
Pharo Uniform Foreign Function Interface

Architecture Design - Fourth Draft

Ronie Salgado

1 Introduction

Pharo is an environment that cannot be used in isolation, unless you can also
write a full operating system in itself. Most of the modern and commonly oper-
ating systems are designed to be used by, programs that communicate with them
using core libraries written in C/C++/Objective-C. In addition to that, there
are lots of libraries written in C/C++ or other languages that can communicate
with C.

Because of these reasons, Pharo has to have a proper way to communicate
with the outside world, in other words, a good Foreign Function Interface or
FFI. A FFI is an interface to be able to call methods/procedures written in one
programming language from another language, but it also can allow to receive
messages from the foreign language.

Typical use cases for an FFI is being able to interface with massive libraries
and frameworks that is not worth to rewrite, such as the operating system, GUI
toolkits such as Gtk+ and Qt, graphic image manipulation libraries, physics
simulation engines, audio libraries.

Other typical uses are to write some performance critical portions of an ap-
plication in a low-level language such as C/C++, but using high-level language
as Smalltalk for the parts whose performance is not so important, for example a
GUI. A typical example for this use case are video games, where all the graphics,
physics and networking is done in C++, but all the game logic in a scripting
language.

Currently in Pharo there are three FFIs: the old squeak FFI, the Alien and
the NativeBoost FFI. Of those three FFI, in the latest version of Pharo only
the NativeBoost FFI is supported, and is the fastest of the three of them. But
they all have problems with either portability, callbacks or speed.

• The old Squeak FFI has problems with portability, callbacks and speed.

• Alien has problems with portability and speed.

• NativeBoost FFI is really fast, but it has problems with portability and it
does not provide end user support for callbacks. With NativeBoost call-
backs can be done, by writing their entry point and parameter mashalling
manually, in platform specific assembly language.

1



Because of those problems, this document proposes the creation of a modular
and pluggable unified foreign function interface or UFFI, that can have multiple
back-ends, among them the current FFIs or something completely different.

1.1 A glance in NativeBoost FFI

The problems of the current NativeBoost FFI is that is not portable, has bad
end user support for callbacks, has problems for making indirect calls, his docu-
mentation is not available in a centralized place for easy reference. But, despite
of those problems, you can do anything with NativeBoost, because it gives you
a powerful API into a dynamic recompiler, with an DSL for x86 assembler. In
addition to that, the user interface of performing a NativeBoost call is really
well done and the concept it uses can give you a really fast marshalling.

The design idea of NativeBoost consists in, using a primitive which takes
the control of a Smalltalk method, check if a native function that knows that it
has access to the VM and knows about marshalling was created and installed.
If that native function exists, the primitive gives control to it by getting his
offset in memory, casting it into a C function pointer with a known signature
and then calling it.

In addition to the native function code, there is also meta-data for checking
for the platform version of the code, and some house keeping.

Because of the simplicity of the approach taken by NativeBoost and his
generality, one decision taken for making a new FFI system consists in taking
from the NativeBoost FFI as most as possible for making the end-user interface.
If an UFFI back-end does not generate code, it could install a function pointer
with a well known signature into a static function that performs the actually
call-out.

2 Architecture Design

There are three fundamental modules in a foreign function interface:

• Foreign Resource Management

• Foreign Function Calling

• Foreign Function Callback

2.1 Foreign Resource Management

Foreign Resource Management (FRM) concerns about managing the resources
that has to be understood by both, foreign language methods and language
local methods. This module should care about memory management, structures
layout, reading and writing values in memory.

This resource management module should care about giving a full interface
into the C memory in a portable way, and in his internal implementation it

2



only can relay in some kind of description of the underlying platforms, that can
include things such as alignment, stack alignment.

Some types are really well defined such as sized integer as uint8, uint16, etc
or floating point number that follows the IEEE-754 standard. Those resources
must be handled in a portable way and this library should take into account the
endianness of the machine only when needed. If the machine endianness cannot
be detected and its needed, a Smalltalk exception must be raised.

For architecture and operating system dependents C types such as short, int,
long, etc, they should be a description of each platform and operating system
class that provides a mapping between the non-portable C type and the portable
type.

The size of a pointer seems to be a special case. They have a well defined
user interface and semantics associated with it. For purposes of layouts, they
must be mapped into one of the fixed size integral types, unless there are some
special requirements for alignment.

The fixed size primitive types won’t be having a default alignment, because
some of these types could not natively be supported by the underlying platform,
and they could not have in these case the expected alignment, that is his own
size.

2.2 Foreign Function Calling

The current NativeBoost callout interface is like this:

function....

<primitive: #primitiveNativeCall module: #NativeBoostPlugin error: errorCode >

^ self nbCall: #( retType functionName ( args ...) ) module: ’moduleName’

For the UFFI, the following callout is proposed:

function....

<native>

<primitive: #primitiveNativeCall module: #UFFIPlugin error: errorCode >

^ self ffiCall: #( retType functionName ( args ...) ) module: ’moduleName’

The native pragma is to give a potential opportunity for a fast as possible
implementation, that avoids completely hitting a primitive trap, either at the
VM level or the compiler level, but his actual support and specification must be
optional. In a ideal world it would be preferred to only have that pragma because
is easier to write and remember, but it would require patching at least the
compiler, by turning the pragma into a primitiveNativeCall. Because patching
the compiler can be a trouble and is preferred to be avoided, there is an initial
plan for using both pragmas as is shown.

The primitive implementation mirrors the native boost one, but it also has
to perform checks for additional ways of doing the actual call. It can have an
option to dispatch the primitive into another VM plugin primitive handler.

3



When the native pragma is not supported by the compiler and VM, the
primitive is going to be fired, which could mean some additional calls and context
changing from highly optimized JITed code into a C procedure that takes care
of handling the primitive.

The ffiCall also has to perform additional checks than nbCall. It has to look
for a suitable ffi backend, that takes care of installing the callout data required
for corresponding VM plugin, if there is someone.

Some UFFI backend would like to take care of the whole process from this
point, such as the NativeBoost back end. Other backends may like to have the
function signature already parsed and some type mapping already done. The
backend plugin interface has to allow both options.

2.3 Foreign Function Callback

For receiving a callback, the Smalltalk entry point must be a class side method
and is going to look like this:

callbackMethod_arg1: arg1 arg2: arg2 ...

<callback: #( retType (CTypeoOf<arg1> arg1, CTypeOf<arg2>, ... )>

" Here goes normal Smalltalk code "

...

This come from an important observation, callbacks do not come from
nowhere, they come from a library that has received a C function pointer some
time ago. For getting the C trampoline that does all the marshalling, the user
is going to use something like this:

someObject registerSomeCallback: (self class >> #theCallback) ffiCallback

The ffiCallback message takes care about, parsing the callback pragma and
sending into the FFI backends the data required to synthesize the C func-
tion trampoline into the Smalltalk code, that also performs all the marshalling
needed. If the FFI backend cannot create the callback trampoline, it has to
raise an exception.

3 Potential Implementation Details

3.1 C Function Call Taxonomy

The end user of a FFI only cares about calling a C function, by using a direct
call to the function using his name or an indirect call by using a function pointer.
By inspecting in how those calls are usually done, they can be classified into
the following four cases:

• Calling a C function whose entry point is bound into a global symbol that
can be looked by using a standard operating system.

4



• Calling a C function whose entry point was manually stored into a c
function pointer, but whose value is not going change. This happens
when the user needs to performs a manual lookup of the function entry
point,

• Calling a C function whose entry point is stored in a table of function
pointer, where the table itself can change but the index of the elements
cannot. These case happens when doing some kind object-oriented pro-
gramming in C.

• Calling a C function whose entry point is stored in a function pointer,
whose value can change or the pointer itself changes. This is usually done
for registering some callbacks.

Each one of these cases can be handled in a different way when the objective
is performance. But, from those cases, the most important are performing a call
into a global C function, function pointer whose value does not change and a
function pointer that can change. The table lookup is just a subset when doing
a call into a function pointer that can change. The exact syntax is going to be
documented when it is done, but it has to follow the same spirit of the direct
call syntax exposed in section about Foreign Function Calling.

4 Additional Backends

4.1 Alien

One of the objectives of making the UFFI is to be able to reuse the existing
Alien FFI, for architectures in which adding a port for it is easier than making
NativeBoost more portable.

4.2 LLVM

One interesting idea is to make a backend that uses LLVM compiler infrastruc-
ture, because it is designed for compiling optimized C function and it already
has multiples JIT backends. This small project is not to make a full Pharo
VM JIT based in LLVM, because LLVM is not designed for that and it would
require a lot of patching of LLVM.

4.3 Static C Function Generator

Another potential backend, is a fake FFI. This backend parses all the FFI callout
and callbacks in a preprocessing step, and generate for each one of them C code
that can be statically linked to the VM, so it does not have to perform dynamic
code generation, which is forbidden in some platforms and at the same it can
give the same performance as NativeBoost, but in the cost of flexibility and
losing the ability of modifying the uses of FFI in a running production system.

5



5 Implementations Plans

5.1 General Plans

They are three main modules to the UFFI architecture design, whose exact
implementation are going to be done using the following criterias and steps:

• Attempt to produce a minimal overhead when using NativeBoost as a
backend. This also includes needed refactoring of NativeBoost when needed.

• Use a TDD for defining external interfaces and internal implementations.

• Document using class comments and method comments during the early
stages of implementation.

• Create a tutorial and a reference manual for UFFI in a place that can be
find using a simple web search.

• If it is possible, a formal specification of UFFI that can be implemented
in other Smalltalk dialects should be written, after having a full imple-
mentation in Pharo.

The special emphasis in documentation, is given because of the lack of an
easy to find and consult centralized documentation, that it is required to allow
the entrance of new people working in core features and also for users, that needs
a simple step-by-step tutorial for getting started, and a full reference manual
when they need more advanced features.

5.2 Foreign Resource Management

The plans for implementing the FRM consists in:

• Study NativeBoost way of doing things here.

• Start adding a C type mapping and specification, making a clear distinc-
tion between type specification and actual type marshalling.

• Refactor NativeBoost to start using the UFFI interface for resource man-
agement. Because NativeBoost installs an optimized method that does
marshalling, the extra overhead for portability should be present only
when compiling the native callout.

5.3 Foreign Function Calling

The objectives here consists in adding the uniform foreign call specification,
which should do an automatic lookup of the actual backend implementation.
This also include extracting some elements from NativeBoost, such as the func-
tion call specification parser.

For using the NativeBoost backend, this part should be really simple. Others
backends are a lot more complex, because there is a pending documenting task
for the VM interface and marshalling details.

6



5.4 Foreign Function Callback

Callbacks are not supported without using assembly code in NativeBoost. Be-
cause of that, the callbacks support has to be added from scratch. This is the
last part that is going to be implemented in UFFI, and his implementation can
be tricky.

7


