
Speeding up Spatial Approximation Search

in Metric Spaces

KARINA FIGUEROA

Universidad Michoacana, Mexico

EDGAR CHAVEZ

Universidad Michoacana / CICESE, Mexico

GONZALO NAVARRO

RODRIGO PAREDES

University of Chile, Chile

Proximity searching consists in retrieving from a database those elements that are similar to a
query object. The usual model for proximity searching is a metric space where the distance,
which models the proximity, is expensive to compute. An index uses precomputed distances to
speed up query processing. Among all the known indices, the baseline for performance for about
twenty years has been AESA. This index uses an iterative procedure, where at each iteration it
first chooses the next promising element (“pivot”) to compare to the query, and then it discards
database elements that can be proved not relevant to the query using the pivot. The next pivot
in AESA is chosen as the one minimizing the sum of lower bounds to the distance to the query
proved by previous pivots. In this paper we introduce the new index iAESA, which establishes a
new performance baseline for metric space searching. The difference with AESA is the method
to select the next pivot. In iAESA, each candidate sorts previous pivots by closeness to it, and
chooses the next pivot as the candidate whose order is most similar to that of the query. We also
propose a modification to AESA-like algorithms to turn them into probabilistic algorithms.

Our empirical results confirm a consistent improvement in query performance. For example,
we perform as few as 60% of the distance evaluations of AESA in a database of documents, a
very important and difficult real-life instance of the problem. For the probabilistic algorithm,
we perform in a database of faces up to 40% of the comparisons made by the best alternative
algorithm to retrieve the same percentage of the correct answer. Based on the empirical results
we conjecture that the new probabilistic AESA-like algorithms will become, as AESA had been
for exact algorithms, a reference point establishing in practice a lower bound on how good a
probabilistic proximity search algorithm can be.
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1. INTRODUCTION AND RELATED WORK

Proximity or similarity searching is nowadays an essential tool in a number of
practical tasks such as vector quantization of signals, pattern recognition, retrieval
of multimedia information, and so on. In these applications there is a database (e.g.,
a set of documents) and a similarity measure among its objects (e.g., the cosine
distance). The similarity is modeled by a distance function defined by experts
in each application domain, which tells how similar two objects are. The objects
are seen as black boxes, so that the only operation permitted is to measure their
distance towards another object. The distance function is usually quite expensive
to compute and the CPU cost of side computations are not considered, and even in
some cases the I/O cost is also neglected. The search complexity is taken as just the
number of distance evaluations needed to carry out similarity searches, and thus
the goal is to search by performing the minimum number of distance evaluations.

The most basic and common case of similarity search is when the query is an
object, which is not necessarily in the database, and we ask to retrieve the k objects
most similar to it in the database, or all database objects within certain distance
to the query object. A brute force approach scans all the database to answer either
of the above queries. To reduce the query cost, an index is built on the database
before searching it. The index is a data structure that stores information on some
distances among database elements. This information is used later to discard some
elements without comparing them directly with the query object.

Different indices store different information about distances [Chávez et al. 2001].
Some store a subset of the distances, e.g. all the distances between k chosen pivots
and all the rest, or all the distances between an element and its subtree, in a tree-
structured index. Some indices store just a range of distance values, and in general,
the more information an index stores, the lower query cost it achieves (although
some use memory better than others). In this view, in a database of n objects the
most information an index could store is the n(n−1)/2 distances among all element
pairs. This is usually avoided because O(n2) space is unacceptable for realistic
database applications. However, the space is affordable in some areas such as
pattern recognition, as well as to index database subsets [Fredriksson 2007]. What
is especially relevant of this approach is that the use of all the available information
establishes a baseline on how good could an index possibly be. Actually, all the
development on metric space indexing can be regarded as the quest for maintaining
good efficiency while reducing the amount of storage used [Chávez et al. 2001].

We do not attempt to cover all the existing algorithms for metric space searching.
The reader is referred to exhaustive surveys [Chávez et al. 2001; Hjaltason and
Samet 2003] or books [Zezula et al. 2006; Samet 2006]. We will focus on the
canonical algorithm that uses all the possible distances, AESA [Vidal 1986]. For
20 years AESA has been the indexing technique requiring, by far, the least number
of distance computations among all other indices (which require much less space).

In this paper we show, for the first time, that it is possible to establish a new
baseline on the number of distance evaluations for proximity searching. More specif-
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ically, AESA uses a twofold procedure by firstly choosing a “pivot” from the remain-
ing set of candidates and using it to prune other candidates. The closer the pivot to
the query q, the more effective the pruning is. Each pivot enables a lower bound for
the distance from any database object u to the query, as the difference of distances
from u and q to the pivot p. AESA selects the next pivot as the one minimizing the
sum of lower bounds to the distance towards the query proved by previous pivots.
Then it prunes other candidates using the maximum of those lower bounds. In this
paper we introduce a new technique to choose the next pivot that guesses better a
close candidate, by choosing the candidate that orders previous pivots by closeness
in the way most similar to how the query orders them. Our technique reduces the
number of distance evaluations by up to 40% in document databases, which is a
very difficult real-life instance of the proximity search problem.

A serious problem of all algorithms in metric spaces, even for AESA, is that
when the intrinsic dimension of the space1 grows, the whole database needs to be
reviewed [Chávez et al. 2001]. In this case a probabilistic algorithm (which can miss
some relevant answers) is a practical tool. Any exact algorithm can be turned into
probabilistic, by letting it work until some predefined work threshold and measuring
how many relevant answers it found.

Probabilistic algorithms have been proposed both for vector spaces [Arya et al.
1994; White and Jain 1996] and for general metric spaces [Clarkson 1999; Ciaccia
and Patella 2002; Chávez and Navarro 2003; Bustos and Navarro 2003]. Bustos and
Navarro [2003] define a probabilistic algorithm using a technique relevant to this
work. They use different criteria to sort the database according to some promise

value. As they traverse the database in such order they find relevant answers
to the query. A good database ordering obtains most of the relevant answers by
traversing a small fraction of the database. Given a limited amount of work allowed,
the algorithm finds each correct answer with some probability, and it can refine the
answer incrementally if more work is allowed. Thus, the problem of finding good
probabilistic search algorithms translates into finding good database orderings.

We show how AESA and iAESA can be turned into probabilistic, where the
traversal order is precisely given by the heuristic to choose the next pivot. Prob-
abilistic iAESA performs better than probabilistic AESA, becoming also much
stronger than existing probabilistic algorithms (which use less space, however).
For example, in a database of faces, our algorithm performs less than 40% of the
distance evaluations carried out by the best alternative probabilistic algorithm to
achieve the same percentage of correct answers.

2. METRIC SPACES AND AESA

2.1 Notation and Basic Concepts

Let (X, d) be a metric space, where X is the universe of objects and d the distance
function among the objects in X. The distance function d : X × X → R

+ is
defined by experts in the application domain and expresses the dissimilarity between

1In a strict sense, the intrinsic dimension is the minimum dimensionality of a vector space to
which the database can be mapped without distortion, preserving the distance matrix. The term
is also used in a broader sense, as a measure of the search difficulty of a metric space, and there
are several estimators of it based on the histogram of distances, see e.g., Chávez et al. [2001].
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objects in X. The distance function must satisfy the following properties: strict
positiveness (d(x, y) > 0 ⇔ x 6= y), symmetry (d(x, y) = d(y, x)) and triangle
inequality (d(x, z) ≤ d(x, y) + d(y, z)).

Let U ⊆ X be our database of size n, q ∈ X the query, and r ≥ 0. The similarity
queries can be classified into two basic types:

—Range query, (q, r) = {u ∈ U, d(u, q) ≤ r}

—k-nearest neighbor query, k-NN(q) = A such that ∀ u ∈ A, v ∈ U− A, d(u, q) ≤
d(v, q), and |A| = k.

The naive approach to these kind of queries is to compare the whole database
with the query. This solution, however, requires n distance computations. An index
is a data structure on U that solves queries of either type trying to use less than n
distance evaluations. As the objects are black boxes, the search always proceeds by
comparing q with some element of U, discarding candidates using that distance and
the help of the index, and so on until every element is either discarded or reported.

The performance of the algorithms in metric spaces is affected by the intrinsic
dimension of the data, as described by Chávez et al. [2001]. When the dimension
grows, the mean of a distance between random objects increases and the variance
diminishes. This implies very low selectivity and prevents an effective use of the
triangle inequality: In high dimensions no algorithm can avoid a sequential scan.
AESA is also affected by dimension in spite of being the best proximity search
algorithm in metric spaces.

2.2 AESA: Approximating and Eliminating Search Algorithm

AESA was introduced by Vidal [1986]. AESA needs to compute and store a matrix
as an index, recording every distance d(u, v), ∀ u, v ∈ U, that is O(n2) distances.
During the search process, an element from the remaining candidates, called a
“pivot”, is chosen and compared with the query. AESA uses the matrix of distances
to discard remaining candidates using the triangle inequality. The algorithm is
described in Section 2.3.

Although O(n2) space can be a large amount of memory, there are applications
with small enough databases (up to few thousand objects) where managing all the
O(n2) distances is possible. For this kind of applications, AESA is still a practical
solution and the one performing least distance computations.

In the case of larger databases, where O(n2) distances cannot be stored, it is still
possible to partition the database using a hierarchical index and then apply AESA
on the last level of the hierarchy [Fredriksson 2007].

AESA has been for 20 years the algorithm that computes the least number of
distance evaluations to answer proximity queries. There have been some algorithms
aimed at reducing its preprocessing time or space used. LAESA [Micó et al. 1994]
chooses k elements of U as potential pivots, then reducing the space to O(kn).
An improved version of LAESA is Tree LAESA [Micó et al. 1996] which achieves
sublinear side computations at query time with just approximately twice the average
number of distance evaluations. Reduced Overhead AESA [Vilar 1995] strictly
calculates the same distances as AESA but reduces the query processing time.
Recently, graph t-spanner indices [Navarro et al. 2007] were used to simulate AESA,
almost reaching its number of distance calculations using less memory. In fact, all
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the development on indices for metric spaces can be seen as attempts to simulate
the performance of AESA using less memory [Chávez et al. 2001].

2.3 Searching Using AESA

Like most indexing algorithms, AESA solves nearest neighbor queries by choosing
a subset P ⊆ U (called the pivots) to compare with q, and then filtering out as
many elements of U as possible using precomputed distances. By the triangle
inequality, if p is a pivot for which we have computed d(p, q), and the index stores
distance d(p, u), then we can deduce that d(q, u) > r without evaluating d(q, u) if
|d(u, p) − d(p, q)| > r. As described by Chávez et al. [2001], this can be regarded
as using a contractive mapping Φ from the original metric space into a vector
space. In this mapping each element of the original metric space is represented as
a point in the target vector space. Let P = {p1 . . . pk}, then u ∈ U is mapped to
Φ(u) = (d(u, p1), . . . , d(u, pk)). If we set the target space to be (Rk, L∞), where
L∞ is the well-known Minkowski metric on k dimensions, then the mapping is
contractive, and thus one can safely discard projected elements using the same
radius r. By analogy we use D∞(q, u) = L∞(Φ(q), Φ(u)) in Eq. (1), and similarly
D1 in Eq. (2).

Considering all the pivots, we can discard u from the query outcome without
evaluating d(q, u) if D∞(q, u) > r, where

D∞(q, u) = max
p∈|P|

|d(u, p)− d(p, q)| (1)

is the best lower bound one can prove on d(q, u) using pivots P. We remark that
D∞(q, u) is computed without any distance evaluation once the pivots have been
compared to q and the distances of elements u to pivots p are stored in the index.

The key aspect of AESA is that the subset P to compare with the query is
not fixed, but determined online one at a time. That is, every element (not yet
compared nor discarded) is a candidate to pivot, and thus all the distances between
elements of U are precomputed and stored in the index. Because pivots closer to
the query are better at filtering out other elements, AESA attempts to choose the
next pivot as a candidate u that appears to be close to q. Of course this must be
done without measuring the actual distance d(q, u), as otherwise we have already
paid the cost to convert the candidate into pivot.

AESA uses the information given by the previous pivots (the set P, which now
grows as each new pivot is chosen and compared with the query) to estimate how
promising are the remaining candidates. More precisely, the next pivot to compare
with the query q is chosen as the candidate u minimizing

D1(q, u) =
∑

p∈|P|

|d(u, p)− d(p, q)|. (2)

The heuristic states that the sum of lower bounds is a good guess of how far
is the candidate u from p. This essentially completes the description of the range
search algorithm using AESA. The algorithm to answer a nearest neighbor query,
1-NN(q), is slightly more complicated and can be summarized in five steps.

(1) Initialization. The sets of pivots P and filtered elements F are empty. Let
D1(u)← 0 for all u ∈ U and r ←∞. Steps 2-5 are repeated until U = P ∪ F.
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(2) Approximating. A new pivot p is selected as the one minimizing D1(u)
(Eq. (2)) among the remaining candidates, that is, p← argminu∈U−F−P D1(u).

(3) Updating the NN. Distance d(p, q) is computed. If d(q, p) < r, then the
current nearest neighbor and the distance r are updated.

(4) Updating the Estimations. The new p is added to the set of pivots P. Every
object in U − F− P updates its approximation criterion according to Eq. (2),
that is D1(u)← D1(u) + |d(u, p)− d(p, q)|.

(5) Eliminating. Those u ∈ U−F−P such that D∞(q, u) > r are discarded using
the triangle inequality, by adding them to F. The process continues at Step 2.

A range query process (q, r) can be implemented similarly by keeping r fixed and
reporting every p such that d(p, q) ≤ r. In the case of k-NN(q) queries for k > 1
it is necessary to keep the k nearest neighbor candidates in a heap data structure.
Whenever a distance is computed the object and the corresponding distance will
be inserted in the heap. The first k elements correspond to the current k nearest
neighbors, and r will be the distance from q to the current k-th neighbor.

Step (2) of the algorithm is the heuristic part, as it determines the next pivot to
use. A small improvement in the approximating step may yield a large improvement
in performance. Our aim is to propose a better technique to select the next pivot.

3. OUR PROPOSAL

3.1 A New Database Ordering

Our goal is to define an order such that the first element is very close to the query,
without actually computing real distances. This order depends on the query and
must be computed just in time, when the query arrives. A natural way to define
such an ordering is to use another distance δ (easier to compute than d itself), and
choose the next pivot as the element u minimizing δ(q, u).

Note, incidentally, that probabilistic algorithms as defined at the end of the
Introduction build on the same idea: sort and traverse the database according to
an order where one expects that the first elements reviewed will be close to the
query.

In the metric proximity search literature, especially that related to AESA and
probabilistic algorithms, there are two main examples of distances used to sort the
database: D∞ (Eq. (1)) and D1 (Eq. (2)). The former has the additional benefit
of being a lower bound to the distances to q, so it permits terminating the search
when the most promising element is sufficiently far away from q in terms of D∞.
In turn, the second has been preferred in AESA for its good heuristic performance.

Our main contribution is the definition of another way to sort the candidates,
which obtains better results in terms of choosing better pivots for AESA. Unlike
the two previous examples, where the numeric values of previously computed dis-
tances are used, we use the relative order in which the pivots are perceived by the
candidates. The precise definition needs some formalism.

Every element x ∈ X defines a preorder ≤x in P given by the distance to x. The
preorder is defined for y, z ∈ P, as

y ≤x z ⇐⇒ d(x, y) ≤ d(x, z).

Journal of the ACM, Vol. V, No. N, Month 20YY.



Speeding up Spatial Approximation Search · 7

The relation ≤x is a preorder and not an order because some elements can be
at the same distance from x, and then ∃ y 6= z such that y ≤x z ∧ z ≤x y.
Since this distinction is not essential for our construction we will convert ≤x into
an order by breaking ties arbitrarily (but consistently for all x). Let us fix P =
{p1, p2, . . . , p|P|}, then we redefine ≤x as

pi ≤x pj ⇐⇒ d(x, pi) < d(x, pj) ∨ (d(x, pi) = d(x, pj) ∧ i < j).

Now it turns out that ≤x is a total order (that is, every pair of pivots is compara-
ble), thus we can associate a permutation Πx to each x ∈ X. We define permutation
Πx = (i1, i2, . . . , i|P|) of (1 . . . |P|) so that

pi1 ≤x pi2 ≤x · · · ≤x pi|P| .

We also use Π−1
x (i) to identify the position of element i in permutation Πx.

Our intuition is that two close elements will have a similar permutation (indeed,
if the two elements coincide, they must have the same permutation). Therefore, we
propose to sort, up to ties, the candidates u by dissimilarity between Πu and Πq.
Tie breaking in permutations will be discussed shortly.

There are several choices in the literature for measuring dissimilarities between
permutations. In previous work [Chávez et al. 2008] we experimented with a few
of them, such as Kendall Tau, Spearman Rho, or Spearman Footrule [Fagin et al.
2003]. We found that their performance, for our purposes, were similar. Since
Spearman Footrule is the least expensive to compute among those, we choose it as
our dissimilarity measure. Spearman Footrule measures how much the indexes are
displaced in the respective permutations and is defined as follows:

F (Πu, Πq) =

|P|∑

i=1

|Π−1
u (i)−Π−1

q (i)|. (3)

For example, let Πq = (42153) be the permutation associated to the query, and
Πu = (32154) the permutation associated to an element u ∈ U. According to
Eq. (3), we have F (Πu, Πq) = |3 − 3|+ |2 − 2|+ |5 − 1|+ |1 − 5|+ |4 − 4| = 8. In
this case objects 3 and 4 exchanged positions, counting four positions each.

3.2 iAESA: Improved AESA

After the previous discussion we can establish the core of our proposal. It is simply
to substitute the use of D1 by F (Eq. (3)) in the approximating step of AESA
(Section 2.3). The rest of the algorithm remains the same.

Note that, since P grows as the algorithm progresses, the permutations and the
F measures for the remaining candidates u change on the fly. Figure 1 illustrates
the changes made on AESA to obtain iAESA.

In Figure 2 we compare iAESA with AESA, using the same example shown by
Vidal [1986]. The example retrieves the nearest neighbor to the query q. In the
figure (left side) the objects are p1, . . . , p7 and q is the query; the solid lines are the
terms of Equation (2); the dashed lines indicate the process to select the next pivot
(labeled step-1, step-2 and step-3); the circle and the semicircles are the distances
from a pivot to the query, and the semicircles are labeled by the order of execution,
step-1, step-2 and step-3. They help viewing the ordering induced by D1.
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AESA

1. Let P← ∅ set of pivots
2. Let F← ∅ set of filtered elements
3. r ←∞
4. for u ∈ U, D(u)← 0, Dmax

u ← 0
5. while U 6= P ∪ F do

6. p← argmin
u∈U−P−F

D(u)
7. P← P ∪ {p}
8. if d(q, p) < r then

9. r ← d(p, q)
10. p∗ ← p

11. end if

12. for u ∈ U− P− F do

13. Dmax

u
← max (Dmax

u
, |d(q, p) − d(u, p)|)

14. if Dmax

u > r then

15. F← F ∪ {u}
16. else

17. D(u)← D(u) + |d(q, p)− d(u, p)|

18. end if

19. end for

20. end while

21. return p∗

iAESA

1. Let P← ∅ set of pivots
2. Let F← ∅ set of filtered elements
3. r ←∞, Πq ←<>

4. for u ∈ U, F (u)← 0, Πu ←<>

5. for u ∈ U, Dmax

u ← 0
6. while U 6= P ∪ F do

7. p← argmin
u∈U−P−F

F (u)
8. P← P ∪ {p}
9. insert p in Πq

10. if d(q, p) < r then

11. r ← d(p, q)
12. p∗ ← p

13. end if

14. for u ∈ U− P− F do

15. Dmax

u
← max (Dmax

u
, |d(q, p)− d(u, p)|)

16. if Dmax

u > r then

17. F← F ∪ {u}
18. else

19. insert p in Πu

20. F (u)← F (Πq, Πu)
21. end if

22. end for

23. end while

24. return p∗

Fig. 1. AESA and iAESA algorithms to retrieve the nearest neighbor.

AESA initially selected p1. The next pivots are p2 (step-1), p3 (step-2), and p4

(step-3), as they are, successively, the ones minimizing the D1 distance to q.
On the other hand, in the process of iAESA, p1 and p2 are selected in the same

way as AESA. We have drawn the permutation associated to the elements at this
point. Note that Πp4

is the same Πq = (21), therefore p4 is the next (and last)
pivot. In this example iAESA uses the pivots (p1, p2, p4), one less than AESA.

The CPU time complexity of AESA is O(|P| · n): |P| is the number of iterations
over the elements not yet discarded, and D(u) is updated in constant time per can-
didate in each iteration. The CPU time complexity of iAESA is higher because we
need O(|P|) time to update Πu and the corresponding value of F (Πu, Πq), totalizing
O(|P|2 · n). In metric space searching, this increase in the CPU time complexity is
tolerated when the algorithm reduces the number of distance evaluations computed,
as we show is the case of iAESA in Section 4.

iAESA2: A Combined Criterion. The similarity among permutations is effective
only when we have added sufficient pivots to P. Before that, it discriminates little
among different zones of the space. In particular, permutations give no clue on
how to select the second pivot, whereas D1 gives an effective criterion. In general,
permutations formed with few pivots will have many ties.

We propose a variant of iAESA, called iAESA2, that uses Spearman Footrule as
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Fig. 2. On the left, the example shown in [Vidal 1986] to explain AESA. On the right, iAESA
process for the same set of elements. The order of selection is step-1, step-2 and step-3. Note that
iAESA uses one pivot less than AESA in this example.

its primary criterion, and D1 as a secondary criterion to break ties in F .
The time complexity of iAESA2 is also O(|P|2 · n).

Probabilistic iAESA. As described at the end of the Introduction, every exact
algorithm can be turned into probabilistic by preempting it after some amount of
work has been carried out. In particular, a probabilistic version of AESA, iAESA
and iAESA2 for nearest neighbor search consists in reviewing objects up to some
fraction of the database and report the closest object found so far.

4. EXPERIMENTAL RESULTS

We experimented on different synthetic and real-life metric databases. The real-life
metric spaces are TREC-3 documents under the cosine distance [Baeza-Yates and
Ribeiro-Neto 1999], and a database of feature vectors of face images under Euclidean
distance [Navarrete and Ruiz-del-Solar 2002]. The synthetic metric space examples
are random vectors in the unitary cube under the Euclidean distance. Each point
in each plot is obtained as an average over 100 different runs.

4.1 Exact iAESA

4.1.1 Unitary Cube. The performance of state-of-the-art proximity searching
algorithms when answering both range and k-nearest neighbor queries worsens as
the dimension of the space grows [Chávez et al. 2001; Böhm et al. 2001]. Therefore,
it is interesting to experiment in spaces with different dimensions. A way to control
the dimension of the space is to generate synthetic sets uniformly distributed in the
unitary cube, and use these sets as abstract metric spaces.

We experimented with dimensions 4 to 14, for databases of size from 5,000 to
20,000 elements. The performances of AESA and iAESA for k-NN searching are
compared in Figure 3. As expected, increasing the dimension of the data makes the
problem more difficult. However iAESA performs consistently (up to 17%) better
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than AESA for small k. For larger k our technique worsens compared to AESA.
For example, in dimension 14, AESA takes over iAESA for k > 5. iAESA2 had the
same performance as iAESA, hence it is omitted in this experiment. In any case,
the differences are not so significant as in the real-life metric spaces considered in
the next sections.
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Fig. 3. Performance of our technique against AESA for different dimensions (top) for 2-NN queries.
On the bottom, the dimension is 12 and 14 and n = 5, 000, and we retrieved different number of
nearest neighbors.

Just to confirm that AESA is by far the best performing index, we compare
in Figure 4 AESA and iAESA with List of Clusters [Chávez and Navarro 2005],
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Fig. 4. Comparing our technique with AESA and List of Clusters on the unitary cube of dimension
16. Retrieving 5 nearest neighbors.

which is reported as an extremely efficient (linear-space) index for dimensions 14–
20. AESA and iAESA are at least twice as fast in terms of distance computations.

4.1.2 Documents. Collection TREC-3, formed by 1,265 English files obtained
from different sources, was indexed. We compare the documents using the vector
space model, taking the angle between vectors as the distance measure (this is in-
versely proportional to the cosine similarity [Baeza-Yates and Ribeiro-Neto 1999]).

Figure 5 (top) shows the results for k-NN searching. The number of distance
computations of iAESA grows slower than AESA as k grows, and for k > 6 iAESA
takes over. It can also be seen that iAESA2 is clearly better than both AESA and
iAESA. iAESA2 takes as low as 60% of the distance computations made by AESA.

As we have mentioned, iAESA and iAESA2 have higher asymptotic upper bound
on CPU cost compared with AESA. In Figure 5 (bottom) we show that iAESA2
is, in practice, better than AESA even in terms of CPU time.

As a sanity check, we compared the results of AESA against the heuristic of
choosing the next pivot at random. This turned out to make four times more
evaluations than AESA.

4.2 Probabilistic AESA and iAESA

With a probabilistic algorithm we can handle much higher dimensions, in exchange
for losing a few elements. A new parameter related to the quality of the answer has
to be taken into account. This is measured in two ways. The first is the number of
queries for which the probabilistic algorithm finds the correct k nearest neighbors
after scanning a percentage of the database. The second is, for the queries where
the correct answer is not obtained, the relative error: distance to the k-th NN found
by the algorithm divided by the distance to the correct k-th NN.
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Fig. 5. Comparing the performance of our technique against AESA on a document database (1,265
documents). We show both number of distance computations (top) and CPU time (bottom).

4.2.1 Unitary Cube. We generated 3,000 synthetic random vectors in the uni-
tary cube of 128 dimensions. No exact algorithm is able to avoid a full sequen-
tial scan in 128 dimensions. Figure 6 (top) shows the percentage of successful
queries when the number of objects compared with the query is limited. iAESA
and iAESA2 perform similarly, solving more correct queries than AESA as soon
as we traverse a very small fraction of the database. On the bottom we show the
relative error in unsuccessful queries, which are very low in all cases.

Figure 7 compares probabilistic iAESA and iAESA2 against a linear-space prob-
abilistic algorithm based on the permutation technique described here. This algo-
rithm was shown by Chávez et al. [2008] to be by far better than existing alterna-

Journal of the ACM, Vol. V, No. N, Month 20YY.



Speeding up Spatial Approximation Search · 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2  3  4  5  6  7  8  9  10

%
 o

f s
uc

ce
ss

fu
l q

ue
rie

s

% of database reviewed

iAESA k=1
AESA k=1

iAESA2 k=1
iAESA k=2
AESA k=2

iAESA2 k=2

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 2  3  4  5  6  7  8  9  10

re
la

tiv
e 

er
ro

r

% of database reviewed

iAESA
AESA

iAESA2

Fig. 6. Searching for k-NN queries on synthetic random vectors uniformly distributed in the
unitary cube with 128 dimensions and 3,000 objects. On top the percentage of successful queries
(higher is better) and on the bottom the relative error for unsuccessful queries.

tives, e.g. Bustos and Navarro [2003]. It consists in choosing a fixed set of pivots,
sorting the database according to the permutations of that set, and traversing a per-
centage of the sorted database. The figure shows that the alternative probabilistic
method is very far from achieving the same performance of iAESA or iAESA2.

Approximate proximity search has been recently surveyed by Patella and Ciac-
cia [2009]. This is a more general model where a relaxation on the accuracy of
the answer is allowed. With the experimental result shown above, we conjecture
that probabilistic AESA-like algorithms can serve as a baseline for approximate
proximity searching algorithms.
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Fig. 7. Comparing iAESA with a linear-space version of the probabilistic algorithm using random
vectors on dimension 128, 60 pivots and n=3000.

4.2.2 FERET Face Images Database. Many real databases are composed of few
objects, each of them with very high intrinsic dimension. This is the case of the
FERET database of face images [Phillips et al. 1998]. We used a target set with
762 images of 254 different classes (three images per class), and a set of 254 queries
(1 image per class). Here each class is a person, the three images in the class are
photos taken in different angles, and the corresponding query is a fourth photo
of the same person. The intrinsic dimension of the database is around 40 when
measured according to Chávez et al. [2001] or Navarrete and Ruiz-del-Solar [2002].
This is considered intractable for indexing because a search with or without index
takes about the same time: Using the exact version of AESA ends up comparing
90% of the database. The performance of probabilistic AESA, iAESA and iAESA2
on this database is presented in Figure 8. It can be seen that, as k grows, the
number of distance computations to achieve a given percentage of correct answers
grows accordingly. Yet, in all cases, iAESA2 performs consistently better than the
others. This time the relative errors are a bit higher, although still acceptable.

5. REDUCING CPU TIME

We have established a new baseline, both for exact and probabilistic algorithms, in
terms of the number of distance computations. In this section we turn our attention
to the extra CPU time involved in the process. In many metric spaces the extra
CPU time is irrelevant because distance computations are very expensive (e.g., we
have shown in Figure 5 that iAESA was faster than AESA even considering its
higher CPU complexity per pivot processed). Yet, there are cases where the extra
CPU time deserves attention. In this section we present a couple of ideas in the
aim of reducing extra CPU time.

The core of the cost in iAESA is, for every new pivot p = pj introduced in P,
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Fig. 8. Searching for k-NN queries in a real-life image database of 762 faces.

(i) to recompute the new permutations Πu for all the remaining candidates u, and
(ii) to recompute the new values F (Πq, Πu) as well, using Eq. (3).

Incremental updating of F . A first idea is to update F incrementally as we insert
the index j of the new pivot pj at its correct position in Πu. Let posu = Π−1

u (j) be
that position. Similarly, we call posq = Π−1

q (j) the position where p = pj has been
inserted into Πq. We can divide the permutation into an active and a passive zone.
The passive zone Pq is the part of the permutation Πq before posq and the active
zone Aq is the part after posq, as illustrated below.
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posq

q qΠq = ppassiveZone activeZone

Likewise, let us call Pu and Au the passive and active zones of Πu. The new
value of F can be computed from the current one by comparing the interactions of
active and passive zones. We have four interactions to analyze, as illustrated next.

posq

posu

Πu = p

pqpassiveZone activeZone

passiveZone activeZone

q

uu

Πq =

Note that indices that are in the same zone (active or passive) in both permuta-
tions will not alter the value of F . Thus we have to focus on the other two cases. We
precompute Π−1

q and traverse each Πu backwards while searching for the insertion
point of j. The idea is to update F while we insert j in Πu.

We first assume that all the objects that are in Aq increase F (that is, they are in
Pu and their positions precede those in Aq), and later correct the cases where this
is wrong. We now traverse Πu backwards. As long as we shift the positions to make
room for j, we are in Au. With Π−1

q we know whether each element we shift is in Aq

or Pq. If it is in Pq, we determine whether the positions are closer or farther after
the shift and update F accordingly. If it is in Aq, we reverse the increment made
by the default assumption that all the elements Aq were in Pu. Once we arrive at
the insertion point of j, the computation of F is almost correct, except that it is
possible that some default increments should have been decrements. That is, if an
element in Aq was in Pu but its position in Aq preceded that in Pu, the shift in Aq

decreases rather than increasing F . This is corrected by traversing Pu backwards,
yet we only have to review until position posq.

Let us see an example. Let 12 be the index of the new pivot, and let the permu-
tations before inserting 12 be:

Πq = ( 7 9 8 5 4 6 10 11 3 2 1 )
Πu = ( 2 10 6 11 9 4 7 3 8 5 1 )

we have F (Πq, Πu) = 44. After 12 is inserted, we have:

Πq = ( 7 9 8 5 12 4 6 10 11 3 2 1 )
Πu = ( 2 10 6 11 9 4 7 3 12 8 5 1 )

We start by increasing F by |Aq| = 7. Now we traverse Au backwards. Index 1
is in Aq, so we decrement F to reverse the incorrect increment. Index 5 is in Pq

and the distance increases, so we increment F . The same goes for index 8. We now
have to correct the mistakes in Pu. Index 3 is in Au and the default increment was
correct, index 7 is in Pq so we do nothing. Index 4 was counted as an increment
but it should have been a decrement, so we decrease F by 2. Finally we add 4 (the
distance between both positions of 12) to F , to get its updated value F = 54.
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We compared this incremental algorithm versus the brute-force one to recompute
F in the unitary cube with 5,000 objects. Figure 9 shows the performance ratio in
terms of number of operations for both algorithms, as well as total CPU times.
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Fig. 9. On top, the cost ratio of incremental versus brute-force algorithm, in terms of number of
operations. A smaller ratio implies fewer operations in the incremental algorithm. On the bottom,
absolute CPU times.

The experiments show that it is possible to reduce the number of operations by
almost 60%, but this does not heavily impact the CPU time. That is, although we
traverse slightly more than half of the permutations on average, the more complex
logic cancels the gains.
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Fig. 10. Tradeoff in CPU time for iAESA and iAESA2, on 5,000 random points and retrieving 2
nearest neighbors.

Delayed recomputation. An alternative way to improve the performance of iAESA
is to avoid recomputing all the Πu and F (Πq , Πu) values every time a new pivot is
added to P. Instead, we recompute those values every t pivots. In this case, instead
of choosing the next pivot using the current F values, we choose the next t pivots
at once, using algorithm IQS [Paredes and Navarro 2006]. A similar idea could be
applied to AESA.

Parameter t yields a tradeoff in CPU time. As it grows, the quality of the pivots
chosen decreases and thus the candidate sets are larger and the total number of
distance computations may increase, but CPU time per processed candidate is
reduced. The optimum value depends on the metric space and on the cost of
computing the distance. If the distance is too expensive, a smaller value of t is
preferable. Figure 10 shows experiments on uniformly distributed vectors, where
the distance is relatively cheap to compute. In this case the best t values are in the
range of 7 to 10, where reductions of up to 25% in the CPU time are achieved.

6. CONCLUSIONS AND FUTURE WORK

Proximity searching in metric spaces consists in retrieving the elements from a
database that are close enough to a given query. The similarity between objects is
measured by a distance function that is usually expensive to compute. AESA [Vidal
1986] has been without question, for 20 years, the most successful algorithm to solve
similarity queries, because it computes the least number of distance evaluations to
answer them.

The good performance of AESA is based on the elements that it chooses to
compare with the query, called pivots. In this paper we proposed a better way to
iteratively select the pivots. Our method establishes a new performance baseline
for both exact and approximate proximity searching algorithms.
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Our key result is a better predictor of the real distance between objects without
evaluating it explicitly. This predictor is an ordering based on permutations that
we proved to be superior to distance D1, which had been the best choice for 20
years. Yet, one line of work is trying to find even better estimators, as this is the
key to obtain improved performance.

Another related issue is the extra CPU cost to compute this estimator. Our
new estimator is slightly more expensive than that of AESA but, since it achieves
a reduced number of distance evaluations, it obtaines better overall performance
compared to AESA when the distance is sufficiently expensive to compute. We
have presented some techniques that achieve improved CPU time, yet we have not
solved the basic data structuring problem that arised. This problem, which can be
of independent interest, can be stated as follows: Design a data structure that stores
two permutations (those are our Πq and Πu) supporting the following operations:
(1) create a pair of empty permutations; (2) insert element j + 1 anywhere in each
of the two permutations of (1 . . . j); (3) compute F between both permutations
(Eq. (3)). Is it possible to execute m operations in o(m2) time?

Finally, it is always interesting to achieve versions of AESA-like structures that
approach their performance using less space, albeit, as we have already mentioned,
all the research in metric indices can be regarded under this light.
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