. For example,
for n = 3, τ2 and | T |6 are homogeneous of degree 6 but are not equivalent.

Proposition 8.4. f1 ∼ f2 if and only if f̃1 ∼ f̃2.
Proposition 8.5. Using singular values, κ2(T ) � κ(T tT ), since

1

3
κ2(T ) ≤ κ(T tT ) ≤ κ2(T ).

Proposition 8.6. Let κ2(T ) = | T |2 | T−1 |2. Then κ ∼ κ2.
Proof. Using the first line of the proof of Proposition 8.1, one can readily show

that

κ2 ≤ κ ≤ nκ2.

Proposition 8.7. For n = 3, let µ(T ) = τ−2/3 | T |2 with conjugate µ∗(T ) =
τ2/3 | T−1 |2. Then µ ∼ µ∗ ∼ κ.

Proof. Let 0 < λ1 ≤ λ2 ≤ λ3 be the eigenvalues of T
tT .

Part A. µ ∼ κ.

µ =
1 + λ2/λ1 + λ3/λ1

[(λ2/λ1)(λ3/λ1)]1/3
.
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Therefore,

(λ3/λ1)
1/3 ≤ µ ≤ 3 (λ3/λ1)

2/3,

κ
1/3
2 ≤ µ ≤ 3κ2/3

2 ,

(κ/3)1/3 ≤ µ ≤ 35/3 (κ/3)2/3.

Part B. µ∗ ∼ κ.

µ∗ = [(λ2/λ3)(λ1/λ3)]
1/3(1 + λ3/λ2 + λ3/λ1).

Therefore,

(λ3/λ1)
1/3 ≤ µ∗ ≤ 3λ3/λ1,

κ
2/3
2 ≤ µ∗ ≤ 3κ2

2,

(κ/3)2/3 ≤ µ∗ ≤ 27 (κ/3)2.

Then by the definition of equivalences, µ ∼ µ∗.
For n = 2, the corresponding scale-invariant metric is µ =| T |2 /τ . In this case

it is easy to show that µ = µ∗ = κ.
We began this section by giving the definition of a tetrahedral shape measure.

The definition is vague on the definition of a degenerate element. In the next section
we fix this and define algebraic shape metrics.

9. Algebraic shape metrics and the condition number. We formalize the
definition of a degenerate element by first defining a degenerate matrix.

Definition. Let B ∈ M+
n ∪ ∂M+

n . Then B is degenerate if B is singular but
nonzero (i.e., | B |> 0 with det(B) = 0). B is nondegenerate if detB > 0, i.e.,
B ∈ M+

n . Let DG(n) be the set of degenerate n × n matrices. The set of singular
matrices ∂M+

n then consists of DG(n) plus the zero matrix.
Definition. A simplicial element εn is degenerate if and only if the matrices Ak,

k = 0, 1, . . . ,K − 1, are degenerate. Sliver elements are “near-degenerate” elements.
Proposition 9.1. εn is degenerate if and only if the matrix T is degenerate.
Proof. If εn is degenerate, then Ak is degenerate for all k. Since T = AkW

−1
k ,

τ = det(T ) = αk/wk = 0. Hence T is singular. Suppose T = O. Then O = AkW
−1
k ,

which gives Ak = O and | Ak | = 0. But since Ak is degenerate, its norm must
be strictly positive. To avoid this contradiction we must have | T | > 0, i.e., T is
degenerate. The proof in the other direction is similar.

As a reminder, we assume here and in subsequent sections that α ≥ 0, 0 < | A |
< ∞ and that W is nondegenerate.

We return to the factorization of the Jacobian matrix discussed in section 3. As
observed, the Jacobian matrix contains the following information: skew (Q), length
ratio (D), shape (S), volume (U), and orientation (R). It should therefore be possible
to define algebraic mesh quality metrics for each of these geometric quantities. In this
section we will consider algebraic shape metrics. Let

A = µRS,

W = µWRWSW .

The shape of A will equal the shape of W if S = SW . The shape of an element
is a measure of element skew and aspect ratio, relative to the reference shape. We
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adapt the Dompierre definition of shape measures to the algebraic setting.7

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
shape metric if

• the domain of f is restricted to the matrix T ,
• f is scale and orientation invariant,
• 0 ≤ f(T ) ≤ 1 for all T ,
• f(T ) = 1 if and only if T ∈ SR(n),8
• f(T ) = 0 if and only if T is degenerate.
Proposition 9.2. Algebraic shape metrics are invariant to uniform scalings and

rotations of the physical element.
Proof. Uniform scalings and rotations of an element mean that Ak → BAk, where

B ∈ SR(n). Then T = AkW
−1
k → BT . But by definition, f(BT ) = f(T ).

Proposition 9.3. f(T ) = n/κ(T ) is an algebraic shape metric.
Proof. The first criterion is immediate. Second, because T is nodally invariant, f

is invariant to the node at which it is computed. Observe that

κ2(T ) =
∑
i

∑
j

λi

λj

with λi the eigenvalues of T
tT . Setting ∂κ/∂λi = 0 to find the extremum, one finds

that n ≤ κ < ∞; hence 0 ≤ f ≤ 1. If f = 1, then κ = n, i.e., λi = λj for all
i, j. Therefore, by the singular value decomposition, T = λiΘ, i.e., T ∈ SR(n).
If T ∈ SR(n), then κ = n, so f = 1. This proves f meets the third and fourth
requirements. Fifth, if T is degenerate, then λ1 = 0 and so κ → ∞ and f = 0.
Finally, if f = 0, then κ → ∞, and so λ1 = 0 and λ3 > 0, so T is degenerate.

Similarly, one can prove 3/µ(T ) and 3/µ∗(T ) are algebraic shape metrics.9

The distinguishing property of the condition number is given in the following
well-known result stated in Proposition 9.4 (see [5, pp. 33–34] for proof).

Proposition 9.4. Let X and Y be 3 × 3 matrices with X nonsingular and
X + Y singular. Let

d ≡ min {| Y |2 / | X |2: X + Y singular}
be the distance between X and the set of singular matrices. The distance between X
and the set of singular matrices is 1/κ2(X).

Proposition 9.5. f = 3/κ is an equivalent measure of the minimum distance
to the set of singular matrices.

Proof. From Proposition 8.6, κ2 ∼ κ, i.e.,

κ2 ≤ κ ≤ 3κ2,

we have

f

3
≤ d ≤ f,

7In our definition we do not say anything about the metric lacking local minimae or maximae.
The property is related to the convexity of f with respect to T . This condition, while highly desirable,
is probably too restrictive in most cases, i.e., if added to the definitions, there will be no function
that can satisfy all of the requirements. Numerical results in section 13 show that the metrics we
suggest do not possess local extremae with respect to some parameters, but perhaps not all.

8This requirement forces S = SW when f = 1.
9Note that for n = 3 the Winslow metric τ | T−1 |2 is not a shape metric because it is not

scale-invariant. From the definition in section 12, it is not a shape-volume metric either. This may
explain why three-dimensional Winslow smoothing of structured grids has had only limited success.
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i.e., f goes to zero if and only if d goes to zero.
Corollary. Since DG is a subset of the singular matrices, f also measures the

distance to degenerate matrices and thus the distance to degenerate elements.

10. Algebraic metrics for skew and length ratio. The algebraic shape met-
rics, as defined in the previous section, are invariant to the node at which they are
computed. Unfortunately, the elegant way in which this is achieved by using the ma-
trix T cannot be done for properties such as skew and length ratio. To create nodally
invariant skew metrics, we can define functions that use matrices at all of the nodes.10

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
skew metric if

• the domain of f consists of the matrices Xk = QkQ
−1
Wk

, k = 0, 1, . . . ,K − 1,
in the decompositions of Ak and Wk,

• 0 ≤ f({Xk}) ≤ 1 for all matrices Xk,
• f({Xk}) = 1 if and only if Xk = In for all k,
• f({Xk}) = 0 if and only if Xk is degenerate for at least one k.
Proposition 10.1. Algebraic skew metrics are invariant to uniform scalings and

rotations of the physical element.
Proof. Under such an element transformation, Ak → BAk, where B ∈ SR(n).

Then Qk = skewAk → skewBAk = Qk. Thus Xk is unchanged under element scaling
and rotation.

Proposition 10.2. If Xk = QkQ
−1
Wk

, then f =
∏

k
n

κ(Xk) is an algebraic skew
metric.

Proof. By construction, f is nodally invariant because it uses all nodes, so f is
an algebraic metric. The remainder of the proof relies on the facts about n/κ noted
in Proposition 9.3. If f = 1, then for all k, Xk ∈ SR(n), i.e., Qk can differ from QWk

only by a rotation and scaling. But since these two matrics are both skew matrices,
we must have Qk = QWk

, hence Xk = In. If f = 0, then det(Xk) = 0 for some k.
Furthermore,

√
n | Xk | = | Xk || QWk

| ≥ | XkQWk
| = | Qk | = √

n > 0. Hence
| Xk | = 1 and Xk is degenerate.

Proposition 10.3. f = mink{ n
κ(Xk)} is an algebraic skew metric.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
length ratio metric if

• the domain of f consists of the matrices Xk = DkD
−1
Wk

, k = 0, 1, . . . ,K − 1,
in the decompositions of Ak and Wk,

• 0 ≤ f({Xk}) ≤ 1 for all Xk,
• f({Xk}) = 1 if and only if Xk = In for all k,
• f({Xk}) = 0 if and only if Xk is degenerate for at least one node.
Proposition 10.4. Algebraic length ratio metrics are invariant to scalings and

rotations of the element.
Proposition 10.5. By this definition, f =

∏
k n/κ(Xk) and f = mink n/κ(Xk)

are algebraic length ratio metrics.
Proof. The proof is similar to that of Proposition 10.2.

11. Algebraic metrics for volume and orientation. Roughly speaking, the
orientation of an element is a measure of its orientation in space relative to the ori-
entation of a reference element. Orientation is defined in terms of the matrix R in
Proposition 3.1.

10Shape metrics can also be defined in this way, using Xk = SkS
−1
Wk

. Then if f is orientation-

invariant, f({Xk}) = f({µRXkR
−1
W µ−1

W }) = f({AkW
−1
k

}) = f(T ).
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For the definition of an orientation metric, let three diagonal matrices Ψ� ∈ SO(3),
" = 1, 2, 3, be defined as follows:

Ψ�
ij =




1, i = j = ",
−1, i = j �= ",
0, i �= j.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
orientation metric if

• the domain of f is restricted to matrix X0 = R0R
−1
W0

,
• 0 ≤ f(X0) ≤ 1 for all X0,
• f(X0) = 1 if and only if X0 = In,
• f(X0) = 0 if and only if X0 = −In when n = 2, and X0 = Ψ

� for some "
when n = 3.

The matrix R0 is the orientation matrix in the factorization of A0. It is assumed
that det(R0) = 1 so that inverted elements are not considered. Algebraic orientation
metrics are nodally invariant because the nodes on which they depend are specified
(i.e., k = 0). However, they critically depend on the node-numbering scheme of the
element (i.e., which node is numbered zero).

Proposition 11.1. Algebraic orientation metrics are invariant to uniform scal-
ings of the physical element.

Proof. The proof is immediate since uniform scaling does not affect R0 and thus
X0.

Proposition 11.2. f(X0) = 1 + (trace(X0) − n)/4 is an algebraic orientation
metric. So is f(X0) = 1− 1

8 | X0 − In |2.
Proof. Consider the first statement. SinceX0 ∈ SO(n), | Xii | ≤ 1. Then we must

have n− 4 ≤ trace(X0) ≤ n, which gives 0 ≤ f(X0) ≤ 1. Suppose f(X0) = 1. Then
traceX0 = n, which forces X0 = In. Suppose traceX0 = 0. Then traceX0 = n − 4,
which, for n = 2, forces X0 = −I2 and, for n = 3, forces X0 = Ψ

�. The proof of the
second statement is similar.

The volume of an element depends both on edge lengths and element skew. A
referenced volume metric is defined below.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume metric if

• the domain of f is restricted to the matrix T ,
• f is orientation-invariant,
• f is homogeneous of degree n,
• 0 ≤ f(T ) < ∞ for all T ,
• f(T ) = 1 if and only if T ∈ Z(n),
• f(T ) = 0 if and only if T is degenerate.

A value of f greater (less) than one means the physical element has volume greater
(less) than the volume of the reference element. Since element volume is unbounded,
the upper limit of f is unbounded.

Proposition 11.3. f(T ) = det(T ) is an algebraic mesh volume metric.
If f(T ) = 1, then Ak = HWk, where H ∈ Z(n). Therefore the volume of the

element is the same as the reference element, but the shape may differ.

12. Combination metrics. Combinations of the various metrics are often more
useful than single metrics. Below we define algebraic volume-shape metrics.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume-shape metric if
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• the domain of f is restricted to the matrix T ,
• f is orientation-invariant,
• 0 ≤ f(T ) ≤ 1 for all T ,
• f(T ) = 1 if and only if T ∈ SO(n),
• f(T ) = 0 if and only if T is degenerate or det(T )→ ∞.
Proposition 12.1. Algebraic volume-shape metrics are invariant to rotations of

the physical element.
If the requirement that f be homogeneous of degree n is included in the definition

of a volume-shape metric, we cannot find specific examples. For example, adding the
homogeneity requirement in one attempt resulted in a discontinuous function, which
is not allowed under the definition of an algebraic metric.

Proposition 12.2. Define

f(T ) = min(τ, 1/τ)n/κ(T ).

Then f(T ) is an algebraic volume-shape metric.
Proof. f is continuous because limτ→1 f is the same whether one approaches from

above or below. Suppose τ ≤ 1. Since det(T ) ≤ 1 and det(T )n/κ(T ) ≤ 1 for any
T , f(T ) = 1 forces det(T ) = 1 and n/κ(T ) = 1. Thus T ∈ Zn ∩ SR(n) = SO(n).
Similarly, if det(T ) > 1, T ∈ SO(n). If f = 0, then either τ = 0, τ → ∞, or
n/κ(T ) = 0. Since | T | > 0, T is degenerate or τ → ∞.

f in the previous proposition is homogeneous of degree n when τ < 1 and homo-
geneous of degree −n when τ > 1.

It is possible in a similar manner to define and give examples of combined shape-
orientation and volume-orientation metrics. However, we skip forward to the follow-
ing volume-shape orientation metric which is potentially useful in adaptive meshing
schemes because it simultaneously measures element size, skew, aspect ratio, and
degree of alignment (say, with a flow-field).

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume-shape orientation metric if

• the domain of f is restricted to the matrices T and X0 = R0R
−1
W0

,
• 0 ≤ f(T,X0) ≤ 1 for all T and X0,
• f(T,X0) = 1 if and only if T = In = X0,
• f(T ) = 0 if and only if T is degenerate or X0 = −In for n = 2 and X0 = Ψ

�

for " = 1, 2, or 3.
Proposition 12.3. Let g(T ) = n/κ(T ), h(X0) = 1 +

1
4 (trace(X0)− n), and

f(T,X0) = min(τ, 1/τ) g(T )h(X0).

Then f(T,X0) is an algebraic volume-shape orientation metric.
Proof. Suppose τ ≤ 1. Since det(T ) ≤ 1, n/κ(T ) ≤ 1, and h(X0) ≤ 1 for any T ,

f(T ) = 1 forces det(T ) = 1, n/κ(T ) = 1, and h(X0) = 1. Thus T ∈ Zn∩SR(n)∩In =
In. Similarly, if det(T ) > 1, T = In. If f = 0, then either det(T ) = 0, n/κ(T ) = 0,
or h(X0) = 0. Since | T | > 0, T is degenerate and X0 = In for n = 2 and X0 = Ψ

�

for " = 1, 2, or 3.
Table 3 summarizes the metrics described so far (SC stands for scale, O for

orientation, SK for skew, and AR for aspect ratio).

13. Numerical examples. We have given general definitions of algebraic met-
rics for simplicial elements including shape, skew, length ratio, volume, orientation,
and combinations thereof. Using the specific examples given in sections 9, 10, 11,
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Table 3
Summary of algebraic metrics for simplicial elements.

Metric Invariants Noninvariants Example

Shape SC, O SK, AR n/κ(T )

Skew SC, O, AR SK
∏

k
n/κ(QkQ

−1
Wk

)

Length-ratio SC, O, SK AR
∏

k
n/κ(DkD

−1
Wk

)

Orientation SC, SK, AR O 1 + (trace(X0)− n)/4

Volume O, SK, AR SC det(T )

Relative size O, SK, AR relative SC min(τ, 1/τ)

Volume-shape O SK, AR, relative SC min(τ, 1/τ)n/κ(T )

Volume-shape orientation none all min(τ, 1/τ)n/κ(T )[1 +
(trace(X0)− n)/4]

Test one Test two Test three

❅
❅

❅
❅

❅
❅
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✡
✡

✡
✡

✡
✡

✡
✡

✡✡
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❉
❉
❉
❉
❉
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Fig. 2. Triangle geometry for three test cases.

and 12, we illustrate the behavior of these metrics with several test cases shown in
Figure 2.

In the first test (see Figure 3) the metrics are plotted vs. the included angle of a
triangular physical element with sides of unit length emanating from the origin. The
first side lies on the x-axis, while the second side is oriented by a variable included
angle. The reference triangle is the unit equilateral triangle with base on the x-axis.
Figure 3 shows that all the metrics except volume vary between zero and unity, as
desired. Shape and length ratio peak when the included angle matches the 60 degree
angle of the reference triangle. The skew curve is not plotted, because it is nearly
identical to the shape plot (because the relative lengths of sides of the physical triangle
are the same as the reference triangle). The volume metric (p1-size) peaks at 1.15
when the included angle is 90 degrees, i.e., the area of the physical triangle is 1.15
times the area of the reference triangle. The orientation of the physical triangle was
varied by an angle from the x-axis. The results for the orientation metric in Figure
3 show a cosine curve, which agrees with theory. The combined shape and volume
metric (p1-ss) is similar to the shape metric, but less smooth and with lower values.

In the second test (Figure 4), the same physical triangle was used except that the
length of the second side was increased to 2, the base of the triangle made an angle
of 30 degrees with the x-axis, and the reference triangle was an isosceles triangle
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Fig. 3. Unit equilateral reference triangle, included angle varied.

Fig. 4. Isosceles reference triangle, included angle varied

(perhaps describing some desired anisotropy in the mesh), with base 1 and height 2.
As the included angle was varied from 0 to 180 degrees, the angle shown in the plots
varied from 30 to 210 degrees. The metrics ranged between zero and unity, peaking
around 105 degrees for shape and 120 degrees for volume. The skew curve again
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Fig. 5. Isosceles reference triangle, second side length varied.

overlaid the shape curve.

In the third test (Figure 5), the physical triangle had a unit length base which
made an angle of 30 degrees with the x-axis. The included angle between the first and
second sides was 75 degrees. The length of the second side was varied from 0 to 3.
The reference triangle was the same as in the second test. The shape and skew curves
differed from each other somewhat because of the differences in lengths between the
physical and reference triangles. In general, however, shape, skew, and length ratio
followed the same trend as one another, peaking when the second length matched
the reference triangle. Volume varied linearly with the variation in the length of the
second side, as expected.

In our opinion, shape, volume, and combined shape-volume are the most valuable
of the metrics. Skew varies nearly the same as shape while length ratio is misleading
because it is not the ratio of element width to breadth but rather the ratio of the
lengths of consecutive sides. Orientation may be of use provided element nodes can
be numbered in a consistent manner.

14. Nonsimplicial element metrics. Nonsimplicial elements such as quadri-
laterals, hexahedra, and wedges fail to obey Propositions 4.4, 4.5, and 5.1.11 There is
no single nodally invariant matrix T which can represent all the geometric properties
of nonsimplicial elements. To build algebraic quality metrics for such elements we
can resort to the technique used in section 10, in which multiple matrices are used in
the definition of the metric. Nonsimplicial elements for which Jacobian matrices Ak

can be defined may be treated as follows. Choose a reference element and compute
the reference weight matrices Wk. Let Tk = AkW

−1
k , k = 0, 1, . . . ,K − 1, be the

11Pyramids and other three-dimensional elements having more than three edges meeting in a node
are still more problematic since the Jacobian matrix fails to exist.
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weighted matrix, where K is the number of nodes in the element. The matrices are
factored as Ak = RkUk = RkQk∆k and similarly for Wk. Basic assumptions are that
αk = det(Ak) ≥ 0, 0 < | Ak | < ∞, and that Wk is nondegenerate for all k. The Wk

should be self-consistent, i.e., computed from an element that exists.
Shape and volume metrics are defined for nonsimplicial elements, with the others

left to the reader.
Definition. Let f be an algebraic mesh quality metric. Then f is a nonsimplicial

algebraic shape metric if
• the domain of f is the complete set of matrices Tk = AkW

−1
k , k = 0, 1, . . . ,K−

1,
• f is scale- and orientation-invariant,
• 0 ≤ f({Tk}) ≤ 1 for all Tk,
• f({Tk}) = 1 if and only if Tk ∈ SR(n) for all k,
• f({Tk}) = 0 if and only if Tk is degenerate for some k.
Proposition 14.1. f({Tk}) = mink{n/κ(Tk)} is an algebraic shape metric for

nonsimplicial elements. So is K/
∑

k(κ(Tk)/3)
2.

If the definition of a volume metric given for simplicial elements in section 11 is
directly extended to nonsimplicial elements, the metric

f({Tk}) = min
k

{det(Tk)}

fails to satisfy the requirements because f = 1 does not force Tk ∈ Z(n) for all k.
Other attempts to fix this also fail. We thus redefine algebraic volume metrics as
follows.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume metric if

• the domain of f is restricted to the matrices Tk, k = 0, 1, 2, . . . ,K − 1,
• f is orientation-invariant,
• 0 ≤ f({Tk}) ≤ 1 for all Tk,
• f({Tk}) = 1 if and only if Tk ∈ Z(n) for all k,
• f({Tk}) = 0 if and only if Tk is degenerate for all k (or if det(Tk) → ∞ for

all k).
Proposition 14.2. f({Tk}) = (1/K)

∑
kmin(τk, 1/τk) is an algebraic volume

metric for nonsimplicial elements.
For simplicial elements, if the value of the volume metric is say, 1/2, then either

the physical element has half or twice the volume of the reference element.
The definition of volume-shape metrics given in section 12 readily extends to the

nonsimplicial case.
Proposition 14.3. f({Tk}) = (1/K)

∑
kmin(τk, 1/τk) mink{n/κ(Tk)} is an

algebraic volume-shape metric for nonsimplicial elements.
Figure 6 shows how such metrics vary for a quadrilateral element referenced to

a unit square. The quadrilateral is a symmetric trapezoid, with a unit length base
oriented in agreement with the reference element. The angle of the two vertical sides
with respect to the base side was varied from 60 to 165 degrees.

15. Summary and conclusions. A theory of algebraic mesh quality metrics
was proposed based on element Jacobian matrices. Jacobian matrices can be de-
composed into geometrically meaningful factors representing element volume, orien-
tation, and shape. The factor matrices are node-dependent and thus cannot be used
to construct algebraic mesh quality measures unless all are used in a symmetric way.
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Fig. 6. Square reference quadrilateral, trapezoid physical element.

However, for simplicial elements one can define a single nodally invariant matrix T
using the Jacobian matrices Wk of a reference element. We emphasize the point that
mesh quality metrics should be explicitly referenced to a logical element. Thus, for
example, shape metrics may be referenced to an isosceles, equilateral, or right-angled
simplicial element, depending on the application. We list the properties which must
be satisfied by an algebraic mesh quality metric. An algebraic definition of mesh
quality metrics permits relatively easy analysis of the properties of a metric, for ex-
ample, in terms of its singular values. Abstract definitions of metrics are given in
terms of precise requirements for algebraic shape, length ratio, skew, volume, orienta-
tion, volume-shape, and volume-shape orientation metrics. The abstract definitions
are slightly subjective, especially in the range and domain of the metrics, but are
largely noncontroversial. The requirements in the abstract definitions clearly must
be satisfied by any algebraic metric purporting to be of a particular type. Specific
examples for each type of metric are given. The examples, for the most part, are con-
spicuous in that they are new. Few traditional metrics (even were they referenced)
will qualify under the definitions given, with the notable exceptions of mean ratio and
determinant. Shape, volume, and volume-shape metrics for simplicial elements can be
posed in terms of the nodally invariant matrix T while the other metrics must use a
set of nodally dependent matrices. Examples of volume-shape metrics are difficult to
construct due to the large number of requirements they must satisfy. Volume-shape
metrics are critical to adaptive meshing, and it is significant that a rigorous definition
and example has been provided. Except for volume, the metrics are scaled between
zero and unity for ease of comparison. Multiple Jacobian matrices are needed in the
definitions of metrics for nonsimplicial elements due to the lack of an analogy to the
matrix T . The rigorous definitions given for the various types of metrics have made it
clear that it is not, in general, easy to devise metrics having all the right properties;
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this is especially true for nonsimplicial element metrics. For example, to obtain the
proper behavior for a volume metric for nonsimplicial elements, we sacrificed the ho-
mogeneity requirement. The difficulties encountered suggest that one reason why so
many mesh quality metrics have been defined in the past is that few metrics satisfy all
of the requirements. Although the metric definitions given require metrics to satisfy
rigorous criteria to qualify being a metric of a particular type, there remains some
freedom to define alternative metrics. Redundant metrics can be eliminated by in-
vestigating possible equivalences via singular values. It was shown that the algebraic
shape metric, condition number, measures the distance to the set of degenerate ele-
ments. Not all geometric properties of potential interest can be given in terms of an
algebraic metric. For example, nonalgebraic metrics based on solid angle or length-
to-width ratios cannot be expressed as algebraic metrics. However, there seems to
be little need for these additional metrics since, for example, solid-angle-based shape
metrics are equivalent to the algebraically based mean ratio shape metric.

Future work may include extending the theory to higher-order finite elements
having midside nodes as a means to measuring element curvature. Development of
connections between algebraic element quality metrics and effects upon analysis error,
efficiency, and robustness should be pursued. Finally, the metrics given are likely
candidates for objective functions in mesh smoothing and optimization techniques.
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