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Abstract

Let A be a set of size m. Obtaining the first k ≤ m
elements of A in ascending order can be done in optimal
O(m+k log k) time. We present an algorithm (online on
k) which incrementally gives the next smallest element
of the set, so that the first k elements are obtained in
optimal time for any k. We also give a practical version
of the algorithm, with the same complexity on average,
which performs better in practice than the best existing
online algorithm. As a direct application, we use our
technique to implement Kruskal’s Minimum Spanning
Tree algorithm, where our solution is competitive with
the best current implementations. We finally show that
our technique can be applied to several other problems,
such as obtaining an interval of the sorted sequence and
implementing heaps.

1 Introduction

There are cases where we need to obtain the smallest
elements from a fixed set without knowing how many
elements we will end up needing. Prominent exam-
ples are Kruskal’s Minimum Spanning Tree (MST) algo-
rithm [16] or ranking by Web search engines [1]. Given
a graph, Kruskal’s MST algorithm processes the edges
one by one, from smallest to largest, until it forms the
MST. At this point, remaining edges are not considered.
Web search engines display a very small sorted subset
of the most relevant documents among all those satisfy-
ing the query. Later, if the user wants more results, the
search engine displays the next group of most relevant
documents, and so on. In both cases, we could first sort
the whole set and later return the desired objects, but
obviously this is more work than necessary.

This problem can be called Incremental Sorting. It
can be stated as follows: Given a set A of m numbers,
output the elements of A from smallest to largest, so
that the process can be stopped after k elements have
been output, for any k that is unknown to the algorithm.
Therefore, Incremental Sorting is the online version of
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an instance of the Partial Sorting problem: Given a
set A of m numbers and an integer k ≤ m, output the
smallest k elements of A in ascending order.

In 1971, J. Chambers introduced the general notion
of Partial Sorting [3]: given an array A of m numbers,
and a fixed, sorted set of indices I = i0 < i1 < . . . <
ik−1 of size k ≤ m, arrange in place the elements of A
so that A[0, i0 − 1] ≤ A[i0] ≤ A[i0 + 1, i1 − 1] ≤ A[i1] ≤
. . . ≤ A[ik−2+1, ik−1−1] ≤ A[ik−1] ≤ A[ik−1+1, m−1].
This property is equivalent to the statement that A[i] is
the i-th order statistic of A for all i ∈ I.

We are interested in the particular case of finding
the first k order statistics of a given set A of size m > k.
This can be easily solved by first finding p, the k-th
smallest element of A, using O(m) time Select algo-
rithm [2], and then collecting and sorting the elements
smaller than p. We call this algorithm SelectSort. Its
complexity, O(m + k log k), is optimal under the com-
parison model, as there are mk = m!/(m− k)! possible
answers and log(mk) = Ω(m + k log k).

A practical version of the above, QuickSelect-

Sort (QSS), uses QuickSelect [10] and QuickSort

[11] as the selection and sorting algorithms, obtaining
O(m+k log k) average complexity. Recently, it has been
shown that selection and sorting can be interleaved. The
result, PartialQuickSort (PQS), has the same aver-
age complexity but smaller constant terms [17].

To solve the online problem, we must select the
smallest element, then the second one, and so on until
the process finishes at some unknown value k ∈ [0, m−
1]. One can do this by using Select to find each of
the first k elements, which costs O(km) overall. We
can improve this by transforming A into a min-heap
in time O(m) [6], and then performing k extractions.
This has O(m + k log m) worst-case complexity. Note
that m + k log m = O(m + k log k), as they can differ
only if k = o(mc) for any c > 0, and then m dominates
k log m. However, according to experiments this scheme
is much slower than the offline practical algorithm PQS

if a classical heap is used.
In [22], P. Sanders proposes sequence heaps, a cache-

aware priority queue to solve the online problem, which
is optimized to insert and extract all the elements in the
priority queue at small amortized cost. Even though
the total CPU time used for this algorithm in the whole



process of inserting and extracting all the m elements
is pretty close to the time of running QuickSort, our
experiments show that this scheme is not so efficient
when we want to sort just a small fraction of the set.
Then the quest for a practical online algorithm for
partial sorting is raised.

In this paper we present IncrementalSelect

(IS), which is yet another algorithm that solves the
online problem in optimal O(m + k log k) time. But
our main contribution is IncrementalQuickSelect

(IQS), a practical variant of IS, which is O(m+k log k)
time on average. Our experimental results show that
IQS is almost as efficient as its offline version PQS,
and is faster in practice than alternative solutions.

As an application, we show how to use our algo-
rithm to boost the performance of Kruskal’s MST al-
gorithm [16]. Given a graph G(V, E), we compute its
MST in O(|E|+ |V | log2 |V |) average time, which is op-
timal in medium or high density graphs. In practice,
by using IQS we obtain an efficient MST implementa-
tion. Our implementation is much faster than any other
Kruskal’s implementation we could program or find for
any graph density. As a matter of fact, our Kruskal’s
version is faster than Prim’s algorithm [20], even as op-
timized by B. Moret and H. Shapiro [18], and also com-
petitive with the best alternative implementations we
could find [14, 15].

We finally show that our algorithm can be used to
solve other basic problems, such as obtaining an incre-
mental segment of the sorted sequence, and implement-
ing a priority queue. The algorithm can obviously be
used to find the largest elements instead of the smallest.

2 Incremental sorting

In this section we describe IQS algorithm. At the
end we show how it can be converted into its worst-
case version IS. Essentially, to output the k smallest
elements, IQS calls QuickSelect to find the smallest
element on arrays A[0, m− 1], A[1, m− 1], . . . , A[k −
1, m− 1]. This naturally leaves the k smallest elements
sorted in A[0, k−1]. IQS avoids the O(km) complexity
by reusing the work among calls to QuickSelect.

Let us recall how QuickSelect works. Given an
integer k, QuickSelect aims to find the k-th smallest
element from a set A of m numbers. For this sake it
chooses an object p (the pivot), and partitions A so
that the elements lower than p are allocated to the left-
side partition, and the others to the right side. After
the partitioning, p is placed in its correct position ip.
So, if ip = k, QuickSelect returns p and finishes.
Otherwise, if k < ip it recursively processes the left
partition, else the right partition (with a new k ←
k − ip − 1).

   18 29 25 33 41 49 37 51 67 86 92 58 63 74 81   S = {16, 8, 4, 1}

12 18 29 25                                       S = {16, 8, 4, 1}

12                                                S = {16, 8, 4, 1, 0}

51 81 74 12 58 92 86 25 67 33 18 41 49 63 29 37   S = {16}

33 37 29 12 49 41 18 25 51 67 86 92 58 63 74 81   S = {16, 8}

18 25 29 12 33 41 49 37                           S = {16, 8, 4}

Figure 1: Example of how IQS finds the first element of
an array. Each line corresponds to a new partition of a
sub-array. Note that all the pivot positions are stored in
stack S. In the example we use the first element as the
pivot but it could be any other element. The bottom
line shows the array with the three partitions generated
by the first call to IQS, and the pivot positions stored
in S.

Note that it is possible to reuse the work made
by previous calls to QuickSelect. When we call
QuickSelect on A[1, m− 1], a decreasing sequence of
pivots has already been used to partially sort A since the
previous invocation on A[0, m − 1]. IQS manages this
sequence of pivots to reuse previous work. Specifically,
it uses a stack S of decreasing pivot positions that are
relevant for the next calls to QuickSelect.

Fig. 1 shows how IQS searches for the smallest
element of an array by using a stack initialized with
a single value m = 16. To find the next minimum, we
first check whether p, the top value in S, is the index of
the element sought, in which case we pop and return it.
Otherwise, because of previous partitionings, it holds
that elements in A[1, p−1] are smaller than all the rest,
so we run QuickSelect on that portion of the array,
pushing new pivots into S.

As can be seen in Fig. 1, the second minimum is the
pivot on the top of S, so we pop and return it. Fig. 2
shows how IQS finds the third minimum using the pivot
information stored in S. Notice that IQS just works on
the current first chunk ({29, 25}), where it adds one
pivot position to S and returns the third element in the
next recursive call.

Now, retrieving the fourth and fifth elements is
easy since both of them are pivots. Fig. 3 shows
how IQS finds the sixth minimum. The current first
chunk contains three elements: {41, 49, 37}. So, IQS

obtains the next minimum by selecting 41 as pivot,
partitioning its chunk and returning the element 37.
The incremental sorting process will continue as long
as needed, and it can be stopped in any time.



      25                                          S = {16, 8, 4, 3, 2}

      29 25 33 41 49 37 51 67 86 92 58 63 74 81   S = {16, 8, 4}

      25 29                                       S = {16, 8, 4, 3}

         29 33 41 49 37 52 67 86 92 58 63 74 81   S = {16, 8, 4, 3}   

Figure 2: Example of how IQS finds the third element of
the array. Since it starts with pivot information stored
in S, it just works on the current first chunk ({29, 25}).

               37 41 49                           S = {16, 8, 6}

               41 49 37 52 67 86 92 58 63 74 81   S = {16, 8}

                  41 49 52 67 86 92 58 63 74 81   S = {16, 8, 6}       

Figure 3: Example of how IQS finds the sixth element of
an array. Since it starts with pivot information stored in
S, it just works on the current first chunk ({41, 49, 37}).
We omit the line where element 37 becomes a pivot and
is popped from S.

The algorithm is given in Fig. 4. Stack S is
initialized as S = {|A|}. IQS receives the set A, the
index idx1 of the element sought (that is, we seek the
smallest element in A[idx, m − 1]), and the current
stack S (with former pivot positions). First it checks
whether the top element of S is the desired index
idx, in which case it pops idx and returns A[idx].
Otherwise it chooses a random pivot index pidx from
[idx, S.top()−1]. Pivot A[pidx] is used to partition
A[idx, S.top()−1]. After the partitioning, the pivot has
reached its final position pidx′, which is pushed in S.
Finally, a recursive invocation continues the work on
the left hand of the partition.

Recall that partition(A, A[pidx], i, j) rearranges
A[i, j] and returns the new position pidx′ of the original
element in A[pidx], so that, in the rearranged array,
all the elements smaller/larger than A[pidx′] appear
before/after pidx′. Thus, pivot A[pidx′] is left at the
correct position it would have in the sorted array A[i, j].
The next lemma shows that it is correct to search for
the minimum just within A[i, S.top() − 1], from which
the correctness of IQS immediately follows.

Lemma 2.1. After i minima have been obtained in
A[0, i − 1], (1) the pivot indices in S are decreasing
bottom to top, (2) for each pivot position p 6= m in

1Since we start counting array positions from 0, the place of
the k-th element is k − 1, so idx = k − 1.

IQS (Set A, Int idx, Stack S)
// Precondition: idx ≤ S.top()

1. If idx = S.top() Then S.pop(), Return A[idx]
2. pidx← random[idx, S.top()−1]
3. pidx′ ← partition(A, A[pidx], idx, S.top()−1)

// Invariant: A[0] ≤ . . . ≤ A[idx− 1]
// ≤ A[idx, pidx′ − 1] ≤ A[pidx′]
// ≤ A[pidx′ + 1, S.top()−1] ≤ A[S.top(), m− 1]

4. S.push(pidx′)
5. Return IQS(A, idx, S)

Figure 4: IncrementalQuickSelect (IQS) algo-
rithm. Stack S is initialized as S ← {|A|}. Both S and
A are modified and rearranged during the algorithm.
Note that the search range is limited to the array seg-
ment A[idx, S.top()−1]. Procedure partition returns
the position of pivot A[pidx] after the partition com-
pletes. Note that the tail recursion can be easily re-
moved.

S, A[p] is not smaller than any element in A[i, p − 1]
and not larger than any element in A[p + 1, m− 1].

Proof. Initially this holds since i = 0 and S = {m}.
Assume this is valid before pushing p, when p′ was
the top of the stack. Since the pivot was chosen from
A[i, p′− 1] and left at some position i ≤ p ≤ p′− 1 after
partitioning, property (1) is guaranteed. As for property
(2), after the partitioning it still holds for any pivot
other than p, as the partitioning rearranged elements at
the left of it. With respect to p, the partitioning ensures
that elements smaller than p are left at A[i, p−1], while
larger elements are left at A[p + 1, p′ − 1]. Since A[p]
was already not larger than elements in A[p′, m−1], the
lemma holds. It obviously remains true after removing
elements from S. �

The worst-case complexity of IQS is O(m2), but it
is easy to derive worst-case optimal IS from it. The only
change is in line 2 of Fig. 4, where the random selection
of the next pivot position must be changed to choosing
the median of A[idx, S.top() − 1], using the linear-time
selection algorithm [2]. Section 3 analyzes the worst-
case of IS and Section 4 considers the average-case of
IQS, both of which are O(m + k log k).

3 IS worst-case complexity

In this section we analyze IS, which is not as efficient in
practice as IQS, but has good worst-case performance.
In particular, the analysis serves as a basis for the
average-case analysis of IQS in Section 4. In IS, the
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Figure 5: IS partition tree for incremental sorting when
k = 5, m = 31, j = 5.

partition is perfectly balanced since each pivot position
is chosen as the median of its array segment.

In this analysis we assume that m is of the form
2j − 1. We recall that array indices are in the range
[0, m − 1]. Fig. 5 illustrates the incremental sorting
process when k = 5 in a perfect balanced tree of m = 31
elements, j = 5. Black nodes are the elements already
reported, grey nodes are the pivots that remain in stack
S, and white nodes and trees are the other elements of
A.

The pivot at the tree root is the first to be obtained
(the median of A), at cost linear in m (both to obtain
the median and to partition the array). The two root
children are the medians of A[0, m−3

2 ] and A[m+1
2 , m−

1]. Obtaining those pivots and partitioning with them
will cost time linear in m/2. The left child of the root
will actually be the second pivot to be processed. The
right child, on the other hand, will be processed only
if k > m−1

2 , that is, at the moment we ask IS to
output the m+1

2 -th minimum. In general, processing
the pivots at level h will cost O(2h), but only some of
these will be required for a given k. The maximum level
is j = log2(m + 1).

It is not hard to see that, in order to obtain the
k smallest elements of A, we will require

⌈

k
2h

⌉

pivots of
level h. Adding up their processing cost we get Eq. (3.1),
where we split the sum into the cases

⌈

k
2h

⌉

> 1 and
⌈

k
2h

⌉

= 1. Only then, in Eq. (3.3), we use k + 2h to
bound the terms of the first sum, and redistribute terms
to obtain that IS is O(m+k log k) worst-case time. The
extra space used by IS is O(log m) pivot positions.
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2
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∑

h=1

⌈
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2h(3.1)
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k
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⌉

2h +

log
2
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∑

h=⌊log
2

k⌋+1

2h(3.2)

≤
⌊log

2
k⌋

∑

h=1

k +

log
2
(m+1)
∑

h=1

2h(3.3)

T (m, k) = k⌊log2 k⌋+ 2m + 1(3.4)

4 IQS average-case complexity

In this case the final pivot position p after the parti-
tioning of A[0, m−1] distributes uniformly in [0, m−1].
Consider again Fig. 5, where the root is not anymore
the middle of A but a random position. We call T (m, k)
the average number of key comparisons needed to ob-
tain the k smallest elements of A[0, m − 1]. After the
m − 1 comparisons used in the partitioning, there are
three cases depending on p: (1) k ≤ p, in which case the
right subtree will never be expanded, and the total ex-
tra cost will be T (p, k) to solve A[0, p−1]; (2) k = p+1,
in which case the left subtree will be fully expanded to
obtain its p elements at cost T (p, p); and (3) k > p + 1,
in which case we pay T (p, p) on the left subtree, whereas
the right subtree, of size m− 1− p, will be expanded so
as to obtain the remaining k − p− 1 elements.

Thus IQS average cost follows Eq. (4.5), which is
rearranged as Eq. (4.6). It is easy to check that this is
exactly the same as Eq. (3.1) in [17], which shows that
IQS makes exactly the same number of comparisons of
the offline version, PQS. This is 2m + 2(m + 1)Hm −
2(m + 3 − k)Hm+1−k − 6k + 6. That analysis [17] is
rather sophisticated, resorting to bivariate generating
functions. In which follows we give a simple develop-
ment arriving at a solution of the form O(m + k log k).

T (m, k) = m− 1 +
1

m

(

m−1
∑

p=k

T (p, k) + T (k − 1, k − 1)

+
k−2
∑

p=0

(

T (p, p) + T (m− 1− p, k − p− 1)
)

)

(4.5)

= m− 1 +
1

m

(

k−1
∑

p=0

T (p, p)

+

k−2
∑

p=0

T (m− 1− p, k − p− 1) +

m−1
∑

p=k

T (p, k)

)

(4.6)

Eq. (4.6) simplifies to Eq. (4.7) by noticing that
T (p, p) behaves exactly like QuickSort, 2(p+1)Hp−4p
[9] (this can also be seen by writing down T (p) = T (p, p)
and noting that the very same QuickSort recurrence is
obtained), so that

∑k−1
p=0 T (p, p) = k(k +1)Hk− k

2 (5k−
1). We also write p′ for k−p−1 and rewrite the second

sum as
∑k−1

p′=1 T (m− k + p′, p′).

T (m, k) = m− 1 +
1

m

(

k(k + 1)Hk −
k

2
(5k − 1)

+

k−1
∑

p=1

T (m− k + p, p) +

m−1
∑

p=k

T (p, k)

)

(4.7)



We make some pessimistic simplifications now. The
first sum governs the dependence on k of the recurrence.
To avoid such dependence, we bound the second argu-
ment to k and the first to m, as T (m, k) is monotonic on
both its arguments. The new recurrence, Eq. (4.8), de-
pends only on parameter m and treats k as a constant.

T (m) = m− 1 +
1

m

(

k(k + 1)Hk −
k

2
(5k − 1)

+(k − 1)T (m) +

m−1
∑

p=k

T (p)

)

(4.8)

We subtract m T (m) − (m − 1)T (m − 1) using
Eq. (4.8), to obtain Eq. (4.9) and Eq. (4.10). Since T (k)
is actually T (k, k), we use again QuickSort formula in
Eq. (4.11). We bound the first part by 2m + 2kHm−k

and the second part by 2kHk to obtain Eq. (4.12).

T (m) = 2
m− 1

m− k + 1
+ T (m− 1)(4.9)

= 2

m
∑

i=k+1

(

1 +
k − 2

i− k + 1

)

+ T (k)(4.10)

= 2(m− k) + 2(k − 2)(Hm−k+1 − 1)

+ (2(k + 1)Hk − 4k)

(4.11)

< 2(m + kHm−k + kHk)(4.12)

This result does not yet look good enough, but we
plug it again into Eq. (4.7). In this case, we bound the

sum
∑k−1

p=1 T (m − k + p, p) with
∑k−1

p=1 2(m − k + p +

pHm−k + pHp) = (k − 1)
(

2m + k
(

Hm−k + Hk − 3
2

))

.
Upper bounding again and multiplying by m we get a
new recurrence in Eq. (4.13). Note that this recurrence
only depends on m.

m T (m) = m(m− 1) + k(k + 1)Hk −
k

2
(5k − 1)

+ (k − 1)

(

2m + k

(

Hm−k + Hk −
3

2

))

+

m−1
∑

p=k

T (p)

(4.13)

Subtracting again m T (m)−(m−1)T (m−1) we get

Eq. (4.14). Noting that (k−1)k
(m−k)m = (k − 1)

(

1
m−k

− 1
m

)

,

we get Eq. (4.15), which is solved in Eq. (4.16).

T (m) = 2
m + k − 2

m
+

(k − 1)k

(m− k)m
+ T (m− 1)

(4.14)

<

m
∑

i=k+1

(

2 + 2
k − 2

i
+ (k − 1)

(

1

i− k
− 1

i

))

+ T (k)

(4.15)

= 2(m− k) + 2(k − 2)(Hm −Hk)

+ (k − 1)(Hm−k −Hm + Hk)

+ (2(k + 1)Hk − 4k)

(4.16)

Note that Hm−Hk < m−k
k+1 and thus (k− 2)(Hm −

Hk) < m−k. Also, Hm−k ≤ Hm, so collecting terms we
obtain Eq. (4.17). Therefore, IQS is also O(m+k log k)
in the average-case when we choose pivots at random.

(4.17) T (m, k) < 4m−8k+(3k+1)Hk < 4m+3kHk

As a final remark, note that when we use QSS a
portion of the QuickSort partitioning work repeats
the work made in the previous QuickSelect calling.
Fig. 6 illustrates this, showing that upon finding the k-
th element, the QuickSelect stage has produced par-
titions A1 and A2, however the QuickSort that follows
processes the left partition as a whole ([A1p1A2]), ig-
noring the previous partitioning work done over it. On
the other hand, IQS sorts the left segment by process-
ing each partition independently, because it knows their
limits (as they are stored in the stack S). This also ap-
plies to PQS and it explains the finding of C. Mart́ınez
that PQS, and thus IQS, makes 2k−4Hk +2 less com-
parisons than QSS [17].

1

A2

p2

p1

k
QSS QuickSort stage

A1 A2
p1

QSS QuickSelect stage

A

Figure 6: Partition work performed by QSS. First, QSS

uses QuickSelect for finding the k-th element (left).
Then it uses QuickSort on the left array segment as a
whole ([A1 p1 A2]) neglecting the previous partitioning
work (right).



5 IQS and the minimum spanning tree

In this section we explore a practical application of
IQS: improving the performance of Kruskal’s Minimum
Spanning Tree (MST) algorithm.

Let us recall the MST problem. Let G(V, E) be a
connected graph with a nonnegative cost function d(e)
assigned to its edges e ∈ E. A minimum spanning tree
mst of the graph G(V, E) is a tree composed of edges of
E that connect all the vertices of V at the lowest total
cost

∑

e∈mst d(e). Note that, given a graph, its MST is
not necessarily unique.

Let n = |V |, m = |E|. The most popular algorithms
to solve the MST problem are Kruskal’s [16] and Prim’s
[20], whose basic versions have complexity O(m log m)
and O(n2), respectively. We call these basic versions
Kruskal1 and Prim1, respectively. In sparse graphs,
with |E| = O(n), it is recommended to use Kruskal1,
whereas in dense graphs, with |E| = O(n2), Prim1

is recommended [5, 25]. Alternatively, Prim can be
implemented using Fibonacci Heaps [8] to obtain O(m+
n log n) complexity.

There are other MST algorithms compiled by Tar-
jan [23]. Recently, B. Chazelle [4] gave an O(mα(m, n))
algorithm, where α ∈ ω(1) is the very slowly-growing in-
verse Ackermann’s function. Later, S. Pettie and V. Ra-
machandran [19] proposed an algorithm that runs in
optimal time O(T ∗(m, n)), where T ∗(m, n) is the mini-
mum number of edge-weight comparisons needed to de-
termine the MST of any graph G(V, E) with m edges
and n vertices. The best known upper bound of this al-
gorithm is also O(mα(m, n)). These algorithms almost
reach the lower bound Ω(m), yet they are so compli-
cated that their interest is mainly theoretical. Further-
more, there is a randomized algorithm [13] that finds
the MST in O(m) time with high probability in the
restricted RAM model, but it is also considered imprac-
tical as it is complicated to implement and the O(m)
complexity hides a big constant factor.

Experimental studies on MST are given in [18, 14,
15]. In [18], they compare several versions of Kruskal’s,
Prim’s and Tarjan’s algorithms, concluding that the
best in practice (albeit not in theory) is Prim using
pairing heaps [7]. We call this algorithm Prim2.
Their experiments show that neither Cheriton and
Tarjan’s [23] nor Fredman and Tarjan’s algorithm [8]
ever approach the speed of Prim2. On the other hand,
they show that Kruskal1 can run very fast when it uses
an array of edges that can be overwritten during sorting,
instead of an adjacency list. Moreover, they show
that it is possible to use heaps to improve Kruskal’s
algorithm. They call this variant Kruskal’s with demand
sorting, and we will refer to it as Kruskal2. The
result is a rather efficient MST version with complexity

Kruskal1 (Graph G(V, E))
1. UnionFind C ← {v ∈ V, {v}}

// the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. ascendingSort(E), k ← 0
4. While |C| > 1 Do

// select an edge in ascending order
5. (e = {u, v})← E[k], k ← k + 1
6. If C.find(u) 6= C.find(v) Then

7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 7: The basic version of Kruskal’s MST algorithm
(Kruskal1). To carry out the heap-based optimization
(Kruskal2), we change line 3 to heapify(E) and line
5 to (e = {u, v})← E.extractMin().

O(m + k log m), being k ≤ m the number of edges
reviewed by Kruskal technique.

In [14, 15], they give an algorithm whose complexity
is O(m + n log n). It generates a subgraph G′ by
selecting

√
mn edges from G at random. Then, it builds

the minimum spanning forest T ′ of G′. Then, it filters
each edge e ∈ E using the cycle property: discard e if
it is the heaviest edge on a cycle in T ′ ∪ {e}. Finally, it
builds the MST of the subgraph that contains the edges
of T ′ and the edges that were not filtered out. We call
this algorithm iMax.

5.1 Kruskal’s MST algorithm. Kruskal’s algo-
rithm starts with n single-node components, and it
merges them until it produces a sole connected compo-
nent. To do this, Kruskal1 begins by setting the mst
to (V, ∅), that is, n single-node trees. Later, in each it-
eration, it adds to the mst the cheapest edge of E that
does not produce a cycle on the mst, that is, it only
adds edges whose vertices belong to different connected
components. Once the edge is added, both components
are merged. The process ends when the mst becomes a
single connected component. At this point the mst is a
minimum spanning tree of G(V, E).

To manage the component operations, we use the
Union-Find data structure C with path compression,
see [5, 25] for a comprehensive explanation. Given
two vertices u and v, we use the find(u) operation
to compute which component u belongs to, and use
union(u, v) to merge the components of u and v. The
amortized cost of find(u) is O(α(m, n)) and the cost of
union(u, v) is constant.

Fig. 7 depicts the basic Kruskal’s MST algorithm.



We need O(n) time to initialize both C and mst, and
O(m log m) time to sort the edge set E. Then we make
at most m O(α(m, n))-time iterations of the While

loop. Therefore, Kruskal1 complexity is O(m log m).
Assuming we are using either full or random graphs

whose cost edges are assigned at random independently
of the rest (using any continuous distribution), the
subgraph composed by V with the edges reviewed by the
algorithm is a random graph [12]. Therefore, based on
[12, pp. 349], we expect to finish the MST construction
upon reviewing 1

2n lnn + 1
2γn + 1

4 + O( 1
n
) edges, which

can be much lower than m. So, it is not necessary
to sort the whole set E, but it is enough to select
and extract one by one the minimum-cost edges until
we complete the MST. The common solution of this
type consists in min-heapifying the set E, and later
performing as many min-extractions of the lowest cost
edge as needed (in [18], they do this in their Kruskal’s
demand sorting version). This is an implementation of
Incremental Sort. For this sake we modify lines 3 and
5 of Fig. 7: line 3 changes to heapify(E) and line 5 to
(e = {u, v})← E.extractMin().

Kruskal2 needs O(n) time to initialize both C and
mst, and O(m) time to heapify E. We expect to review
1
2n lnn + O(n) edges in the While loop. For each of
these edges, we use O(log m) time to select and extract
the minimum element of the heap, and O(α(m, n)) time
to perform the union and find operations. Therefore,
Kruskal2 average complexity is O(m + n log n logm).
As n− 1 ≤ m ≤ n2, Kruskal2 average complexity can
also be written as O(m + n log2 n).

5.2 IQS-based implementation of the Kruskal’s

MST algorithm. We can use IQS in order to incre-
mentally sort E. After initializing C and mst, we create
the stack S, and push m into S. Later, inside the While

loop, we call IQS in order to obtain the k-th edge of E
incrementally. Fig. 8 shows our Kruskal’s MST variant,
that we call Kruskal3. Note that the expected number
of pivoting edges that we store in S is O(log m).

We need O(n) time to initialize both C and mst,
and constant time for S. We expect to review 1

2n lnn+
O(n) edges within the While loop, thus we need
O(m + n log2 n) overall expected time for IQS and
O(nα(m, n) log n) time for all the union and find

operations. Therefore, Kruskal3 average complexity
is O(m + n log2 n), just as Kruskal2.

6 Experimental results

We ran two experimental series with IQS. In the
first series we compare IQS against other alternatives.
In the second we evaluate our Kruskal3 algorithm.
The experiments were run on an Intel Pentium 4 of

Kruskal3 (Graph G(V, E))
1. UnionFind C ← {v ∈ V, {v}}

// the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. Stack S, S.push(|E|), k ← 0
4. While |C| > 1 Do

// select the lowest edge incrementally
5. (e = {u, v})← IQS(E, k, S), k ← k + 1
6. If C.find(u) 6= C.find(v) Then

7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 8: Our Kruskal’s MST variant (Kruskal3).
Note the changes in lines 3 and 5 with respect to
Kruskal1.

3 GHz, 4 GB of RAM and local disk. For each
experimental condition we show averages computed over
50 repetitions, for all competing implementations. The
weighted least square fittings were performed with R
[21]. In order to illustrate the precision of our fittings,
we also show the average percent error of residuals with
respect to real values (|y−ŷ

y
|100%) for fittings belonging

around to the 45% of the largest values2.

6.1 Evaluating IQS. We compared IQS against
PQS, QSS, and two online approach: the first
based on classical heaps [26] (called HEx), and
the second based on sequence heaps [22] (called
SH, obtained from www.mpi-inf.mpg.de/~sanders/-

programs/spq/). The idea is to verify that IQS is in
practice a competitive algorithm for the Partial Sorting
problem for finding the smallest elements in ascending
order. For this sake, we use random permutations in
[0, m − 1], for m ∈ [105, 108], and we select the k first
elements with k = 2j < m, for j ≥ 10. The selection is
incremental for IQS, HEx and SH, and in one shot for
PQS and QSS. We measure CPU time and the num-
ber of key comparisons, except for SH where we only
measure CPU time.

As it turned out to be more efficient, we implement
HEx by using the bottom up heuristic [24] for extract-

Min: when the minimum is extracted, we lift up ele-

2Our fittings are too pessimistic for small permutations or edge
sets, so we intend to show that they are asymptotically good. In
the first series we compute the percent error for permutations of
length m ∈ [107, 108] for all the k values, approximately 45.4% of
the measures. In the second series we compute the percent error
for edge density in [16%, 100%] for all values of |V |, approximately
44.4% of the measures. Both turn out to be around 45%.



 2

 4

 8

 16

 32

 64

 128

 256

 1000  10000  100000  1e+06  1e+07  1e+08

C
P

U
 ti

m
e 

[s
ec

]

amount of selected elements k

IQS, PQS, QSS, HEx and SH CPU time m = 100e+06

IQS
PQS
QSS
HEx
SH

(a) CPU time for the five algorithms.

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 1000  10000  100000  1e+06

C
P

U
 ti

m
e 

[s
ec

]

amount of selected elements k

IQS, PQS and QSS CPU time m = 100e+06

IQS
PQS
QSS
HEx

(b) Detail of CPU time for IQS, PQS, QSS and HEx.

Figure 9: Performance comparison between IQS, PQS, QSS, HEx and SH as a function of the amount of
searched elements k for different values of set size m. Note the logscales in the plots.

Fitting Error
PQScpu 25.79m + 16.87k log2 k 6.77%
PQScmp 2.138m + 1.232k log2 k 5.54%
IQScpu 25.81m + 17.44k log2 k 6.82%
IQScmp 2.138m + 1.232k log2 k 5.54%
QSScpu 25.82m + 17.20k log2 k 6.81%
QSScmp 2.140m + 1.292k log2 k 5.53%
HExcpu 23.85m + 67.89k log2 m 6.11%
HExcmp 1.904m + 0.967k log2 m 1.20%
SHcpu 9.165m log2 m + 66.16k 2.20%

Table 1: IQS, PQS, QSS, HEx and SH weighted least
square fittings. For SH we only compute the CPU time
fitting. CPU time is measured in nanoseconds.

ments on a min-path from the root to a leaf in the bot-
tom level. Then, we place the rightmost element (the
last of the heap) into the free leaf, and bubble it up to
restore the min-heap condition. Using this heuristic we
perform only log2 m + O(1) key comparisons for each
extraction on average (saving up to half of the compar-
isons used by a straightforward implementation taken
from textbooks [5, 25]).

We summarize the experimental results in Figs. 9,
10 and 11, and Table 1. As can be seen from the least
square fittings of Table 1, IQS CPU time performance
is 2.99% slower than that of its offline version PQS.
The number of key comparisons is exactly the same,
as we expected from Section 4. This is an extremely
small price for permitting incremental sorting without
knowing in advance how many elements we wish to

retrieve, and shows that IQS is practical. Moreover,
as the pivots in the stack help us reuse the partitioning
work, our online IQS is 1.33% slower in CPU time and
uses 4.20% less key comparisons than the offline QSS.

On the other hand, we obtain large improvements
with respect to online alternatives. According to the
insertion and deletion strategy of sequence heaps, we
compute its CPU time least square fitting by noticing
that we can split the experiment in two stages. The
first inserts m random elements into the priority queue,
and the second extracts the smallest k elements from it.
Then, we obtain a simplified O(m log m+k) complexity
model that shows that most of the work performed by
SH comes from the insertion process. Note that, if we
want a small fraction of the sorted sequence, we prefer
to pay a lower insertion and a higher extraction cost
(just like IQS) than to perform most of the work in
the insertions and a little in the extractions. Finally,
even when the online HEx with the bottom-up heuristic
uses at most 2m key comparisons to heapify the array,
and log m+O(1) key comparisons on average to extract
elements, numerous cache faults slow down its perfor-
mance. As a matter of fact, HEx takes 3.88 times more
CPU time and 18.76% less key comparisons than IQS.

Fig. 9(a) compares the five algorithms. As can be
seen, even though SH is the best implementation to
sort the whole set, it is not so efficient to sort just a
small fraction of it. We suspect that this is because SH

is cleverly optimized for the whole process of insertions
and extractions, but not for a small fraction. As we
have already said, its CPU time depends only mildly on
the number of extracted elements, as most of the work
performed by SH comes from the insertion process.
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HEx has the second worst CPU performance for k ≤
0.1m and the worst for k ∈ [0.1m, m], despite that it
makes less key comparisons than others when extracting
few objects, see Fig. 10. The reason is that classic
heaps (even with the bottom-up heuristic) do not take
advantage of the cache because of their poor locality of
reference, which slows down the performance of HEx.
Fig. 9(b) shows that PQS is the fastest algorithm when
sorting a small fraction of the set, but IQS and QSS

have rather similar behavior, and HEx follow them by
far, confirming the results of our fittings of Table 1.

Finally, Fig. 11 shows that, as k grows, IQS

behavior changes as follows. When k ≤ 0.01m, there
is no difference in the first k element incremental
sorting, namely, the term m dominates the cost. When

Fitting Error
Sorted edges 0.532n lnn 1.69%
Kruskal1cpu 12.85m log2 m 1.74%
Kruskal2cpu 39.99m + 46.30n log2 n log2 m 6.96%

Kruskal3cpu 19.26m + 10.93n log2
2 n 4.17%

Table 2: Weighted least square fittings for Kruskal’s
MST versions (n = |V |, m = |E|). CPU time is
measured in nanoseconds.

0.01m < k ≤ 0.04m, there is a slight increase of both
CPU time and key comparisons, that is, both terms
m and k log k take part in the cost. Finally, when
0.04m < k ≤ m, term k log k leads the cost.

6.2 Evaluating Kruskal3. We now evaluate how
IQS improves Kruskal’s MST algorithm, so we compare
its three versions against state of the art alternatives.
We use synthetic graphs with edges chosen at random,
and with edge costs uniformly distributed in [0, 1]. We
consider graphs with |V | ∈ [2000, 26000], and graph
edge densities ρ ∈ [0.5%, 100%], where ρ = 2m

n(n−1)100%.

According to the experiments of Section 6.1, we
preferred classical heaps using the bottom-up heuris-
tic (HEx) over sequence heaps (SE) to implement
Kruskal2 in these experiments (as we expect to extract
1
2n lnn + O(n) ≪ m edges). We also show results for
iMax and Prim2 implementations from [14], as well
as Prim1 in complete graphs3. We obtained both the
iMax and the optimized Prim2 implementations from
www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.

For Kruskal’s versions we measure the CPU time,
memory requirements and the size of the edge subset
reviewed during the MST construction. Note that those
edges are the ones we incrementally sort. As the three
versions run over the same graphs, they review the same
subset of edges and use almost the same memory. For
Prim1 we only measure CPU time. For Prim2 and
iMax we measure CPU time and memory requirements.

We summarize the experimental results in Figs. 12,
14 and 13, and Table 2. Table 2 shows our least
squares fittings for the MST experiments. First of all,
we compute the fitting for the number of lowest-cost
edges Kruskal’s MST algorithm reviews to build the
tree. We obtain 0.532 |V | ln |V |, which is very close
to the theoretically expected value 1

2 |V | ln |V |. Second,
we compute fittings for the CPU cost of the three
versions of Kruskal’s using their theoretical complexity

3Note that we use the plain Prim1, that is, without priority
queues. This is the best choice to implement Prim in complete
graphs.
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Figure 12: Evaluating Kruskal3. MST CPU time,
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models. Note that, in terms of CPU time, Kruskal1

is 18.27 times and Kruskal2 is 2.14 times slower than
Kruskal3.

Fig. 12 compares the Kruskal’s versions, Prim2

and iMax for n = 20000 and graph edge density
ρ ∈ [0.5%, 100%]. As can be seen, Kruskal1 is, by
far, the slowest version, and, Kruskal3 is systematically
the best for all ρ. We also notice that, as ρ increases,
the advantage of our MST variant is more remarkable
against basic Kruskal’s MST algorithm. We could not
complete the series for Prim2 and iMax, as their
structures require too much space. For 20000 vertices
and ρ ≥ 32% these algorithms reach the 3 GB out-of-
memory threshold of our machine.

Fig. 13 shows the memory requirements of
Kruskal3, iMax and Prim2 for n = 20000. Since our
Kruskal’s implementation sort edges in place, we require
a bit of extra memory to manage the edge incremen-
tal sorting. On the other hand, the additional struc-
tures of Prim2 and iMax increase heavily the mem-
ory consumption of the process. We suspect that these
high memory requirements trigger many cache faults
and slow down the CPU performance. As a result, for
large graphs, Prim2 and iMax become slower than
Kruskal3, despite their better complexity.

Figs. 14(a), 14(b), 14(c) and 14(d) show the com-
parison for four edge densities ρ = 2%, 8%, 32% and
100%, respectively. In the four plots Kruskal3 is al-
ways the best Kruskal’s version for all sizes of set V and
all edge densities ρ. Moreover, Fig. 14(d) shows that
Kruskal3 is also better than Prim1, even in complete
graphs. On the other hand, Kruskal3 is better than
iMax in the four plots, and very competitive against
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Figure 13: Memory used by Kruskal3, iMax and
Prim2 for |V | = 20000 nodes, dependence on ρ. As
can be seen, iMax and Prim2 exhausts the memory
for ρ ≥ 16% and ρ ≥ 32%, respectively.

Prim2, beating Prim2 in some cases (for |V | ≥ 18000
and 22000 vertices in ρ = 2% and 8%, respectively).
We suspect that this is due to the high memory us-
age of Prim2, which affects cache efficiency. Note that
with ρ = 32% and 100% we could not finish the se-
ries with Prim2 and iMax because of their memory
requirements.

7 Conclusions

We have presented IncrementalQuickSelect

(IQS), an algorithm to incrementally retrieve the next
smallest element from a set. IQS has the same average
complexity as existing solutions, but it is considerably
faster in practice. It is nearly as fast as the best algo-
rithm that knows beforehand the number of elements
to retrieve. We have applied IQS to solve the graph
MST problem, showing that the IQS-based Kruskal’s
version is competitive against the best state-of-the-art
alternatives.

One trend of further work considers studying the
behaviour of our IQS-based Kruskal on different graph
classes, and also research variants tuned for secondary
memory. Another trend is to look for other applications
of IQS. We finish by detailing two of them.

The first is that we can use the IQS stack-of-
pivots underlying idea to partially sort in increas-
ing/decreasing order starting from any place of the ar-
ray. For instance, if we want to perform an incremen-
tal sorting in increasing order with a stack initialized
as the set size, we first use QuickSelect to find the
first element we want, storing in the stack all the piv-
ots larger than the first element, and later we use IQS
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Figure 14: Evaluating Kruskal3. MST CPU time, dependence on n = |V | in (a), (b), (c) and (d) for ρ = 2%,
8%, 32% and 100%, respectively. For n = 26000, in (a) Kruskal1, Kruskal2 and iMax reach 2.67, 0.76 and
0.62 seconds; in (b) Kruskal1, Kruskal2 and iMax reach 9.08, 1.56 and 1.53 seconds; in (c) Kruskal1 and
Kruskal2 reach 37.02 and 4.82 seconds; in (d) Kruskal1, Kruskal2 and Prim1 reach 121.14, 13.84 and 25.96
seconds, respectively.

with the stack to search for the next elements (the other
pivots would be useful for decreasing order, initializing
the stack with −1). Moreover, with two stacks we can
make centered searching, namely, finding the k-th ele-
ment, the (k + 1)-th and (k − 1)-th, the (k + 2)-th and
(k − 2)-th, and so on.

The second remarkable application is that we can
use IQS as an underlying implementation of the Heap

data structure [5, 25]. (Naturally, this allow us to speed
up HeapSort [26].) In this application, we heapify
the set A by using IQS to search for the first element,
paying on average O(m) CPU time, and then we extract
elements by using IQS incrementally, paying average
amortized time O(log k) for the k-th extraction. To

insert a new element x, we need to know which is the
array segment that corresponds to x (see Fig. 1). To
do this it is enough with reviewing the pivot stack S.
Assume S = {|A|, p1, p2, ..., pj}. From Lemma 2.1, we
know that A[p1] > A[p2] > . . . > A[pj ]. So, to insert x
we need to find the first pivot pi such that A[pi] < x,
so as to place x at A[pi−1]. Then, we put A[pi−1] at
position pi−1 + 1 (and increment pi−1 in S). Then,
we move the old A[pi−1 + 1] value to A[pi−2], and so
on. Note that, as pivot closer to the bottom cover
exponentially larger areas, the insertion takes O(1) time
on average. With this IQS-based heap we can reach
the O(m+n log n) performance of Fibonacci-heap-based
Prim’s algorithm [8], yet using a rather simple heap.
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