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Abstract

The metric space model abstracts many proximity or similarity problems, where the most frequently considered
primitives are range andk-nearest neighbor search, leaving out thesimilarity join, an extremely important primitive.
In fact, despite the great attention that this primitive hasreceived in traditional and even multidimensional databases,
little has been done for general metric databases.

We solve two variants of the similarity join problem: (1)range joins: Given two sets of objects and a distance
thresholdr, find all the object pairs (one from each set) at distance at most r; and (2)k-closest pair joins: Find the
k closest object pairs (one from each set). For this sake, we devise a new metric index, coinedList of Twin Clusters
(LTC), which indexes both sets jointly, instead of the natural approach of indexing one or both sets independently.
Finally, we show how to use the LTC in order to solve classicalrange queries. Our results show significant speedups
over the basic quadratic-time naive alternative for both join variants, and that the LTC is competitive with the orig-
inal list of clusterswhen solving range queries. Furthermore, we show that our technique has a great potential for
improvements.
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1. Introduction

Proximityor similarity searchingis the problem of, given a data set and a similarity criterion, finding the elements
from the set that are close to a given query. This is a natural extension of the classical problem of exact searching. It
has a vast number of applications. Some examples are:

• Non-traditional databases.New so-calledmultimediadata types such as images, audio and video cannot be
meaningfully queried in the classical sense. In multimediaapplications, all the queries ask for objectssimilar
to a given one, whereas comparison for exact equality is veryrare. In fact, no application will be interested in
finding an audio segment exactly equal to a given one, or in retrieving an image pixelwise equal to the query
image (as the probability that two different images are pixelwise equal is negligible unless they are digital
copies of the same source). Some example applications are image, audio or video databases, face recognition,
fingerprint matching, voice recognition, medical databases, and so on.

• Text retrieval.Huge text databases with low quality control have emerged (the Web being the most prominent
example), and typing, spelling or OCR (optical character recognition) errors are commonplace in both the text
and the queries. Documents containing a misspelled word areno longer retrievable by a correctly written query
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or vice versa. Thus, many text search engines aim to find text passages containing close variants of the query
words. There exist several models of similarity among words(variants of the “edit distance” [29, 39]) which
capture very well those kinds of errors. Another related application is spelling checkers, where we look for
close variants of a misspelled word in a dictionary.

• Information retrieval. Although not considered as a multimedia data type, unstructured text retrieval poses
problems similar to multimedia retrieval. This is because textual documents are in general not structured to
easily provide the desired information. Although text documents may be searched for strings that are present or
not, in many cases it is more useful to search them for semantic concepts of interest. The problem is basically
solved by retrieving documents similar to a given query [45,5], where the query can be a small set of words
or even another document. Some similarity approaches are based on mapping a document to a vector of real
values, so that each dimension is a vocabulary word and the relevance of the word to the document (computed
using some formula) is the coordinate of the document along that dimension. Similarity functions are then
defined on that space. Notice, however, that as the vocabulary can be arbitrarily large, the dimensionality of this
space is usually very high (thousands of coordinates).

• Computational biology.DNA and protein sequences are basic objects of study in molecular biology. They can
be modeled as strings (symbol sequences), and in this case many biological quests translate into finding local or
global similarities between such sequences in order to detect homologous regions that permit predicting func-
tionality, structure or evolutionary distance. An exact match is unlikely to occur because of measurement errors,
minor differences in genetic streams with similar functionality, andevolution. The measure of similarity used
is related to the probability of mutations such as reversalsof pieces of the sequences and other rearrangements
(global similarity), or variants of edit distance (local similarity).

• There are many other applications, such asmachine learning and classification, where a new element must
be classified according to its closest existing element;image quantization and compression, where only some
vectors can be represented and those that cannot must be coded as their closest representable point;function
prediction, where we want to search for the most similar behavior of a function in the past so as to predict its
probable future behavior; and so on.

All those applications have some common characteristics, captured under themetric space model[13, 26, 46, 51].
There is a universeX of objects, and a nonnegativedistance function d: X × X −→ R

+ ∪ {0} defined among them.
Objects inX do not necessarily have coordinates (for instance, stringsand images). The distance function gives us a
dissimilarity criterion to compare objects from the database. Thus, the smaller the distance between two objects, the
more “similar” they are. This distance satisfies the following properties that make (X, d) a metric space:

∀ x, y ∈ X, x , y⇒ d(x, y) > 0 strict positiveness,

∀ x, y ∈ X, d(x, y) = d(y, x) symmetry,

∀ x ∈ X, d(x, x) = 0 reflexivity,

∀ x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

These properties hold for many reasonable similarity functions.
Typically, we have a finitedatabaseor datasetU ⊂ X, which is a subset of the universe of objects and can be

preprocessed to build anindex. Later, given a new objectq ∈ X, a proximity query consists in retrieving objects from
U relevant toq. There are two basic proximity queries or primitives:

Range query (q, r): Retrieve all the elements inU which are within distancer toq. That is, (q, r) = {x ∈ U, d(x, q) ≤ r}.

k-Nearest neighbor query NNk(q): Retrieve thek elements fromU closest toq. That is,NNk(q) such that∀x ∈ NNk(q),
y ∈ U \ NNk(q), d(q, x) ≤ d(q, y), and|NNk(q)| = k.

Given the databaseU, these similarity queries can be trivially answered by performing |U| distance evaluations.
However, as the distance is assumed to be expensive to compute (think, for instance, in comparing two fingerprints),
it is customary to define the complexity of the search as the number of distance evaluations performed, disregarding
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other components such as CPU time for side computations and even I/O time. Thus, the ultimate goal is to structure
the database so as to compute many fewer distances when solving proximity queries.

Naturally, we can consider other proximity operations. In fact, in this paper we focus on thesimilarity join
primitive; that is, given two datasets, finding pairs of objects (one from each set) satisfying some similarity predicate.
If both datasets coincide, we talk about thesimilarity self join. To illustrate this concept, let us consider a headhunting
recruitment agency. On the one hand, the agency has a datasetof resumes and profiles of many people looking for a
job. On the other hand, the agency has a dataset of job profilessought by several companies looking for employees.
What the agency has to do is to findall the person-company pairs which share a similar profile. Similarity joins have
other applications such as data mining, data cleaning and data integration, to name a few. Despite the great attention
that this primitive has received in traditional and even multidimensional databases [9, 30, 6, 28] little has been done
for general metric databases [19, 20].

In this work, we start by considering a variant of similarityjoin, the range join3: Given two datasetsA, B ⊂ X

and a distance thresholdr ≥ 0, find all the object pairs at distance at mostr. Formally, given two finite datasets
A =
{

a1, . . . , a|A|
}

andB =
{

b1, . . . , b|B|
}

, the range joinA ⊲⊳r B is the set of pairs

A ⊲⊳r B = {(a, b), a ∈ A, b ∈ B, d(a, b) ≤ r}. (1)

The range join essentially translates into solving severalrange queries, where queries come from one set and
objects relevant for each query come from the other. Thus, a natural approach to computeA ⊲⊳r B consists in indexing
one set and later solving range queries for each element fromthe other. Moreover, following this approach we can
also try indexing both sets independently in order to speed up the whole process. Instead, we propose toindex both
sets jointlywhich, to the best of our knowledge, is the first attempt following this simple idea. For this sake, based on
Chávez and Navarro’slist of clusters(LC) [12], we devise a new metric index, coinedlist of twin clusters(LTC).

Next, we show how to use the LTC in order to compute another variant, thek-closest pair join: Given two
datasetsA andB, find thek closest object pairs. Formally, thek-closest pair joinA ⊲⊳k B is ak-element set of pairs
where for all pairs (a, b) ∈ A ⊲⊳k B, a ∈ A, b ∈ B and for all pairs (u, v) ∈ ((A× B) \ (A ⊲⊳k B)), u ∈ A, v ∈ B, then
d(a, b) ≤ d(u, v). In case of ties we choose anyk-element set of pairs that satisfies the condition.

Finally, we show how to use the LTC in order to solve basic range queries for objectsq ∈ X retrieving relevant
objects from (A∪ B). That is, use the LTC not only as an index to solve similarityjoins but also as an index to solve
the basic similarity primitives.

Afterwards we carry out an experimental evaluation of the LTC approach in order to verify that both similarity join
variants significantly improve upon the basic quadratic-time naive alternative, and also that the LTC is competitive
with the classical LC when solving range queries. Furthermore, we show that our technique has a great potential for
improvements.

This paper is organized as follows. In the next section we review related work both in the list of clusters and
similarity joins. Then, in Section 3 we describe the LTC, itsbasic operations and its construction; and in Section 4,
how to use it in order to compute range joins,k-closest pair joins, and general range queries. Experimental results are
shown in Section 5. Finally, in Section 6 we draw our conclusions and future work directions. An early version of
this work appeared in [43].

2. Related work

2.1. List of clusters
Let us briefly recall what a list of clusters [12] is. The LC splits the space into zones. Each zone has a centerc and

stores both its radiusrp and the bucketI of internal objects, that is, the objects inside the zone.
We start by initializing the setE of external objects toU. Then, we take a centerc ∈ E and a radiusrp, whose

value depends on whether the number of objects in the bucket is fixed or not. Thecenter ballof (c, rp) is defined
as (c, rp) = {x ∈ X, d(c, x) ≤ rp}. Thus, the bucketI of internal objects is defined asI = E ∩ (c, rp) and the setE is
updated toE← E \ I . Next, the process is repeated recursively insideE. The construction process returns a list of
triples (c, rp, I ) (center, radius, bucket), as shown in Fig. 1(a).

3Even though other authors have named this operation similarity join, we have called it range join to differentiate it from the other join variant,
thek-closest pair join.
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Figure 1: In (a), the clusters obtained when the centers are chosen in this order:c1, c2 andc3, and the resulting list of clusters. In (b), a recursive
list of cluster.

This data structure is asymmetric, because the first center chosen has preference over the next ones in case of
overlapping balls (see Fig. 1(a)). All the elements inside the ball of the first center (c1 in the figure) are stored in
the first bucket (I1 in the figure), despite that they may also lie inside buckets of subsequent centers (c2 andc3 in the
figure). In [12], the authors consider many alternatives to select both the zone radii and the next center in the list. They
have experimentally shown that the best performance is achieved when the zone has a fixed number of elements, sorp
is the covering radius ofc (that is, the distance fromc towards the furthest element in its zone), and the next center is
selected as the element maximizing the sum of distances to centers previously chosen. The brute force algorithm for
constructing the list takesO

(

n2/m
)

, wherem is the size of each zone.
For a range query (q, r) the list is visited zone by zone. We first compute the distance fromq to the centerc, and

reportc if d(q, c) ≤ r. Then, ifd(q, c) − rp ≤ r we exhaustively search the internal bucketI . Because of the asymmetry
of the structure,E (the rest of the list) is processed only ifrp − d(q, c) < r. The search cost has a form close toO(nα)
for someα ∈ (0.5, 1) [12].

Recently, M. Mamede proposed therecursive list of clusters(RLC) [33], which can be seen as a dynamic version
of the LC. The RLC is composed by clusters of fixed radius, so the number of objects of each cluster can differ. In
fact, it can be experimentally verified that first clusters are very densely populated, whereas last ones often contain
only the center. The RLC’s construction algorithm is very similar to the LC’s. Each RLC node is a triple (c, r, I )
(center, fixed radius, bucket). Once we select the setI of objects for the current node, we continue adding nodes to
the RLC by processing the rest of the objects. The difference comes from the following key fact. If the size of the
internal bucket is big enough, say, greater than some small constantm, we recursively build a RLC for the elements
of I . Fig. 1(b) shows a RLC. This algorithm takesO(n logβ n) distance computations to construct a RLC ofn objects
for someβ ∈ (1, 2), which is better than the one for LC. The search algorithm has to be slightly modified to support
the fact that the bucketI can be a set of at mostmelements, or a RLC itself. Experimental results show that the RLC’s
search performance slightly improves upon the LC’s in uniformly distributed vector spaces inRD, for D ≤ 12.

2.2. Similarity joins

Given two datasetsA, B ⊂ X, the naive approach to compute the similarity joinsA ⊲⊳r B or A ⊲⊳k B uses|A|·|B|
distances computations between all the pairs of objects. This is usually called theNested Loop.

In the case of multidimensional vector spacesR
D, an important subclass of metric spaces, there are some al-

ternatives [9, 30, 6, 28]. In [9], the authors solve range joins in R
2 or R

3 by indexing both datasetsA andB with
two R-trees [23], and then traverse both indices simultaneously to find the set of pairs of objects matching each other.
In [30], the authors used the hash-join idea to compute spatial joins (that is, for low dimension vector spaces). The idea
consists in performing the similarity join computation in two phases. In the first phase, both datasets are partitioned
into buckets with similar spatial decomposition (however,each object can be mapped into multiple buckets), and in
the second phase, the buckets are joined in order to produce the outcome. The buckets are built by using a variant of
the R-tree calledseeded tree, which is studied in detail in [31]. In [6], the authors present theEGO-joinstrategy. It
divides the space with anǫ-grid, a lattice of hypercubes whose edges have sizeǫ, and uses different methodologies to
traverse the grid. They show results for dimensionsD ≤ 16. In [28], the authors give theGrid-join and theEGO∗-join,
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whose performances are at least one order of magnitude better than that of EGO-join in low dimension spaces. How-
ever, none of these alternatives is suitable for metric spaces, as they use coordinate information that is not necessarily
available in general metric spaces.

In metric spaces, a natural approach to solve this problem consists in indexing one or both sets independently (by
using any from the plethora of metric indices [3, 4, 7, 8, 10, 11, 12, 14, 15, 17, 21, 27, 36, 37, 38, 40, 41, 44, 47,
48, 49, 50], most of them compiled in [13, 26, 46, 51]), and then solving range queries for all the involved elements
over the indexed sets. In fact, this is the strategy proposedin [19], where the authors use theD-index[18] in order to
solve similarity self joins. Later, they present theeD-index, an extension of the D-index, and study its application to
similarity self joins [20].

With respect to thek-closest pair join, in the case of multidimensional vector spaces, there are some approaches
that rely on the coordinate information to compute approximated results [32, 1, 2]. However, as far as we know, there
is no previous attempt to compute the joinA ⊲⊳k B in the metric space context.

Finally, in [42], the authors give subquadratic algorithmsto construct thek-nearest neighbor graph of a setU,
which can be seen as a variant of self similar join where we look for thek-nearest neighbors of each object inU.

3. List of twin clusters

The basic idea of our proposal to solve the similarity join problem is to index the datasetsA andB jointly in a
single data structure. This is because we want to combine objects from different sets, and not to perform distance
computations between objects of the same set.

We have devised thelist of twin clusters(LTC), a new metric index specially focused on the similarity join problem.
As the name suggests, the LTC is based on Chávez and Navarro’s list of clusters[12]. In spite of their experimental
results, we have chosen to use clusters with fixed radius. Note that, had we used the option of fixed size clusters, we
would have obtained clusters of very different radii, especially in the case when the dataset sizes differ considerably.

Essentially, our data structure considers two lists of overlapping clusters, which we call twin clusters (see Fig. 2(a)).
Each cluster is a triple (center, effective radius, internal bucket). Following the LC idea, we have chosen that every
object being a center is not included in its twin bucket. So, when solving range queries, most of the relevant objects
would belong to the twin cluster of the object we are queryingfor. We have also considered additional structures in
order to speed up the whole process. The LTC’s data structures are:

1. Two lists of twin clustersCA andCB. Cluster centers ofCA (resp.CB) belong to datasetA (resp.B) and objects
in its inner buckets belong to datasetB (resp.A).

2. A matrixD with the distances computed from all the centers from dataset A towards all the centers from datasetB.
3. Four arraysdAmax, dAmin, dBmaxanddBminstoring the cluster identifier and the maximum or minimum dis-

tance for each object from a dataset towards all the cluster centers from the other dataset.
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Figure 2: In (a), the twin clusters overlap each other. In (b), using the stored distances to solving the cluster centerci
a.

We compute both similarity join variants by solving range queries for objects from one dataset retrieving relevant
objects from the other. In Section 3.1, we show how to solve range queries using the LTC’s structures. Next, in
Section 3.2, we give the LTC construction algorithm. From now on, r denotes the similarity join radius, andR the
radius used to index both datasetsA andB jointly with the LTC.
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3.1. Solving range queries with the LTC index

We have to solve range queries for three kinds of objects:cluster centers; regular objects, the ones indexed in any
internal bucket; andnon-indexed objects, the ones which are neither cluster centers nor regular ones.

To understand the concept of non-indexed objects, we have totake into account that when constructing the LTC
not all the objects get inside any of the twin clusters. This is because the LTC construction finishes when one of the
datasets gets empty, as will be explained in Section 3.2. So,all the objects remaining in the other dataset turn into
the set ofnon-indexed objects. These objects are not fully indexed in the LTC. In fact, we only store the distances
from them towards the closest and furthest centers. (Later,we use these distances in order to try to avoid further
computation when solving similarity joins and range queries.)

3.1.1. Solving cluster centers
Let (ci

a,R
i
a, I

i
a) denote thei-th cluster ofCA, andci

b the ci
a’s twin center. After constructing the LTC, each cen-

ter ci
a ∈ A has been compared with all the objectsb ∈ B stored both inside its own internal bucketI i

a and inside the
buckets of following centers. So, if the similarity join radius is lower than or equal to the LTC construction radius
(that is, ifr ≤ R), in order to solve the range query forci

a, we need to verify whether the following objects are relevant:
(1) its twin center, (2) objects inside their own internal bucket, and (3) objects in the buckets of previous clusters.

Otherwise, asr > R, we would need to review not only regular objects but also cluster centers ofall the clusters
in the listCA to finish the range query forci

a.
When reviewing the previous clusters, we can avoid some distance computations using the LTC and the triangle in-

equality, see Fig. 2(b). We have to check the previous clusters (c j
a,R

j
a, I

j
a), j < i, only if |D[c j

a, ci
b] − D[ci

a, c
i
b]| ≤ Rj

a + r;

else, the cluster (c j
a,R

j
a, I

j
a) is not relevant forci

a. Inside a relevant cluster, we can still use the triangle inequality to
avoid a direct comparison. Given an objectb in the bucketI j

a, if |D[c j
a, ci

b] − D[ci
a, c

i
b]| − dBmin[b].distance> r , thenb

is not relevant. Fig. 3 depicts the algorithm.

rqCenter (Integeri, Radiusr)
1. If D[ci

a, c
i
b] ≤ r Then Report (ci

a, c
i
b) // twin center

2. For each b ∈ I i
a Do // own cluster

3. If dBmin[b].distance≤ r Then Report (ci
a, b)

4. For each (c j
a,R

j
a, I

j
a) ∈ CA, j ← 1 to i − 1 Do // previous clusters

5. If |D[c j
a, c

i
b] − D[ci

a, c
i
b]| ≤ Rj

a + r Then
6. For each b ∈ I j

a Do // internal bucket
7. If |D[c j

a, ci
b] − D[ci

a, c
i
b]| − dBmin[b].distance≤ r  d(ci

a, b) ≤ r
8. Then Report (ci

a, b)

Figure 3: Range query for cluster centers.

3.1.2. Solving regular objects
Assume that we are solving the range query for a regular object a ∈ A. Using the arraydAmin, we determine which

cluster (ci
b,R

i
b, I

i
b) the objecta belongs to. So, we verify ifci

b is relevant. Let (ci
a,R

i
a, I

i
a) beci

b’s twin cluster. Due to the
LTC construction algorithm, it is likely that many objects relevant toa belong to the twin internal bucketI i

a; thus, we
check the objects withinI i

a. Next, we check other clusters (c j
a,R

j
a, I

j
a) in CA, and their respective twin centers. When

r < R, it is enough to check regular objects of previous clusters (as cluster centers are necessarily further thanr),
otherwise, we would also need to check the cluster centers.

We use|D[c j
a, ci

b] − dAmin[a].distance| to lower bound the distance betweena andc j
a. So, we can lower bound

the distance betweena andc j
b (the twin center ofc j

a) with |D[c j
a, c

i
b] − dAmin[a].distance| − D[c j

a, c
j
b], by using the

generalized triangle inequality. Moreover, if we still need to computed(a, c j
b), we use this computation to (hopefully)

improve the lower bound of the distance betweena andc j
a. Finally, we check whether the current lower bound allows

us to neglect thej-th cluster, that is, we only visit it if the bound is lower than or equal toRj
a + r ; else, it does not

contain relevant elements. The algorithm is depicted in Fig. 4.
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rqRegular (Objecta, Radiusr)
1. (ci

b, d1)← dAmin[a] // obtaining the centerci
b and the distance

2. If d1 ≤ r Then Report (a, ci
b) // we checkci

b, its twin cluster is (ci
a,R

i
a, I

i
a)

3. d2← D[ci
a, c

i
b] // d2 is the distance between twin centers

4. For each b ∈ I i
a Do // checking the twin bucket

5. d3← dBmin[b].distance,ds← d1 + d2 + d3

6. If ds ≤ r Then Report (a, b)
7. Else If 2 max{d1, d2, d3} − ds ≤ r  d(a, b) ≤ r Then Report(a, b)

// checking other clusters,d1 has not changed
8. For each (c j

a,R
j
a, I

j
a) ∈ CA, j ← 1 to |CA|, j , i Do

9. d2← D[c j
a, ci

b], lb← |d2 − d1|, d3← D[c j
a, c

j
b] // c j

b is c j
a’s twin center

10. If lb − d3 ≤ r Then // first, we checkc j
b

11. d4← d(a, c j
b), lb← max{lb, |d4 − d3|} // and updatelb if we can

12. If d4 ≤ r Then Report (a, c j
b)

13. If lb ≤ Rj
a + r Then // next, we check objects in bucketI j

a

14. For each b ∈ I j
a Do

15. If lb − dBmin[b].distance≤ r  d(a, b) ≤ r Then Report(a, b)

Figure 4: Range query for regular objects.

In the pseudocode of Fig. 4 we do not care whether the cluster is previous or not, so whenr > R rqRegular does
not change.

3.1.3. Solving non-indexed objects
We need to check all the clusters inCA and their twin centers. As in the previous algorithms, we usedistances

between centers, distances to the closest and furthest center, and the triangle inequality to lower bound distances,
avoiding direct comparisons if we can. Fig. 5 depicts the algorithm when non-indexed objects come from datasetA,
where we only use the arraysdAmaxanddAmin. If they come from datasetB we use arraysdBmaxanddBmin, and
the situation is symmetric. Whenr > R rqNonIndexedA/B does not change.

rqNonIndexedA (Objecta, Radiusr)
1. (cmin

b , d
min)← dAmin[a], (cmax

b , d
max)← dAmax[a]

2. For each (ca,Ra, Ia) ∈ CA Do // checking all the clusters
3. d1← D[ca, cmin

b ], d2← D[ca, cmax
b ], lb← max{|d1 − dmin|, |d2 − dmax|}

4. d3← D[ca, cb] // cb is twin center ofca

5. If lb − d3 ≤ r Then // first, we checkcb

6. d4← d(a, cb), lb← max{lb, |d4 − d3|} // and updatelb if we can
7. If d4 ≤ r Then Report (a, cb)
8. If lb ≤ Ra + r Then // the cluster could be relevant
9. For each b ∈ Ia Do // next, we check the bucketIa

10. d3← dBmin[b].distance
11. lb1← 2 max{d1, d3, dmin} − d1 − d3 − dmin

12. lb2← 2 max{d2, d3, dmax} − d2 − d3 − dmax

13. If max{lb1, lb2} ≤ r  d(a, b) ≤ r Then Report(a, b)

Figure 5: Range query for non-indexed objects.

7



3.2. Construction of the list of twin clusters

We have assumed that the construction of the LTC index is independent of the radiusr of the similarity join. Let
Rbe the nominal radius of each cluster in the LTC. The LTC construction process is as follows.

We start by initializing both lists of clustersCA andCB to empty, and for each objecta ∈ A we initializedA[a] to
zero. We use the arraydA to choose cluster centers for the LTC (from the second to the last cluster).

Next, we choose the first centerca from the dataset A at random and we add to its internal bucketIa all the
elementsb ∈ B such thatd(ca, b) ≤ R. Then, we use the elementcb ∈ Ia which minimizes the distance toca as the
center of theca’s twin cluster, we removecb from Ia, and add to its internal bucketIb all the elementsa ∈ A such
thatd(a, cb) ≤ R. (Fig. 2(a) illustrates the concept of twin clusters.) For other objects inA we increase theirdAvalues
by d(cb, a), that is, we update their sum of distances to centers inB. Once we process the datasetsA andB we add
the clusters (ca,maxb∈Ia{d(ca, b)}, Ia) and (cb,maxa∈Ib{d(a, cb)}, Ib) (center, effective radius, bucket) into the listsCA
andCB, respectively. Both centersca andcb, and elements inserted into the bucketsIa and Ib are removed from the
datasetsA andB. From now on, we use the element maximizingdA as the new centerca, but we continue using the
objectcb ∈ Ia which minimizes the distance toca as the center of theca’s twin cluster. We continue the process until
one of the datasets gets empty.

During the process, we compute the distance to the closest and furthest cluster center for all the objects. For this
sake, we progressively update arraysdAmin, dAmax, dBminanddBmaxwith the minimum and maximum distances
known up to then. Note that for a regular objecta ∈ A (respb ∈ B), arraydAmin(resp.dBmin) stores its respective
centercb ∈ B (resp.ca ∈ A) and the distance from the object to that center.

Note also that we have to store and maintain the matrixD in order to filter out elements when actually performing
similarity joins and range queries. As these distances are computed during the LTC construction process, we can reuse
them to fill this matrix.

At the end, we only keep the maximum distances to cluster centers of non-indexed elements. Thus, if they come
from datasetA (resp. B), we discard the whole arraydBmax(resp. dAmax), and the distances for cluster centers
and regular objects fromdAmax(resp. dBmax). We do this in the auxiliary triplenonIndexed(label, set, array).
If the datasetB gets empty, thennonIndexed← (“A”, A, dAmax), discarding arraydBmax; otherwise, we discard
arraydAmax, sononIndexed← (“B”, B, dBmax). Fig. 6 depicts the construction algorithm.

According to the analysis performed in [12], the cost of constructing the LTC isO((max{|A|, |B|})2/p∗), wherep∗

is the expected bucket size.

4. Using the LTC index

As there is an underlying symmetry in the join computation, we assume, without loss of generality, that we are
computing range queries for elements inA, and |A| ≥ |B|. (Otherwise, we swap the datasets.) In Section 4.1, we
give the LTC-join algorithm for computing range joinsA ⊲⊳r B. Next, in Section 4.2, we computek-closest pair
joins A ⊲⊳k B by simulating them as range joins with decreasing radius. Finally, in Section 4.3, we show how to solve
basic range queries using the LTC. These three sections assume that given the datasetsA andB, and a radiusR, we
have previously computed the LTC index by callingLTC(A, B,R).

4.1. Computing the range join

Given a thresholdr we actually compute the range joinA ⊲⊳r B, by traversing both listsCA andCB. For cluster
centers (fromCA) we call rqCenter, and for regular objects (from buckets inCB) we call rqRegular. Finally, as
all the matching pairs considering non-indexed objects arenot yet reported, by using the auxiliary triplenonIndexed
we determine which dataset non-indexed objects come from, and for all of those objects we callrqNonIndexedA or
rqNonIndexedB, accordingly. The algorithm is depicted in Fig. 7.

4.2. Computing the k-closest pair join

The basic idea is to compute thek-closest pair joinA ⊲⊳k B as if it were a range join with decreasing radius. For
this sake, we need an additionalk-elementpriority queueheapto store triples of the form (object, object, distance)
sorted increasingly by the third component. We initializeheapwith k triples (, ,∞).
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LTC (DatasetA, DatasetB, RadiusR)
1. CA← ∅,CB← ∅ // the lists of twin clusters
2. For each a ∈ A Do
3. dA[a] ← 0 // sum of distances to centers inB

// (closest and furthest center inB, distance)
4. dAmin[a] ← (,∞), dAmax[a] ← (, 0)
5. For each b ∈ B Do

// (closest and furthest center inA, distance)
6. dBmin[b] ← (,∞), dBmax[b]← (, 0)
7. While min(|A|, |B|) > 0 Do
8. ca← argmaxa∈A{dA}, A← A \ {ca}

9. cb← , dc,c← ∞, Ia← ∅, Ib← ∅

10. For each b ∈ B Do
11. dc,b← d(ca, b)
12. If dc,b ≤ R Then
13. Ia← Ia ∪ {(b, dc,b)}, B← B \ {b}
14. If dc,b < dc,c Then dc,c← dc,b, cb← b
15. If dc,b < dBmin[b].distanceThen dBmin[b] ← (ca, dc,b)
16. If dc,b > dBmax[b].distanceThen dBmax[b] ← (ca, dc,b)
17. Ia← Ia \ {(cb, dc,c)} // removing centercb from bucketIa

18. For each a ∈ A Do
19. da,c← d(a, cb)
20. If da,c ≤ R Then Ib← Ib ∪ {(a, da,c)},A← A \ {a}
21. Else dA[a] ← dA[a] + da,c

22. If da,c < dAmin[a].distanceThen dAmin[a] ← (cb, da,c)
23. If da,c > dAmax[a].distanceThen dAmax[a] ← (cb, da,c)
24. CA← CA∪ {(ca,maxb∈Ia{d(ca, b)}, Ia)} // (center, effective radius, bucket)
25. CB← CB∪ {(cb,maxa∈Ib{d(a, cb)}, Ib)} // (center, effective radius, bucket)

// we only conserve thedXmaxarray for non-indexed objects
26. If |A| > 0 Then nonIndexed← (“A”, A, dAmax)
27. Else nonIndexed← (“B”, B, dBmax)
28. For each ca ∈ centers(CA), cb ∈ centers(CB) Do D[ca, cb] ← d(ca, cb)

// distancesd(ca, cb) have already been computed, so we can reuse them
29. Return (CA,CB,D, dAmin, dBmin, nonIndexed)

Figure 6: LTC construction algorithm.

rangeJoin (Radiusr)
1. For each ci

a ∈ CA, I i
b ∈ CB, i ← 1 to |CA| Do

2. rqCenter(i, r) // solving the center
3. For each a ∈ I i

b Do rqRegular(a, r) // solving regular objects
4. (label, set, array)← nonIndexed
5. If label= “A” Then For each a ∈ setDo rqNonIndexedA(a, r)
6. Else For each b ∈ setDo rqNonIndexedB(b, r)

Figure 7: Using the LTC for computing range joins.

Before computing the range queries, we need to reduce the search radius. To do so, we populate the priority
queueheapwith all the distances stored indAminanddBmin. Each time we find a pair (a, b) of objects which are
closer than the furthest pair inheap(that is, lower thanheap.max().distance), we drop the furthest pair and insert
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the triple (a, b, d(a, b)). If it is necessary, that is, when the maximum distance stored inheapis greater than the LTC
construction radiusR, we continue the reduction of the search radius by using the distances inD. Note that all thek
candidate pairs stored inheapwere found for free in terms of distance computations.

After this preprocessing, we start computing the range queries for objects inA. Special care must be taken to
avoid repeating pairs with the ones already present inheap. A simple alternative is fixing the initial search radius
asauxR← heap.max().distance+ ε (with any ε > 0) —that is, slightly larger than the furthest pair we currently
have inheap— and then emptyingheap. Next, we re-initializeheapwith k triples (, , auxR). Note that
this alternative only requires CPU time but no distance computations. In the pseudo-code we use this alternative for
readability, however in the actual implementation we use another alternative which is more efficient4.

We start by solving the range queries for cluster centers using the radiusheap.max().distance. Once again, each
time we find a pair of objects (a, b) closer thanheap.max().distance, we modifyheapby extracting its maximum and
then inserting the triple (a, b, d(a, b)). Therefore, we are solving a range query with decreasing radius. We continue
with the computation for regular objects and finally for non-indexed ones. When the computation finishes,heapstores
thek pairs of the result. Fig. 8 depicts the algorithm. As clustercenters usually require less work to compute their
range queries than regular or non-indexed objects, starting thek-closest pair join computation with them should help
to reduce the search radius fast.

Note that, after reviewing all distances stored in the LTC-index, it is possible that the current join radius could
be greater than the indexing radius. In this case, we have to process the cluster centers and regular objects using the
variants developed for this particular purpose.

4.3. Solving range queries with the LTC

The listsCA andCB can be seen as a classical list of clusters for the datasetsB andA, respectively. So, we derive
a range query algorithm based on the LTC, which traverse bothlists simultaneously. Note that, in this case, we cannot
directly use the LC range query stop criterion (that is, whenthe query ball is fully contained by the current bucket).
Instead, we add boolean variables to control whether it is necessary to search the lists.

Also, using distances in matrixD we compute lower and upper bounds on the distances between the query and the
centers. To do that, during the computation, we maintain twosets of distancesDA andDB which store the distances
computed from the query to centers of listsCA andCB, respectively. Therefore, using all the computed distances
stored inDB, the distanced(q, ca) is lower bounded by max(cb,d(q,cb))∈DB{|d(q, cb) − D[ca, cb]|}. Likewise, it is upper
bounded by min(cb,d(q,cb))∈DB{d(q, cb) + D[ca, cb]}. Symmetrically, we upper and lower bound the distanced(q, cb). So,
we modify the LC range query algorithm according to these bounds.

Finally, we need to check the non-indexed objects. For this sake, once again we use the triplenonIndexed
(label, set, array). So, for the (non-indexed) objects stored insetwe can compute the lower bounds of the distances
from them towards the query by using arraysdAminor dBminaccording to which dataset they came from (that is,
according tolabel). Also, we usearray in order to improve the lower bound. Recall that,array stores either arrays
dAmaxor dBmax, depending onlabel. Fig. 9 depicts the algorithm.

5. Experimental evaluation

We have selected four pairs of real-world datasets from three kinds of metric spaces, namely, face images, strings
and documents (the two latter are of interest of InformationRetrieval applications [5]). The results on these datasets
are representative of other metric spaces and datasets we have tested. A detailed description of the datasets follows.

Face images:a set of 1,016 (761-dimensional) feature vectors from a dataset of face images. Any quadratic form can
be used as a distance, so we have chosen Euclidean distance asthe simplest meaningful alternative.

The whole set has four face images from 254 people, thus we have divided it into two subsets: one of them
with three face images per person (FACES762 for short, because it has 762 face images) and the other with the
fourth one (FACES254 for short).

4For instance, in order to avoid the constantε it is enough to replace the “<” sign for “≤” in line 1 of auxiliary procedurecheckMax (Fig. 8).
Although this modification works well with continuous distances, it fails to discard enough values in the discrete case.
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kClosestPairJoin (Integerk)
1. PriorityQueueheap← ∅ // sorted by increasing distance (third component)
2. For i ← 1 to k Do heap.insert(, ,∞)

// using distances indAmin, dBmin, andD to reduce the search radius
3. For each a ∈ A Do (cb, dist)← dAmin[a], checkMax(heap, a, cb, dist)
4. For each b ∈ B Do (ca, dist)← dBmin[b], checkMax(heap, ca, b, dist)
5. If heap.max().distance> R Then
6. For each ci

a ∈ CA, c j
b ∈ CB, i, j ← 1 to |CA| Do

7. checkMax(heap, ci
a, c

j
b,D[ci

a, c
j
b])

8. auxR← heap.max().distance+ ε // fixing the initial search radius
9. heap← ∅, For i ← 1 to k Do heap.insert(, , auxR) // resettingheap
10. For each ci

a← CA, i ← 1 to |CA| Do // reviewing centers
11. foundSet← rqCenter(i, heap.max().distance)
12. For each (b, dist) ∈ foundSetDo checkMax(heap, ci

a, b, dist)
13. For each I i

b← CB, i ← 1 to |CB| Do // reviewing regular objects
14. For each a ∈ I i

b Do
15. foundSet← rqRegular(a, heap.max().distance)
16. For each (b, dist) ∈ foundSetDo checkMax(heap, a, b, dist)
17. (label, set, array)← nonIndexed// reviewing non-indexed objects
18. If label= “A” Then For each a ∈ setDo
19. foundSet← rqNonIndexedA(a, heap.max().distance)
20. For each (b, dist) ∈ foundSetDo checkMax(heap, a, b, dist)
21. Else For each b ∈ setDo
22. foundSet← rqNonIndexedB(b, heap.max().distance)
23. For each (a, dist) ∈ foundSetDo checkMax(heap, a, b, dist)

checkMax (PriorityQueueheap, Objecta, Objectb, Distancedist)
1. If dist< heap.max().distanceThen
2. heap.extractMax(), heap.insert(a, b, dist) // reducing search radius

Figure 8: Using the LTC for computingk-closest pair joins.

Strings: a dictionary of words, where the distance is theedit distance[29], that is, the minimum number of character
insertions, deletions and replacements needed to make two strings equal. This distance is useful in text retrieval
to cope with spelling, typing and optical character recognition errors.

For this metric space we have considered two pairs of datasets: a subset of 69,069 English words with a subset
of 89,061 Spanish words and the same subset of English words with a subset of 494,048 vocabulary terms from
a collection of documents.

Documents: a set of 2,957 documents, each of them of approximately 500 KB, obtained by splitting the original 1,265
documents from the TREC-3 collection [24], so that sub-documents obtained from the same original document
have an overlap of about 50%. We synthesize the vectors representing the sub-documents by using the program
machinery provided in theMetric Spaces Library(http://sisap.org/?f=library) [22]. As usual, we use
thecosine distance[45] to compare two documents.

We divide the dataset in two subsets, one of them with 1,846 documents (DOCS1846 for short), and the other
with 1,111 documents (DOCS1111 for short).

As we mentioned previously, we work with two particular similarity joins: range joinsA ⊲⊳r B andk-closest pair
joins A ⊲⊳k B. In the join experiments, we built the index using all the objects considered for each dataset. All our
results are averaged over 10 index constructions using different permutations of the datasets. In the range query
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rangeQuery (Objectq, Radiusr)
1. stopA ←  , stopB← 

2. For each (ca,Ra, Ia) ∈ CA, (cb,Rb, Ib) ∈ CB, i ← 1 to |CA| Do
3. If stopA  stopB Then Break
4. lbA← max(cb,d(q,cb))∈DB{|d(q, cb) − D[ca, cb]|} // lower boundingd(q, ca)
5. ubA← min(cb,d(q,cb))∈DB{d(q, cb) + D[ca, cb]} // upper boundingd(q, ca)
6. lbB← max(ca,d(q,ca))∈DA{|d(q, ca) − D[ca, cb]|} // lower boundingd(q, cb)
7. ubB← min(ca,d(q,ca))∈DA{d(q, ca) + D[ca, cb]} // upper boundingd(q, cb)
8. If stopA =   lbA ≤ Ra + r Then
9. dqa← d(q, ca),DA← DA∪ {(ca, dqa)}, ubA← dqa
10. If dqa≤ r Then Report ca

11. If dqa≤ Ra + r Then
12. For each b ∈ Ia Do If d(q, b) ≤ r Then Report b
13. If stopB =   lbB ≤ Rb + r Then
14. dqb← d(q, cb),DB← DB∪ {(cb, dqb)}, ubB← dqb
15. If dqb≤ r Then Report cb

16. If dqb≤ Rb + r Then
17. For each a ∈ Ib Do If d(q, a) ≤ r Then Report a
18. If ubA≤ Ra − r Then stopA ← 

19. If ubB≤ Rb − r Then stopB← 

20. (label, set, array)← nonIndexed
21. For each o ∈ setDo // reviewing non-indexed objects
22. lb← 0 // we try to lower boundd(q, o) with the distances stored inDA andDB
23. If label= “A” Then
24. (cmin

b , d
min)← dAmin[o], (cmax

b , d
max)← array[o]

25. If (cmin
b , dqb) ∈ DB Then lb← max{lb, |dqb− dmin|}

26. If (cmax
b , dqb) ∈ DB Then lb← max{lb, |dqb− dmax|}

27. Else
28. (cmin

a , d
min)← dBmin[o], (cmax

a , d
max)← array[o]

29. If (cmin
a , dqa) ∈ DA Then lb← max{lb, |dqa− dmin|}

30. If (cmax
a , dqa) ∈ DA Then lb← max{lb, |dqa− dmax|}

31. If (lb ≤ r)  d(q, o) ≤ r Then Report o

Figure 9: Using the LTC for computing range queries.

experiments, we built the index with 90% of the objects from both datasets, so we use the remain 10% for the range
queries, and we report the average computed over all those queries.

5.1. LTC construction

We start the experimental evaluation by verifying that the cost of constructing the LTC-index for each pair of
datasets is similar to the one needed to index the larger dataset with a basic LC. We have tested several values for the
construction radiusR. For face images, we show construction results when indexing with radiiR0.38, 0.40, 0.60, and
0.80; for strings, radii 3 to 6; and for documents, radii 0.38, 0.40, and 0.60. Fig. 10 shows the results.

From now on, the join and range query costs do not include the cost of building the LTC and LC indices, as we
consider that they would be amortized among many computations of similarity joins and range queries.

5.2. Range joins

In these experiments we have used the following parameters.For the face images, we have considered thresh-
olds that retrieve on average 1, 5, or 10 relevant images fromFACES762 per range query, when queries came from
FACES254. This corresponds to radiir equal to 0.2702, 0.3567, and 0.3768, respectively. For the strings, we have
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Figure 10: Constructing the LTC varying the building radius, for the face image datasets (a), Spanish and English dictionaries (b), the English
dictionary and the vocabulary (c), and documents (d).

used radiir equal to 1, 2, and 3, as the edit distance is discrete. In the joins between dictionaries this retrieves 0.05,
1.5, and 26 Spanish words per English word on average, respectively. In the joins between the English dictionary and
the vocabulary this retrieves 7.9, 137, and 1,593 vocabulary terms per English word on average, respectively. For the
documents space, we have used thresholds retrieving on average 2, 3, or 30 relevant documents from DOCS1846 per
range query, when we make queries from DOCS1111. So, the values of radiir for the document space are 0.25, 0.265,
and 0.38, respectively.

If we have one dataset indexed, we can trivially obtain the similarity join A ⊲⊳r B by executing a range query with
thresholdr for each element from the other dataset. Because our join index is based on the LC, we also show the
results obtained with this simple join algorithm having a LCbuilt for one dataset. We have called this join algorithm
LC-range join. Furthermore, if we have both datasets indexed, although we could apply the same trivial solution
(that is, ignoring one of the indices), we can avoid more distance calculations by using all the information we have
from both indices. In order to compare our proposal with an example of this kind of algorithm, we have considered
indexing both datasets using a LC and then applying a join algorithm that uses all the information from both indices
to improve the join cost. We have named it as LC2-range join, and it is depicted in Fig. 11.

Because we need to fix the construction radius before building the LC and LTC indices, in each case we have
considered different radii and we have chosen the one which obtains the best join cost for each alternative. We have
tested several cases where the construction radiusR is greater than or equal to the largest join radiusr used inA ⊲⊳r B.
We have also included a brief test in order to evaluate the performance when the join radius is greater than the indexing
one, that is, whenr > R.
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rangeJoinLC2 (List L1, List L2, Radiusr)
1. For each (ci, rci , Ici ) ∈ L1 Do
2. For each (c j, rc j , Ic j ) ∈ L2 Do
3. dcc← d(ci , c j), ds← dcc+ rci + rc j

4. If dcc ≤ r Then Report (ci, c j)
5. If 2 max{dcc, rci , rc j } − ds ≤ r Then // generalized triangle inequality
6. For each y ∈ Ic j Do // d(c j, y) is stored inL2

7. If |dcc− d(c j, y)| ≤ r Then // checkingy with the centerci

8. dy← d(ci , y), If dy ≤ r Then Report (ci, y)
9. For each x ∈ Ici Do // d(ci, x) is stored inL1, checking pairs (x, y)
10. ds← dcc+ d(ci , x) + d(c j, y)
11. lb← 2 max{dcc, d(ci, x), d(c j, y)} − ds

12. If dy were calculatedThen lb← max{lb, |dy − d(ci , x)|}
13. If lb ≤ r  d(x, y) ≤ r Then Report (x, y)
14. For each x ∈ Ici Do // we check allx ∈ Ici with the centerc j

15. If |dcc− d(ci , x)| ≤ r  d(x, c j) ≤ r Then Report (x, c j)
16. If dcc+ rci + r ≤ rc j Then
17. Break // stop searching (ci , rci , Ici ) on L2

Figure 11: LC2-range join for two Lists of Clusters.

Fig. 12 illustrates the performance of the LTC-range join considering the different radii in all the pairs of datasets.
We have shown the number of object pairs retrieved.

As it can be noticed, the best result is obtained when the building radiusR is the closest to the greatest value ofr
considered in each case. The LC2-range join has a similar behavior, but in the case of LC-range join, the best radius
can vary a little; in fact, for the range join between both dictionaries, it is 4, and for documents, it is 0.60.

Fig. 13 depicts a comparison among the three range join algorithms (without construction costs) for the four pairs
of datasets, using the best value of the building radiusR experimentally determined for each range join algorithm.
Once again, we have shown the number of object pairs retrieved. We can observe that the LTC-range join algorithm
largely outperforms the other range join algorithms considered in three of the pairs of datasets used. For the range join
between the English dictionary and the vocabulary, LC-range join and LC2-range join beat us, despite the LTC-range
join’s significant improvement over the Nested Loop join in all thresholds used.

We suspect that this non-intuitive behavior showing that the simplest algorithm, LC-range join, outperforms our
LTC-range join between the vocabulary and the English dictionary can be explained by taking into account the number
of non-indexed objects. In this case 39% of the vocabulary terms are not indexed, while in the others, where the LTC-
range join is the best method, the percentage of non-indexedobjects is lower. For instance, in the experiment of face
images, only 2% of the faces are not indexed; in the experiment of Spanish and English dictionaries non-indexed
words represent 23% of the dataset, and for documents the percentage of non-indexed documents is 20%.

Also, we have split the join cost in three parts (for centers,regular objects and non-indexed objects) in order to
illustrate this non-intuitive result. The values are shownin Table 1. As can be seen, in a favorable case, like face
images, most of the work is performed among regular objects.Instead, in the join between the vocabulary and the
English dictionary, most of the work is performed when solving non-Indexed objects.

Fig. 14 depicts a brief comparison among the three range joinalgorithms (without construction costs) when the
join radius is greater than the indexing one, that is, whenr > R. In the plots we show results for the face images
and the document datasets. Once again, we have shown the number of object pairs retrieved. As it is expected, we
observe a performance degradation in our LTC-based range join (which is also seen both in LC-join and LC2-join),
yet it remains as the best range join alternative.

Finally, Table 2 gives the performance ratios of distance computations for the four pairs of datasets. The values
are computed according to this formula:join−LTC-range join

join · 100%.
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Figure 12: Comparison among the different radii considered for the LTC index construction, for the face image datasets (a), Spanish and English
dictionaries (b), the English dictionary and the vocabulary (c), and documents (d). Note the logscales.

5.3. k-Closest pair join

In this case, we can only compare the performance of the LTC-basedk-closest pair joinA ⊲⊳k B with the LTC-
range join, as we do not have any other alternative for metricspaces. (As far as we know, there is no previous attempt
to solve this variant.) Fig. 15 shows the results when retrieving the 10, 100 and 1,000 closest pairs for the four pair
of datasets. As it can be seen, the performance of theA ⊲⊳k B is similar to the one of the equivalent range join. This
reveals that the strategy used to reduce the search radius operates effectively. It is interesting to note that thek-closest
pair join performance in the string space is slightly betterthan the range join one. This is because the edit distance is
discrete and there are thousands of word pairs at distance 1.So, the heap ofk candidate pairs is promptly filled with
pairs at distance 1 and subsequent range queries use radius 0.

5.4. Range queries

We have computed range queries using the same join radii of Section 5.2. That is, in the face image space we have
used radiir equal to 0.2702, 0.3567, and 0.3768, retrieving 0.7, 4.5 and 9.1 images, respectively. Forthe strings we
have used radiir equal to 1, 2, and 3, recovering 2, 25, and 229 words from both English and Spanish dictionaries;
and 7, 161, and 2,025 words from the English dictionary and the vocabulary, respectively. For the documents space,
we have used radii 0.25, 0.265, and 0.38, retrieving 3, 5, and 47 documents, respectively. These results were averaged
over the whole subsets of queries (that is, 10% of the union ofboth datasets).

The plots of Fig. 16 show a comparison of the LTC-based range query algorithm with respect to (i) index the union
of both datasets with a single LC, and (ii) index each datasetwith a LC. Alternative (i) implies adding a new index
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Figure 13: Comparison among all the range join algorithms considered, using in each case the best value experimentally determined for the
building radius of the index. For face image databases (a), Spanish and English dictionaries (b), the English dictionary and the vocabulary (c), and
documents (d). Note the logscales.
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Table 1: Fraction of the total join cost performed by centers, regular objects and non-indexed objects.

(a) Join between face image datasets.

r = 0.2702 r = 0.3567 r = 0.3768
centers 1.8% 1.8% 1.8%

regular objects 83.9% 84.0% 84.0%
non-Indexed objects 14.3% 14.2% 14.2%

(b) Join between the English dictionary and the vocabulary.

r = 1 r = 2 r = 3
centers 0.3% 0.7% 1.4%

regular objects 27.8% 29.6% 30.8%
non-Indexed objects 71.9% 69.7% 67.8%
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Figure 15: Comparison between thek-closest pair join and the equivalent range join. For face image databases (a) Spanish and English dictionar-
ies (b), the English dictionary and the vocabulary (c), and documents (d). Note the logscales.

in order to support range queries, while alternative (ii) isequivalent to our approach, in the sense that it reuses the
indices in order to cope with similarity joins and the classic similarity primitive.

In the comparison, our LTC-based range query algorithm shows good performance when compared with the basic
LC approach. This can be explained when we consider that we store more information in the LTC-index than in
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Table 2: Performance ratio of the LTC-range join for the three databases in all the thresholds used with respect to the other join methods.

(a) Join between face image databases.

Threshold LC-range join LC2-range join Nested Loop
0.2702 38% 38% 47%
0.3567 44% 44% 47%
0.3768 45% 45% 47%

(b) Join between Spanish and English dictionaries.

Threshold LC-range join LC2-range join Nested Loop
1 -11% 12% 89%
2 19% 39% 88%
3 45% 55% 87%

(c) Join between the English dictionary and the vocabulary.

Threshold LC-range join LC2-range join Nested Loop
1 -159% -62% 67%
2 -124% -76% 51%
3 -94% -69% 38%

(d) Join between the DOCS1846 and DOCS1111.

Threshold LC-range join LC2-range join Nested Loop
0.25 80% 75% 88%
0.265 80% 74% 88%
0.38 74% 67% 84%

the basic LC. In fact, the matrix of distances between centers allows us to effectively reduce the number of distance
computation performed in three cases. With respect to the contestants, it can be seen that it is systematically better to
have a single LC indexing the union of the datasets than two LCindexing each dataset independently. Finally, only in
the face image spaces (see Fig. 16(a)) using a single LC is slightly faster than our LTC-based range queries.

6. Conclusions

In this work we have shown a new approach for computing similarity joins between two datasets which consists in
indexing both datasets jointly. For this sake, we have proposed a new metric index, coinedlist of twin clusters(LTC).
We have experimentally verified that the cost of constructing the LTC index is similar to that of constructing a single
LC in order to index the larger dataset.

Based on the LTC index we have solved two kinds of similarity joins: (1)range joins A⊲⊳r B: Given distance
thresholdr, find all the object pairs (one from each set) at distance at most r; and (2)k-closest pair joins A⊲⊳k B: Find
thek closest object pairs (one from each set). The results of the experimental evaluation of the range join not only
show significant speedups over the basic quadratic-time naive alternative but also over other two range join algorithms,
LC-range join and LC2-range join, for three of the pairs of datasets considered.

With respect to thek-closest pair join, the results of the experimental evaluation show that it is rather efficient, as
it requires a work similar to the one performed by the equivalent range join over the LTC index. This resembles the
performance of range-optimalk-nearest neighbor search algorithms [25].

Finally, we have shown that the LTC-based range query algorithm is competitive with, and in some cases better
than, the LC search algorithm.

Our new LTC index stands out as a practical and efficient data structure to solve two particular cases of similarity
joins, such asA ⊲⊳r B andA ⊲⊳k B, and as an index to speed up classical range queries. The LTC can be used for pairs
of databases in any metric space and therefore it has a wide range of applications.
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Figure 16: Computing range queries over the LTC varying radius, for the face image datasets (a), Spanish and English dictionaries (b), the English
dictionary and the vocabulary (c), and documents (d).

Several lines of future work on similarity joins indices andalgorithms remain open:

• The similarity self join: although in this case there is no reason to build a LTC index, we plan to create another
variant of LC specially designed for this kind of join.

• Optimization of LTC by evaluating internal distances: at construction time of the LTC index and when we
evaluate the similarity join, we do not calculate any distance between elements from the same database. But,
we have to analyze if we can improve the join costs if we calculate some internal distances in order to obtain
better lower bounds of external distances (that is, distances between elements from both databases).

• The center selection: the best way to choose the twin center of one center is choosing the nearest object in
the other database, yet we could study other ways to select a new center from the last twin center in order to
represent the real dataset clustering by using the minimum number of cluster centers as possible. Furthermore,
we suspect that by choosing better centers we will be able to significantly reduce the memory needed for the
matrix of distances among centers.

• Different kinds of joins: we are developing algorithms to solve other kinds of similarity joins over the LTC index
or its variants. For instance, computing thek-nearest neighbors for each object in one dataset and retrieving
relevant objects from the other.

• There are cases where we could be interested in computing range queries on either datasetA or B but not both,
so we also plan to develop strategies to solve this kind of range queries.
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• When using clusters of fixed radius, we experimentally observe that the first clusters are much more populated
than the following ones. Moreover, we can also include the study of dynamic LTCs. Therefore, we have also
considered developing a version of the LTC similar to Mamedes’s recursive list of clusters[33].

• Since in some cases many non-indexed objects exist, and thisharms the performance of the LTC-range join, we
have also considered researching on alternatives to managethe non-indexed objects.

• Developing parallel variants for the LTC index is another interesting line of research, aiming at reducing the
computation time (there are already some parallel versionsfor other metric indices [16, 34, 35]).
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[11] E. Chávez, J. L. Marroquı́n, and G. Navarro. Fixed queries array: A fast and economical data structure for proximity searching.Multimedia

Tools and Applications (MTAP), 14(2):113–135, 2001.
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