Strong Accumulators from Collision-Resistant Hashing

Philippe Camachd, Alejandro Hevia **, Marcos Kiw? ***, and Roberto OpaZo

1 Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 3er piso, Santiago, Chile.
{pcamacho, ahevi a}@cc. uchil e. cl
2 Dept. Ing. Materatica & Ctr. de Modelamiento Mateatico,
UMI 2807 U. Chile—-CNRS
nkiwi @i m uchile.cl
3 CEO Acepta.com
roberto. opazo@cept a. com

Abstract. Accumulator schemes were introduced in order to represent a large
set of values as one short value calleddheumulator These schemes allow one
to generate membership proofs, i.e. short witnesses that a certambelbngs
to the set. In universal accumulator schemes, efficient proofsrefmembership
can also be created. Li, Li and Xue [11], building on the work of Canunis
and Lysyanskaya [5], proposed an efficient accumulator schemwvelies on

a trusted accumulator manager. Specifically, a manager that correctbrms
accumulator updates.

In this work we introduce the notion @ftrong universal accumulator schemes
which are similar in functionality to universal accumulator schemes, butad
assume the accumulator manager is trusted. We also formalize the seeurity
quirements for such schemes. We then give a simple construction ohg stni-
versal accumulator scheme which is provably secure under the pssarthat
collision-resistant hash functions exist. The weaker requirement oscthemu-
lator manager comes at a price; our scheme is less efficient than kurovarsal
accumulator schemes — the size of (non)membership witnesses is logeaiiith
the size of the accumulated set in contrast to constant in the scheme ehiSam
and Lysyanskaya.

Finally, we show how to use strong universal accumulators to solveciiqah
concern, the so called e-Invoice Factoring Problem.

Key words: Accumulators, Collision-resistant Hashing, e-Invoice.

1 Introduction

Accumulator schemes were introduced by Benaloh and De Nré&lese primitives
allow to represent a potentially very large set by a shorevahlledaccumulatorMore-
over, the accumulator together with a so calgthessprovides an efficiently verifiable
proof that a given element belongs to the accumulated set.

* Gratefully acknowledges the support of CONICYT via FONDAP en Mdttras Aplicadas.
** Gratefully acknowledges the support of CONICYT via FONDECYT No/Q832.
*** Supported by CONICYT via FONDECYT No. 1010689 and FONDAP en Muticas Apli-
cadas.

2 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

Baric and Pfitzmann [1] refined the security definition of accurnmul@chemes,
and introduced the concept of collision-free accumulat®hés notion was further ex-
tended by Camenisch and Lysyanskaya [5] to a dynamic settivege updates (addi-
tions and deletions) to the accumulator are possible. Thaygsed a new construction
and showed how to use it to efficiently implement membershipcation in group sig-
natures, and anonymous credential systems. In parti¢chér,show how to keep track
of valid identities using an accumulator, so proving mersbhgris done by arguing in
zero-knowledge that a certain secret value was accumulabeé thorough discussion
of accumulators we refer the interested reader to the sufvesizio and Nicolosi [9].

Li, Li and Xue [11] recently introduced the notionwhiversal accumulatorsvhich
not only allow efficient generation of membership, but alsnan-membership proofs.
Building on [5], Li et al. construct universal accumulatehemes and point out useful
applications, e.g. proving that a certificate has not beeokesl, or that a patient does
not have a disease. However, their construction inheritsratesirable property from
Camenisch and Lysyanskaya's scheme; updates of the setigadahd deletion of
elements) require the accumulator manager to be trustésifalls short of Benaloh and
De Mare’s initial goal: to provide membership proofs evetind accumulator manager
is corrupted.

We propose a new accumulator scheme based on hash trees sarthose used
in the design of digital timestamping systems [3, 2]. Reitalt in hash trees values are
associated to leaves of a binary tree. The values of siblinigs are hashed in order to
compute the value associated to their parent node, and sedosoeforth, until a value
for the root of the tree is obtained. The tree’s root valuesfinéd as the accumulator of
the set of values associated to the leaves of the tree. Wetdmactly use hash trees
to obtain the functionality of universal and dynamic acclatars. Indeed, we need
to add and delete elements from the accumulated set (trez vaddes if using hash
trees) while at the same time be able to produce non—-menipgrstofs. We solve this
last issue using Kocher [10] trick; instead of associatialyies to the tree’s leaves, we
associated a pair of consecutive accumulated set elementzove that an element
X is not in the accumulated set now amounts to showing that ra(gaixz), where
Xa < X < Xg, belongs to the tree but the paipg, x) and(x,xg) do not.

The drawbacks of using a hash tree based scheme are twofidt.tRe size of
witnesses and the update time is logarithmic in the numbealofes accumulated. In
contrast, witnesses and updates can be computed in cotistarih RSA modular ex-
ponentiation based schemes like the ones of [5, 3, 1, 11]. &evie, nonetheless, that
this problem may in fact not exist for reasonable set sizeschaien that we will later
support. The second drawback is the accumulator's manegags space requirements
which is linear in the number of elements. However, this isamissue for the accu-
mulator’s users, since they only need logarithmic in theusmdated set size storage
space.

Overall, the main advantages of our scheme in comparison ¢ dl.’s [11] are:
(1) the accumulator manager need not to be trusted, andn@ sie only assume the
existence of cryptographic hash functions as opposed t8tiomg RSA Assumption,
the underlying security assumption is (arguably) weakadded, collision-resistance

Strong Accumulators from Collision-Resistant Hashing 3

can be based on the intractability of factoring or compuiiigcrete logarithms [7]
while Strong-RSA is likely to be a stronger assumption thaartdring [4].)

1.1 Our contributions

Our contribution is threefold. First, we strengthen theibadefinition of universal ac-
cumulators by allowing an adversary to corrupt the accutoul@anager. This gives
rise to the notion otrong universal accumulatarSecond, we show how to construct
strong universal accumulators using only collision-ri@sis hash functions. Our con-
struction has interesting properties of its own. As in [4, Ie use auxiliary informa-
tion to compute the (hon)membership witness, but this médion (calledmemory
need not to be kept private, and does not allow an adversampte inconsistent state-
ments about the accumulated set. Indeed, the construatodps almost the same
functionality as the (dynamic) universal accumulatorscdbed in [11], namely:

e All the elements of the set are accumulated in one short value
e Itis possible to add and remove elements from the accuntlsatie

e For every element of the input space there exists a witnesptioves whether
the element has been accumulated or not.

Our last contribution is showing how to apply strong uniakraccumulators to
solve a multi-party computational problem of practicakx@nce which we name the
e-Invoice Factoring ProblemrSolving this problem was indeed the original motivation
that gave rise to this work.

In Section 2, we give some background definitions and foyratroduce the no-
tion of strong universal accumulator schemes. In Sectiove3jescribe our basic strong
universal accumulator scheme and rigorously establistedarity. In Section 4, we dis-
cuss the efficiency of the scheme in practice. Section 5 nedltivates the e-Invoice
Factoring Problem. In Section 6, we conclude with some conmtsne Due to space
restrictions the e-Invoice Factoring Problem is descrilbetthe full version of this pa-
per where it is also shown how it can be solved using strongeusal accumulator
schemes.

2 Definitions and notations

Letneg: N — N denote a negligible function, that is, for every polynongél) and any
large enough integer, negn) < 1/p(n). Let also|| denote the operation of concate-
nation between binary strings.) is a randomized algorithm, we wrie& R() to
denote the process of choosiagiccording to the probability distribution induced by
R. We also denote byR()) the set of all possible valuesreturned byR with positive
probability. We distinguish between agcumulator schemg@he protocol, see below),
its short representation accumulator valugand its correspondingccumulated set X
For simplicity, however, we may use these terms indistisigaibly when it's clear from
the context.

4 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

SYNTAX . We formally define the syntax of a strong universal accutoukcheme (with

memory). Our definition differs from that of Li et al. [11] asewonsider an algorithm
to verify if the accumulator value has been updated cogrébtf adding or deleting a
certain value), and we are not interested in hiding the ordemich the elements are
inserted into the accumulated set.

Definition 1 (Strong Universal Accumulators with Memory). Let M be a set of val-
ues. A strong universal accumulator scheme (with memonythéinput set XC M is
a tuple?l = (Setup, Witness, Belongs, Update, CheckUpdate) where

e Setup is a randomized algorithm which on input a security paraméte N,
outputs a public data structunag (also called the memory), and returns an ini-
tial accumulator valuelcco in the set Y= {0, 1}. Both the accumulator value
2cc and the memoryn will be typically held and updated by the accumulator
manager.

e Witness is a randomized algorithm which takes as input M and memorym,
and outputs a witness of membership w & X (x has been accumulated) or a
witness of nonmembership ifix ¢ X.

e Belongs is a randomized algorithm which on input a value M, a withess w
and the accumulator valugtcc € Y outputs a bitl if w is deemed a valid witness
that x e X, outputsO if w is deemed a valid witness thatxX, or outputs the
special symboll if w is not a valid witness of either statement.

e Update,, is a randomized algorithm that updates the accumulator edy ei-
ther adding an elementp = add) to or removing an elementf = del) from
the accumulated set. The algorithm takes an elemen¥ix an accumulator and
memory pair(2lccpefore Mpefore), aNd outputs an updated accumulator and mem-
ory pair (Accafter, Mafter), and an update witness,y

e CheckUpdate is a randomized algorithm that takes as input a value M, a
pair of accumulator value$Rlccpefore Accafier), and an update witness w, and
returns a bit b. Typically, this algorithm will be executey parties other than
the accumulator manager in order to verify correct updatehaf accumulator
by the manager. If b= 1, w is deemed a valid witness that an update operation
(for op € {add,del}) which replacedccpefore With 2lccafier as the accumulator
value, was valid. Otherwise, w is deemed invalid for themiamecumulator pair.

All the above algorithms are supposed to have complexitynoohial in the security
parameter k.

In the above definition the memory is a public data structure which is computed
from the set. Although public, this structure only needs ¢onrintained (stored) by
the accumulator manager who updates the accumulator aedages membership and
non-membership witnesses. In particular, the memonpotaused to verify correct ac-
cumulator updates nor to check the validity of (non)mentiipr&/itnesses.

Definition 2. An accumulator valu@lcc represents the set X M, denoted bflcc = X,
if and only if there exists a sequen€&icci, X, m;) }1<i<n, Where n=|X|, and values
QAccg, mg where xe M for 1 <i<nand

Strong Accumulators from Collision-Resistant Hashing 5

o X ={X}1<i<n,
e (Acco,mp) € (Setup()),
o (RAcci,mj,Wi) = Update,qq(Xi, Acci—1,mi—1) forall 1 <i <n.
If no such sequence exifisc does not represents set X, denotecloy - X.

Note that this definition also considers sets that have beenefd by successive
addition and deletions of elements as there is always a segqu# only addition oper-
ations that leads to the same set.

SECURITY. Universal accumulators as defined in [11] satisfy a basisistency prop-
erty: it must be unfeasible to find both a valid membershimess and a valid non-
membership witness for the same vakue M. As mentioned there, this is equivalent to
saying that giverX C M it is impossible to findk € X that has a valid nonmembership
witness or to findk € M\ X that has a valid membership witness.

In order to be able to cope with malicious accumulator marsagee adapt the se-
curity notion in [11] as follows. First, we let the adversaslect not only the valug
and the witnessv but also the accumulated 9€tC Y, the accumulator valugcc € Y
and whetherx belongs or not toX. We restrict the adversary so he must choose a
pair (2(cc, X) for which there exists a sequence of valid addition openatimamely,
Update,q4 With values inX) that can produce an accumulated vete. This last re-
striction can be justified by noticing that, in the scenar@mamnsider, parties other than
the accumulator manager can externally verify the coressiof each update operation
by using theCheckUpdate algorithm. Thus, security holds as long as it is unfeasibte f
the adversary to fool th€heckUpdate verification, namely given an accumulator value
Accpetore the adversary is unable to efficiently generate an accunorutalueAccasier, @
setX, an input valug, and a valid update witnessfor which 2(ccpefore actually repre-
sents seX and CheckUpdate (X, ccpefore Accaster, W) = 1, butccaser A XU {X} if w
is an addition witness Qccasier & X\ {X} if wis an deletion witness.

Definition 3 (Security of Strong Universal Accumulators with Memory). A strong
universal accumulator with memory is secure if for everybatuailistic polynomial-time
adversary4 the following conditions hold:

e (Consistency)

(X, W, wa, X, 2lce) «— 4 (K);

Pr Acc = X, Belongs(X,w1,2cc) = 1, Belongs(x, Wy, 2cc) =0

=negk).

e (Secure addition)

(mfcbefore X, 2Accatter, X, W) — A (k) :
Pr Accpefore= X, Accatter 7 X U {X}, =negKk).
| CheckUpdate(X, 2Accpefore 2Accafter, W) = 1 |

e (Secure deletion)

(Accpetore X, Accatter, X, W) «— 4 (K) :
PI’ Q«lCCbeforei X, mCCaﬁer =+ X\{X}7 = ne(_l(k) .
| CheckUpdate(X, 2Accpefore Accafter, W) = 1 |

6 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

The type of accumulators we consider in this work is not nemély quasi-commuta-
tive [5, 11] as they may not hide the order in which the elementgweded to the set.
More precisely, our definition tolerates that the value efadbcumulator may depend on
a particular sequence bfpdate, , andUpdate,,; operations that produced a particular
accumulator valué&lcc. Our only requirement is that the accumulated$e¢presented
by any accumulator value is well defined. The following prsiion shows this is so if
we use a secure strong universal accumulator scheme. ToEpomitted due to space
constraints.

Proposition 1. Let2 a secure strong universal accumulator scheme, agdXa se-
curity parameter. Given any adversany, consider the experiment Eglg“cin which
the adversary is allowed to submit as many queries to oragheas it wants and then
stops. Oracleo () is stateful and operates as follows: on any first query, theeker cre-
ates an empty set’Xruns Setup(k) to obtain (2cc’,m’) which it returns as the query
answer. Then, for each subsequent query of the foc®icc, w) the oracle computes
b « CheckUpdate(x,2lcc’, 2Ace,w), and if b= 1, it setsAcc’ « Acc, X' «— X' U {x},
and returns bit b as the answer to the oracle query. ¥#10 it does not modifylcc
or X’ and it simply returnsL. We say adversary wins Exg s if after 2 stops,
it holds that2cc % X'. Then, for every probabilistic polynomial time adversary

Pr[ﬂ wins in Ex@%’ﬂAcc} is negligible in k.

Our security definition (Definition 3) for the dynamic scengivhere addition and
deletion of elements are allowed) differs from the one inislere the adversary is
only able to add and delete elements by querying the acctonut@nager, who is
uncorruptible. In contrast, in our definition the adversiargllowed to control the ac-
cumulator. However, we require that during each updateaat kn uncorrupted partic-
ipant verifies the update witGheckUpdate to guarantee the consistency between the
accumulated value and the history of additions and delgtion

DyNAMIC ACCUMULATORS. The standard definition of dynamic accumulators (see for
example the one in [5]) adds two requirements which so far s mot considered.
First, it requires the existence of an additional efficidgbathm that allows to publicly
and efficiently update membership witnesses after a changeiaccumulator value
S0 witnesses can be proven valid under the new accumulaioe.vand secondly, it
requires that both the accumulator updating algorithm dbkagehe witness updating
algorithm to run in time independent from the sizef the accumulated set.

In our construction, we only achieve logarithmic depengesrtn for the accumu-
lator updates. In practice, such dependency may be apptefior many applications.

3 Our scheme

We assume that there exist a public broadcast channel withamye Depending on
the level of security required, this can be a simple trusteth werver, or a bulletin
board that guarantees that every participant can see thistpedbinformation and that
nobody can delete posted message. For a discussion orirbherds and an example
of their use in another cryptographic protocol, the intex@seader is referred to [6].

Strong Accumulators from Collision-Resistant Hashing 7

We rely on broadcast channels in order to ensure that thécatibh of the successive
accumulator values that correspond to updates of the sebtha forged. In particular,
an adversary who controls the manager of the accumulatarotgrublish different

accumulator values to different groups of participants.

3.1 Preliminaries

Our scheme is inspired by time stamping systems like thoserithed in [3, 2]. In these
systems a document needs to be associated to a certain miontiem¢. The solution
proposed there is to divide the time in periods (e.g. howags) and place each docu-
ment as a leaf at the bottom of a binary tree (§9ywith other documents that belong
to the same period of time, sayThen the values associated to each pair of leaves with
the same parent node are hashed in order to derive the vathe parent node. This
process is repeated until the valef the root node of the tree is computed. This value
vis then published as a representative of theTréar periodt. Later, a given document
m can be proven to belong to a certain period of tiny presenting a valid subtree of
treeT corresponding to time periddhat includes the document

We use the above approach to build an accumulator schemedhiet for dynamic
sets and also allows proofs of nonmembership. In this caslklifg a proof of non-
membership is somehow similar to the trick of Kocher (in)16} instead of storing
elements of the set, we store pairs of consecutive elemétiits set. Then, proving that
an elemenk is notin the accumulated s&t amounts to simply proving that there exists
elements andxg, Xg < X < Xg, such that a paifxq,xg) is stored in the tree.

Our solution uses collision-resistant hash functions cihive formalize as families
of functions. In practice we can use a well known hash fumctike SHA-256, for
example. We start recalling the standard notion of coltisiesistant hash functions.

Definition 4. A hash-function family is a functior : K x M — Y where K and Y are
non-empty sets and M and Y are sets of strings.

Definition 5. (Collision-Resistance) Letr : K x M — Y be a hash-function family.
Let k be a security parameter, where-KK| = |Y|. Then# is collision-resistant if and
only if for every polynomial time probabilistic algorithmwe have:

Prik & K; (my) — AK) : m#£n, 2, (m) = 2, (m)] = negk)

wherek & K means thak is selected uniformly at random in the set of keys K.

In the followingH will denote a randomly selected function of a collisionisent
hash-family functiorw : K x M — Y, whereM is the set of all binary strings andis
the set{0, 1}¥, for a large enough security parameiter N.

We assume the s& we want to accumulate is ordered and denotesbthe it
element oX = {xq, %2, ...,Xn }, N € N. Letxg = —o0 andxp 1 = 40 two special elements
such that-o < xj < +oo for all x; € X, where< is the order relation oKX (for example,
the lexicographic order on bit strings).

Observe that showinge X is equivalent to proving that:

(Xa,Xg) € {(%i,%i41):0<i<n} A (X=XqVX=Xg).

8 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo
On the other hand, showing thatt X corresponds to proving:
Xa < X=X A (XaXp) € {(X,Xi+1) :0<i<n}.

Consider now the following recursive definitionlabeled binary tree T
e T equals the empty tre¥il, or

e T = (Sleftright) whereSis a label (string) antleft(T) = left andRight{T) =
right are trees.

Hereleft andright are theleft andright child of T respectively. Each tre€ has
associated a nodd = nod€gT) which is called the root o as well as theparent
of Left(T) and Right(T). Each nodeN = nod€S left, right) has associated a string
Labe(N) = S. Sometimes we identify the tree with its root and we wiigelT)
to denotelLabelnoddT)). We say thal\’ is a node ofT if N’ =noddT) or N’ is a
node ofLeft(T) or Right(T). A leaf is a node of the forn{S; Nil,Nil). If T = Nil, then
we say thafl has depth 0 and denote it deptiT) = 0. Otherwise, ledeptHT) =
1+ max{depthLeft(T)),depti(Right(T))}. A treeT is balancedif |depth{Left(T)) —
deptHRight(T))| < 1. It is a well known fact that a balanced tree witmodes has
maximum deptiO(log(n)).

The set{H (x||x+1) : 0 <i < n} will be called thebaseof X underH. SinceH is a
collision-resistant hash function and no twaare identicalH (i ||xi+1) # H(X;||Xj+1)
for i # j, except with negligible probability.

A balanced binary tre€ is called anodelof X underH if:

e For every nodedN in T there are string¥aly andProofy;, called node value and
node proof respectively, such tHaabel(N) = (Valy; Proofy).

e The base oK is {Valy : N is a node ofT }.
e T hasn+1 nodes.

e Proofy = H(Valn||Proof| e ||Proofgigngn)) for every nodeN of T (where
Proofy; corresponds to the empty string).

Figure 1 depicts a toy example of a model of a set.

H(—o||x1)
H (x[x2) H (x]|x3)
H (x3|[x4) H(xa||xs) H(xs||xs) H(xg||+)

H(xel[x7) H(x7[[xg)

Fig. 1. A tree modelT of the setX = {xq,..., xg}. Only node values are shown. Note that the

place of the values in the tree is irrelevant.

Strong Accumulators from Collision-Resistant Hashing 9

A subtre€eT’ of a labeled binary tre€ is a tree such that: (&abelT’) = Labe|T),
(b) Left(T’) is a subtree ofeft(T) or Left(T’) = Nil, and (c)Right(T’) is a subtree of
RightT) or RightT’) = Nil.

/\
AL AN
AN A

d eghk |l no

>3

Fig. 2. A tree and its minimal subtree (nodes with values in boldface) generatdtehyode of
value j. Children of the nodes that are on the path frpto a are underlined.

LetT be alabeled binary tree. We denote its collection of nodeagby (T). We
say thaty C ¢ (T) generates a minimal subtree U ofiffU is a subtree of obtained
by taking all nodes i that belong to all paths froffi's root to a node whose value is in
v (the paths include both the root 6fand the nodes of value irt) and all the children
of these nodes. Figure 2 illustrates the concept of minimiatree. IfU is generated by
a singleton{ S}, then we say thdtl is generated b.

Proposition 2. Let# :K x M — Y be a collision-resistant hash function family and H
a uniformly chosen function i’ . Let X C M be an adversarially-chosen polynomial
size set (on the security parameter k), and T be a model of ¥ru#dThen, given T,
no adversary can efficiently compute a labeled binary tréarid a value V such that
V e v (T)\ ¥ (T) and Proof;, = Proofy, except with negligible probability.

Proof. Let A be a polynomial time stateful adversary which works in twag#s. First,
on input the security parameter and a hash fundtlon #, A outputs a seK C M of
size polynomial ork. Then, given a model for X underH, it outputs a labeled bi-
nary treeT’ and a valu®/ satisfying the conditions of the proposition. SirR®of; =
Proof; and valueV is in ¢ (T') but not in%’ (T) there must exist a node' in T' and a
nodeN in T such thatProofy, = H(Valy |[Proof ey ||Proofgignyny)) andProofy =

H (Valy|[Proof e | [Proofrigngny) are equal butaln|[Proof e [|[Proofgighn) #
Valy/||Proof| efny)| [Proofgighyny). NodesN andN’ can be found efficiently by simply
traversing both trees in some fixed order.

Now, letB be an adversary that is given a uniformly selected at randulfision-
resistant hash functiadd € s/ . B first queriesA to obtain a seX which it uses to build a
modelT for X underH. Then,B runsA as a subroutine to obtain another labeled binary
tree T’ and a valueV such thatProof; = Proofy, andV € v (T')\ ¢ (T). Finally,
following the procedure mentioned abo®will be able to find a collision foH.

10 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

3.2 A Strong Universal Accumulator with Memory using Hash Trees

In this section we use hash trees to build a universal acatoruvith memory.

THE CONSTRUCTION Letk € N be the security parameter and ¥et= {x1,X2, ..., Xn}
be a subset dfl = {0, 1}*. We define the accumulator schehiashAcc below.

e The memorym is a model ofX.

e Setup: The algorithm first setX equal to the empty set. Then, it picks a hash
functionH uniformly at random from the familys by first computing a random
indexi € K (say using standard multiparty computation techniquesnanadl
participants, including the accumulator manager) and sia¢tingH = H;.! The
algorithm then initializesn to a single root nodél,, with valueH (—oo|| 4- o).
Finally, the accumulator manager publis®&sini = Proofy, .

e Witness: On inputx € M and memorym, it computes the witness = (wq, wo)
as follows. First, the algorithm setg = (Xq,Xg) wherex = Xy or x = Xg if x € X.
Otherwise, ifx ¢ X the algorithm sets = (Xq,Xg) Wherexy < x < Xg. Finally,
it setsw, as the minimal subtree af generated by the valug(xy||xg).

e Belongs: On inputx € M, witnessw = ((x,x”),u), and accumulator valugcc,
it first checks if the following conditions hold: (®roof, = 2Acc, (b) H(X||X") €
Vu, (€) (x=x orx=x"), and (c') (X < x < x"). The algorithm outputs 1 if
conditions (a), (b), and (c) hold; it outputs 0 if (a), (b)dafe’) hold. Otherwise,
it outputs_L.

e Update,,: On input an element € M, an accumulator valu@ccpefore and a
memorympefore it proceeds as follows. Consider two cases depending othehe
the update is an additionf = add) or a deletion ¢p = del).

If op = add andx ¢ X, the algorithm addg into X by modifying mpefore @S
follows:
1. Itreplaces the valull (xq||Xg) from the appropriate node ipefore (Where
Xa < X < Xg) by the valueH (Xq[x).

2. Itaugments the tre@peforeWith a new leaiN of valueH (x|[xg) so the result-
ing treemageer iS @ balanced tree. L¥b,, () be the (parent) node whekeis
attached as a leaf.

The resulting tree is denotefler. Figure 3 illustrates the process of inserting

an element int@pefore
Once treengger is built, the new accumulator is simply the value of the rdot o

the tree, namelflccatier = Proof,,, . The witnesswagq = (add, Wadd 1, Wadd 2)

that the update (addition) has been done correctly is cosdpag follows:

® Wadqd1 corresponds to the minimal subtreemferore generated by the set
{H (Xq | |XB)7va'|Vpar<N) }1 andy

® Waqd2 corresponds to the minimal subtreewfser generated by the set
{H(Xal[%), H (x|[x3) }-

1 A common heuristic to avoid interaction is to simply pidk=SHA-256 [12], for example.

Strong Accumulators from Collision-Resistant Hashing 11
H(—oo|x1)
H (xq|[x2) H (x2|[x)
H (x3|[x4) H(xa|[xs) H(xs|lx6) H(xg|[+)
H(xel[x7) H(xz[[xe) H(X|[x3)

Fig. 3. Insertingx into the tree of Figure 1 whepe < X < X3.

If op = del, deletingx from X is done in a similar way as follows. First,
the update algorithm locates the two nodesnggsore that containx. LetVy and
Vs be those nodes, and Ielt(xy ||x) andH (x||xg) be their respective values, for
somexg < X < Xg. The goal is to remove these nodes and replace them with a
new node with valued (xq|[xg) in a way that the derived tree is still balanced.
This is done by first replacinyy with the single node with valuél (Xq|(Xg),
and then replacinyp with a leaf nodeL (for example, the rightmost leaf on
the last level of the tree). These replacements yield a neswtgser Wwhose root
label is set to the value of the accumula®dcafter = Proofy ... The witness
Wgel = (del, Wgel1, Wdel2, Wdel3) IS then computed as follows:

e Wgel1 Corresponds to the minimal subtreemferore generated by the set
{HXal[%), H(X|[x3),Val_},

e Wgel2 is the pair(xy||xg) such thaty < X < Xg, and
® Wge3 iS the minimal subtree afiaser generated by (Xq|[Xg).

The algorithmU pdate,, outputs the new accumulator valflecaser, the modified
memorymager, and the update witness,.

e CheckUpdate: On input an element € M, two accumulator valueSlccpefore
Accatrer, @nd an update witness, it proceeds as follows. v = (add,wi,w»)
then, the algorithm outputs 1 provided that:

e W is atree obtained by adding a leafug,

e Except for the node of valu (X« ||xg) (for X4 < X < xg) all nodes which
are common tav; andw, have the same value in either one of the trees,

° PrOOle = Q[CCbefore and PI’OOsz == QlCCafter, and
o H(Xal[X),H(X||xg) € ¥ (wp).
Otherwise, it outputs 0. We omit the case= (del,w;, Wy, ws3) which is similar.

SECURITY. We now prove that the schenitashAcc of the previous section is secure
under Definition 3.

First, note that if memoryn is a model ofX, then the memory obtained after exe-
cutingUpdate in order to add a new elemext X, is a model o)X Ux. Indeed, suppose

12 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

H (oo [x1) H(—0[x1)

H (x][x2) H(x2|[x3) H (xq[|x2) H (2| |x)

/\/\/\/\

H(xs[|xa) H(xal|xs) H(xs||xe) H(xg[l+e) Hi(xsl[xa) H(xal[xs) H(xs|[x6) H(Xg||+e)
H (X|[x3)

(@) (b)

Fig.4. (a) The minimal subtree of the tree shown in figure 1 and generated by
{H(x2||x3),H (X4,X%s5)}. (b) The minimal subtree of the tree shown in Figure 3 and generated
by {H (xz[[x),H (x|[x3) }.

Xa = X < Xg and letH (xq|[%g) be the value of a nodé in m. By replacing nod& with

the node of valuéd (x| |x) and adding the node of valu(x||xz), we clearly obtain a
set of valuedH (x||x+1), 0 <i < n+ 1} that corresponds to the successive intervals of
the setX U {x} (wheren = |X]).

Intuitively, CheckUpdate must guarantee that the updated memory (tree) used to
compute the new accumulated value still has the propertyaihl all the successive
intervals of the accumulated set as node values, that etarliahappears once and only
once in the tree, and that no other node value can belong teethe

Theorem 1. Let# :K x M — Y be a collision-resistant hash function family. Then, the
accumulator schemHashAcc is a secure strong universal accumulator scheme (with
memory).

Proof. We need to prove the properti€onsistencyAddition, andDeletion

e (Consistencylirst, we note thaflcc = X implies that there exists a memaiy
which is a model oX. Let us now suppose that there is an advergatiyat can
compute a valuex and two witnessew;, w, such thatBelongs(x,wy,2(cc) = 1
and Belongs(x,wp,2cc) = 0. We assume without lost of generality that X.
Any such adversarf is in fact able to findxy andxg, X < X < xg, such that
H(Xa||Xg) belongs tov (m). Sincem is a model forX, by Proposition 2 this
adversary will only succeed with negligible probabilith& argument fok ¢ X
is analogous.

e (Secure AdditionTonsider the case where the update is the addition of a xalue
such thaiy < X < Xg andH (Xq,%g) belongs to the base of, where2ccpefore =
X. Assume tha€heckUpdate(X, Accpefore Accatter, W) = 1 where bothk andw =
(add,Upefore Uatter) are arbitrarily chosen by the adversary, @@ aser 2 X U
{x}. Then, for some two elementsv € M the adversary is effectively able
to build a treeS" = Uater containing a valued (u||v) that does not belong to
(7 (mpefore) U {H (Xa||X), H(X|[Xg) })\{H (Xa|[Xg) } = ¥ (master) @and such that in
additionProofs: = Proofy,,,, = Accaster = Proof, ... This contradicts Propo-
sition 2.

Strong Accumulators from Collision-Resistant Hashing 13
e (Secure DeletionYhis case is similar to the addition of an element.

EFFICIENCY. We analyze the computational efficiency of the proposedrseh

Theorem 2. Let n be the size of X. The witnesses of (non)membership armtlafes
have size @og(n)). The update procesdpdate, the verification processeBelongs
and CheckUpdate can be done in time @og(n)).

Proof. It is enough to show that a minimal subtrdeof T generated by a constant
number of node values has a si2éog(n)). Indeed, first note that a minimal subtree
of a tree generated by a constant number of node values isntbe af the minimal
subtrees generated by each of the values. It is easy to seth¢hsize of a minimal
subtree generated by a node value is proportional to thé @éte node. This, and the
fact thatT is balanced, implies the desired conclusion.

4 Efficiency in Practice

Our solution is theorically less efficient than the schenoppsed in [11]. Nonetheless,
if one considers practical instances of these schemesfteeatice effectively vanishes
as in most implementations hash functions operations gnéfisiantly faster than RSA
exponentiations — which is the core operation used by thersek in [11, 5]. Table 2
shows the time taken by one single RSA exponentiation vetmiime taken by our
scheme for update operations as a function of the numbeeadbumulated elements.
For the time measurements, we useddpenssbenchmarking command (see [13]) on
a personal computer. Notice that RSA timings were obtairsgagusigning operations,
as in the scheme proposed in [11] where exponents may notdlé $imings for SHA
operations were measured using an input block of 1024 hiits.cbmparison is based
on the fact that our scheme requires at most2og(N) hash computations, whehe
is the number of accumulated elements, given that at mosbi@anches of the Merkle
tree used in our construction (three foge 1 and one fowge 3, see Section 3.2) will
have to be recomputed in the case of deletions.

Our results show that even for large values\ofising a hash-based scheme is still
very efficient. Moreover, our scheme is faster than using@lsiRSA operation with a
2048-bit key.

Table 1.Running time for RSA and SHA operations.

Algorithm Note Operations per secontﬂ
SHA-256 |input block of 1024 bits 65507
SHA-512 |input block of 1024 bits 16856
RSA-512| signing operation 1179
RSA-1024 signing operation 236
RSA-2048 signing operation 40

14 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

Table 2. Comparison of performance between simple RSA exponentiation andtlogec num-
ber of computations of SHAN is the number of elements that are accumulated. Time is repre-
sented in milliseconds.

N [RSA-51FJRSA-1024RSA-204§SHA-256 SHA-512,
23] 0,845 4,23 25 0,37 1,42
210[0,845 4,23 25 1,22 4,75
2201 0,845 4,23 25 2,44 9,5
239[0,845 4,23 25 3,66 14,24

5 The e-Invoice Factoring Problem

In this section we describe an application of strong unaleascumulators that yields an
electronic analog of a mechanism calfadtoringthrough which a company, henceforth
referred to as the ProvideP), sells a right to collect future payment from a company
Client (C). The ensuing discussion is particularly concerned withtthnsfer of pay-
ment rights associated to the turn over of invoices, thatisice factoring The way
invoice factoring is usually performed in a country like @ thatP turns a purchase
order fromC to a third party, henceforth referred to as Factoring EriEtl). The latter
givesP a cash advance equal to the amoun€fpurchase order minus a fee. Later,
FE collects payment frort.

There are several benefits to all the parties involved in tofexg operation. The
provider obtains liquidity and avoids paying interests oedis that he/she would oth-
erwise need (it is a common practice for some clients as wedeseral trading sectors
in Chile to pay up to 6 months after purchase). The client gei®dit at no cost and is
able to perform a purchase for which he might not have foundlmgvprovider.

The main phases of a factoring operation are summarizeavbék) C requests
from P either goods or services, (F)delivers the goods/services® (c) P makes a
factoring request t& E, (d) FE either rejects or accepBss request — in the latter case
FE givesP a cash advance @is purchase, (e) lateFE ask<C to settle the outstanding
payment, and finally (fC paysFE.

A risk for FE is thatP can generate fake invoices and obtain cash advances over
them. This danger is somewhat diminished by the fact that slighonest behavior
has serious legal consequences. More worrisomé& Eis thatP may duplicate real
invoices and request cash advances from seftalsimultaneously. But, Chile’s local
practice makes this behavior hard to carry forth. Indeadiges are printed in blocks,
serially numbered and pressure sealed by the local IRS pdknown asServicio de
Impuestos Internos (S)I)A FE will request the physical original copy of an invoice
when advancing cash . It is illegal, and severely punished, to make fake copies or
issue unsealed invoices.

Approximately half a decade ago, an electronic invoicingtesmn began operating
in Chile. Background and technical information concerimg initiative can be down-
loaded from the website of the SlI, specifically from [8].

The newly deployed electronic invoicing system has beerblyiduccessful. It has
been hailed as a major step in the government moderniza&tiothermore, it has cre-
ated strong incentives for medium to small size companiester the so called “infor-

Strong Accumulators from Collision-Resistant Hashing 15

mation age”. Nevertheless, the system somewhat disrupiscthl practice concerning
factoring. Specifically, & E will not be able to request the original copy of an invoice,
since in a digital world, there is no difference between agioal and a copy. This
creates the possibility of short term large scale frauddeammitted by unscrupulous
providers. Indeed, a provider can “sell” the same invoice&my distinct-Es. We re-
fer to the aforementioned situation created by the intrtdncf electronic invoicing
as thee-Invoice Factoring Problemn the full version of this paper we show how to
address this problem using strong universal accumulat@mses.

6 Conclusion

We introduced the notion of strong universal accumulatbeste, which provide al-
most the same functionality as do the universal accumutatioemes defined in [11],
namely (a) a set is represented by a short value called adatomub) it is possible
to add and remove elements dynamically from the (accunu)ate, and (c) proofs of
membership and nonmembership can be generated using aswne the accumulated
value. In this notion, however, the accumulator manages doeneed to be trustworthy
and might be compromised by an adversary.

We also give a construction of a strong universal accumuktbeme based on
cryptographic hash functions which relies on a public datacture to compute accu-
mulated values and witnesses (of membership and nonmehniparshe accumulated
set). We argue that the proposed scheme is practical angeeffior most applica-
tions. In particular, we discuss an application to a corcaeid relevant problem — the
e-invoice factoring problem .

References

1. N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signeshsehvithout
trees. InAdvances in Cryptology - Proceedings of Eurocrypt,’9@lume 1233 ofLNCS
pages 480-494. Springer—Verlag, 1997.

2. D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiendyraliability of digital
time-stamping. In R.M. Capocelli, A. DeSantis, and U. Vaccaro, edi8#gquences II: Meth-
ods in Communication, Security, and Computer Sciepages 329-334. Springer—\Verlag,
1993.

3. J. Benaloh and M. De Mare. One-way accumulators: A decentraisemhative to digital
signatures. IMdvances in Cryptology - Proceedings of Eurocrypt,"@8ume 765 oLNCS
pages 274-285. Springer—Verlag, 1993.

4. D. Boneh and R. Venkatesan. Breaking RSA may not be equivedeattoring. InAd-
vances in Cryptology - Proceedings of Eurocrypt,'98lume 1233 oLNCS pages 59-71.
Springer—Verlag, 1998.

5. J. Camenisch and A. Lysyanskaya. Dynamic accumulators atidatm to efficient revo-
cation of anonymous credentials. In Moti Yung, editddvances in Cryptology - Proceed-
ings of Crypto '02 volume 2442 oL NCS pages 61-76, Berlin, 2002. Springer—\Verlag.

6. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure dimdadp efficient multi-
authority election scheme. Wdvances in Cryptology - Proceedings of Eurocrypt, '9@l-
ume 1233 oL NCS pages 103-118. Springer—\Verlag, 1997.

16

10.

11.

12.

13.

Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

. |. Damgard. Collision free hash functions and public key signature schemésiviances in

Cryptology, Proceedings of Eurocrypt '8Volume 308 olLNCS pages 203—-216. Springer—
Verlag, 1988.

. Servicio de Impuestos Internos. Inform@ti sobre factura elecica.

(https://palena.sii.cl/dte/ m.nfo.htn [June 19, 2008]).

. N. Fazio and A. Nicolisi. Cryptographic accumulators: Definitions strctions and appli-

cations, 2003. ht t p: / / www. cs. nyu. edu/ ~ni col osi / paper s/ accumul at ors. ps [June
19, 2008)).

P. C. Kocher. On certificate revocation and validation. In R. Hieddhkditor,Financial
Cryptography volume 1465 oL NCS pages 172—177. Springer—Verlag, 1998.

J. Li, N. Li, and R. Xue. Universal accumulators with efficient membership proofs. In
Proceedings of Applied Cryptography and Network Security - ACNSv@ldme 4521 of
LNCS 2007.

National Institute of Standards and Technology (NIFTRS Publication 180: Secure Hash
Standard (SHSMay 1993.

OpenSSL Project. OpenSSL Package, June 20@8.p:(/ / ww. openssl . org [June 19,
2008])).

