
Strong Accumulators from Collision-Resistant Hashing

Philippe Camacho1⋆, Alejandro Hevia1 ⋆⋆, Marcos Kiwi2 ⋆⋆⋆, and Roberto Opazo3

1 Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 3er piso, Santiago, Chile.

{pcamacho,ahevia}@dcc.uchile.cl
2 Dept. Ing. Mateḿatica & Ctr. de Modelamiento Mateḿatico,

UMI 2807 U. Chile–CNRS
mkiwi@dim.uchile.cl

3 CEO Acepta.com
roberto.opazo@acepta.com

Abstract. Accumulator schemes were introduced in order to represent a large
set of values as one short value called theaccumulator. These schemes allow one
to generate membership proofs, i.e. short witnesses that a certain value belongs
to the set. In universal accumulator schemes, efficient proofs of non-membership
can also be created. Li, Li and Xue [11], building on the work of Camenisch
and Lysyanskaya [5], proposed an efficient accumulator scheme which relies on
a trusted accumulator manager. Specifically, a manager that correctly performs
accumulator updates.
In this work we introduce the notion ofstrong universal accumulator schemes
which are similar in functionality to universal accumulator schemes, but do not
assume the accumulator manager is trusted. We also formalize the securityre-
quirements for such schemes. We then give a simple construction of a strong uni-
versal accumulator scheme which is provably secure under the assumption that
collision-resistant hash functions exist. The weaker requirement on theaccumu-
lator manager comes at a price; our scheme is less efficient than knownuniversal
accumulator schemes — the size of (non)membership witnesses is logarithmic in
the size of the accumulated set in contrast to constant in the scheme of Camenisch
and Lysyanskaya.
Finally, we show how to use strong universal accumulators to solve a practical
concern, the so called e-Invoice Factoring Problem.

Key words: Accumulators, Collision-resistant Hashing, e-Invoice.

1 Introduction

Accumulator schemes were introduced by Benaloh and De Mare [3]. These primitives
allow to represent a potentially very large set by a short value calledaccumulator. More-
over, the accumulator together with a so calledwitnessprovides an efficiently verifiable
proof that a given element belongs to the accumulated set.

⋆ Gratefully acknowledges the support of CONICYT via FONDAP en Matemáticas Aplicadas.
⋆⋆ Gratefully acknowledges the support of CONICYT via FONDECYT No. 1070332.

⋆⋆⋆ Supported by CONICYT via FONDECYT No. 1010689 and FONDAP en Matemáticas Apli-
cadas.

2 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

Barić and Pfitzmann [1] refined the security definition of accumulator schemes,
and introduced the concept of collision-free accumulators. This notion was further ex-
tended by Camenisch and Lysyanskaya [5] to a dynamic settingwhere updates (addi-
tions and deletions) to the accumulator are possible. They proposed a new construction
and showed how to use it to efficiently implement membership revocation in group sig-
natures, and anonymous credential systems. In particular,they show how to keep track
of valid identities using an accumulator, so proving membership is done by arguing in
zero-knowledge that a certain secret value was accumulated. For a thorough discussion
of accumulators we refer the interested reader to the surveyof Fazio and Nicolosi [9].

Li, Li and Xue [11] recently introduced the notion ofuniversal accumulators, which
not only allow efficient generation of membership, but also of non-membership proofs.
Building on [5], Li et al. construct universal accumulator schemes and point out useful
applications, e.g. proving that a certificate has not been revoked, or that a patient does
not have a disease. However, their construction inherits anundesirable property from
Camenisch and Lysyanskaya’s scheme; updates of the set (addition and deletion of
elements) require the accumulator manager to be trusted. This falls short of Benaloh and
De Mare’s initial goal: to provide membership proofs even ifthe accumulator manager
is corrupted.

We propose a new accumulator scheme based on hash trees similar to those used
in the design of digital timestamping systems [3, 2]. Recallthat in hash trees values are
associated to leaves of a binary tree. The values of sibling nodes are hashed in order to
compute the value associated to their parent node, and so on and so forth, until a value
for the root of the tree is obtained. The tree’s root value is defined as the accumulator of
the set of values associated to the leaves of the tree. We cannot directly use hash trees
to obtain the functionality of universal and dynamic accumulators. Indeed, we need
to add and delete elements from the accumulated set (tree node values if using hash
trees) while at the same time be able to produce non–membership proofs. We solve this
last issue using Kocher [10] trick; instead of associating values to the tree’s leaves, we
associated a pair of consecutive accumulated set elements.To prove that an element
x is not in the accumulated set now amounts to showing that a pair (xα,xβ), where
xα ≺ x≺ xβ, belongs to the tree but the pairs(xα,x) and(x,xβ) do not.

The drawbacks of using a hash tree based scheme are twofold. First, the size of
witnesses and the update time is logarithmic in the number ofvalues accumulated. In
contrast, witnesses and updates can be computed in constanttime in RSA modular ex-
ponentiation based schemes like the ones of [5, 3, 1, 11]. We believe, nonetheless, that
this problem may in fact not exist for reasonable set sizes — aclaim that we will later
support. The second drawback is the accumulator’s manager storage space requirements
which is linear in the number of elements. However, this is not an issue for the accu-
mulator’s users, since they only need logarithmic in the accumulated set size storage
space.

Overall, the main advantages of our scheme in comparison to Li et al.’s [11] are:
(1) the accumulator manager need not to be trusted, and (2) since we only assume the
existence of cryptographic hash functions as opposed to theStrong RSA Assumption,
the underlying security assumption is (arguably) weaker. (Indeed, collision-resistance

Strong Accumulators from Collision-Resistant Hashing 3

can be based on the intractability of factoring or computingdiscrete logarithms [7]
while Strong-RSA is likely to be a stronger assumption than factoring [4].)

1.1 Our contributions

Our contribution is threefold. First, we strengthen the basic definition of universal ac-
cumulators by allowing an adversary to corrupt the accumulator manager. This gives
rise to the notion ofstrong universal accumulators. Second, we show how to construct
strong universal accumulators using only collision-resistant hash functions. Our con-
struction has interesting properties of its own. As in [5, 11], we use auxiliary informa-
tion to compute the (non)membership witness, but this information (calledmemory)
need not to be kept private, and does not allow an adversary toprove inconsistent state-
ments about the accumulated set. Indeed, the construction provides almost the same
functionality as the (dynamic) universal accumulators described in [11], namely:

• All the elements of the set are accumulated in one short value.

• It is possible to add and remove elements from the accumulated set.

• For every element of the input space there exists a witness that proves whether
the element has been accumulated or not.

Our last contribution is showing how to apply strong universal accumulators to
solve a multi-party computational problem of practical relevance which we name the
e-Invoice Factoring Problem. Solving this problem was indeed the original motivation
that gave rise to this work.

In Section 2, we give some background definitions and formally introduce the no-
tion of strong universal accumulator schemes. In Section 3,we describe our basic strong
universal accumulator scheme and rigorously establish itssecurity. In Section 4, we dis-
cuss the efficiency of the scheme in practice. Section 5 briefly motivates the e-Invoice
Factoring Problem. In Section 6, we conclude with some comments. Due to space
restrictions the e-Invoice Factoring Problem is describedin the full version of this pa-
per where it is also shown how it can be solved using strong universal accumulator
schemes.

2 Definitions and notations

Let neg: N→N denote a negligible function, that is, for every polynomialp(·) and any
large enough integern, neg(n) < 1/p(n). Let also|| denote the operation of concate-

nation between binary strings. IfR() is a randomized algorithm, we writea
R
← R() to

denote the process of choosinga according to the probability distribution induced by
R. We also denote by〈R()〉 the set of all possible valuesa returned byR with positive
probability. We distinguish between anaccumulator scheme(the protocol, see below),
its short representation oraccumulator value, and its correspondingaccumulated set X.
For simplicity, however, we may use these terms indistinguishably when it’s clear from
the context.

4 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

SYNTAX . We formally define the syntax of a strong universal accumulator scheme (with
memory). Our definition differs from that of Li et al. [11] as we consider an algorithm
to verify if the accumulator value has been updated correctly (by adding or deleting a
certain value), and we are not interested in hiding the orderin which the elements are
inserted into the accumulated set.

Definition 1 (Strong Universal Accumulators with Memory). Let M be a set of val-
ues. A strong universal accumulator scheme (with memory) for the input set X⊆M is
a tupleA = (Setup,Witness,Belongs,Update,CheckUpdate) where

• Setup is a randomized algorithm which on input a security parameter k ∈ N,
outputs a public data structurem0 (also called the memory), and returns an ini-
tial accumulator valueAcc0 in the set Y= {0,1}k. Both the accumulator value
Acc and the memorym will be typically held and updated by the accumulator
manager.

• Witness is a randomized algorithm which takes as input x∈M and memorym,
and outputs a witness of membership w if x∈ X (x has been accumulated) or a
witness of nonmembership w′ if x 6∈ X.

• Belongs is a randomized algorithm which on input a value x∈ M, a witness w
and the accumulator valueAcc ∈Y outputs a bit1 if w is deemed a valid witness
that x∈ X, outputs0 if w is deemed a valid witness that x6∈ X, or outputs the
special symbol⊥ if w is not a valid witness of either statement.

• Updateop is a randomized algorithm that updates the accumulator value by ei-
ther adding an element (op = add) to or removing an element (op = del) from
the accumulated set. The algorithm takes an element x∈M, an accumulator and
memory pair(Accbefore,mbefore), and outputs an updated accumulator and mem-
ory pair (Accafter,mafter), and an update witness wop.

• CheckUpdate is a randomized algorithm that takes as input a value x∈ M, a
pair of accumulator values(Accbefore,Accafter), and an update witness w, and
returns a bit b. Typically, this algorithm will be executed by parties other than
the accumulator manager in order to verify correct update ofthe accumulator
by the manager. If b= 1, w is deemed a valid witness that an update operation
(for op ∈ {add,del}) which replacedAccbeforewith Accafter as the accumulator
value, was valid. Otherwise, w is deemed invalid for the given accumulator pair.

All the above algorithms are supposed to have complexity polynomial in the security
parameter k.

In the above definition the memorym is a public data structure which is computed
from the set. Although public, this structure only needs to be maintained (stored) by
the accumulator manager who updates the accumulator and generates membership and
non-membership witnesses. In particular, the memory isnot used to verify correct ac-
cumulator updates nor to check the validity of (non)membership witnesses.

Definition 2. An accumulator valueAcc represents the set X⊆M, denoted byAcc⇒X,
if and only if there exists a sequence{(Acci ,xi ,mi)}1≤i≤n, where n= |X|, and values
Acc0,m0 where xi ∈M for 1≤ i ≤ n and

Strong Accumulators from Collision-Resistant Hashing 5

• X = {xi}1≤i≤n ,

• (Acc0,m0) ∈ 〈Setup()〉 ,

• (Acci ,mi ,wi) = Updateadd(xi ,Acci−1,mi−1) for all 1≤ i ≤ n.

If no such sequence existsAcc does not represents set X, denoted byAcc ; X.

Note that this definition also considers sets that have been formed by successive
addition and deletions of elements as there is always a sequence of only addition oper-
ations that leads to the same set.

SECURITY. Universal accumulators as defined in [11] satisfy a basic consistency prop-
erty: it must be unfeasible to find both a valid membership witness and a valid non-
membership witness for the same valuex∈M. As mentioned there, this is equivalent to
saying that givenX ⊆M it is impossible to findx∈ X that has a valid nonmembership
witness or to findx∈M\X that has a valid membership witness.

In order to be able to cope with malicious accumulator managers, we adapt the se-
curity notion in [11] as follows. First, we let the adversaryselect not only the valuex
and the witnessw but also the accumulated setX ⊂Y, the accumulator valueAcc ∈Y
and whetherx belongs or not toX. We restrict the adversary so he must choose a
pair (Acc,X) for which there exists a sequence of valid addition operations (namely,
Updateadd with values inX) that can produce an accumulated valueAcc. This last re-
striction can be justified by noticing that, in the scenario we consider, parties other than
the accumulator manager can externally verify the correctness of each update operation
by using theCheckUpdate algorithm. Thus, security holds as long as it is unfeasible for
the adversary to fool theCheckUpdate verification, namely given an accumulator value
Accbefore, the adversary is unable to efficiently generate an accumulator valueAccafter, a
setX, an input valuex, and a valid update witnessw for whichAccbeforeactually repre-
sents setX andCheckUpdate(x,Accbefore,Accafter,w) = 1, butAccafter 6⇒ X∪{x} if w
is an addition witness orAccafter 6⇒ X \{x} if w is an deletion witness.

Definition 3 (Security of Strong Universal Accumulators with Memory). A strong
universal accumulator with memory is secure if for every probabilistic polynomial-time
adversaryA the following conditions hold:

• (Consistency)

Pr

[

(x,w1,w2,X,Acc)← A (k);
Acc⇒ X, Belongs(x,w1,Acc) = 1, Belongs(x,w2,Acc) = 0

]

= neg(k) .

• (Secure addition)

Pr





(Accbefore,X,Accafter,x,w)← A (k) :
Accbefore⇒ X, Accafter ; X∪{x},

CheckUpdate(x,Accbefore,Accafter,w) = 1



 = neg(k) .

• (Secure deletion)

Pr





(Accbefore,X,Accafter,x,w)← A (k) :
Accbefore⇒ X, Accafter ; X\{x},

CheckUpdate(x,Accbefore,Accafter,w) = 1



 = neg(k) .

6 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

The type of accumulators we consider in this work is not necessarily quasi-commuta-
tive [5, 11] as they may not hide the order in which the elements were added to the set.
More precisely, our definition tolerates that the value of the accumulator may depend on
a particular sequence ofUpdateadd andUpdatedel operations that produced a particular
accumulator valueAcc. Our only requirement is that the accumulated setX represented
by any accumulator value is well defined. The following proposition shows this is so if
we use a secure strong universal accumulator scheme. The proof is omitted due to space
constraints.

Proposition 1. Let A a secure strong universal accumulator scheme, and k∈ N a se-
curity parameter. Given any adversaryA , consider the experiment ExpSUAcc

A,A in which
the adversary is allowed to submit as many queries to oracleO () as it wants and then
stops. OracleO () is stateful and operates as follows: on any first query, the oracle cre-
ates an empty set X′, runsSetup(k) to obtain(Acc

′,m′) which it returns as the query
answer. Then, for each subsequent query of the form(x,Acc,w) the oracle computes
b← CheckUpdate(x,Acc

′,Acc,w), and if b= 1, it setsAcc
′ ← Acc, X′ ← X′ ∪ {x},

and returns bit b as the answer to the oracle query. If b= 0 it does not modifyAcc

or X′ and it simply returns⊥. We say adversaryA wins ExpSUAcc
A,A if after A stops,

it holds thatAcc 6⇒ X′. Then, for every probabilistic polynomial time adversaryA ,

Pr
[

A wins in ExpSUAcc
A,A

]

is negligible in k.

Our security definition (Definition 3) for the dynamic scenario (where addition and
deletion of elements are allowed) differs from the one in [5]where the adversary is
only able to add and delete elements by querying the accumulator manager, who is
uncorruptible. In contrast, in our definition the adversaryis allowed to control the ac-
cumulator. However, we require that during each update at least an uncorrupted partic-
ipant verifies the update withCheckUpdate to guarantee the consistency between the
accumulated value and the history of additions and deletions.

DYNAMIC ACCUMULATORS. The standard definition of dynamic accumulators (see for
example the one in [5]) adds two requirements which so far we have not considered.
First, it requires the existence of an additional efficient algorithm that allows to publicly
and efficiently update membership witnesses after a change in the accumulator value
so witnesses can be proven valid under the new accumulator value. And secondly, it
requires that both the accumulator updating algorithm as well as the witness updating
algorithm to run in time independent from the sizen of the accumulated set.

In our construction, we only achieve logarithmic dependency on n for the accumu-
lator updates. In practice, such dependency may be appropriate for many applications.

3 Our scheme

We assume that there exist a public broadcast channel with memory. Depending on
the level of security required, this can be a simple trusted web server, or a bulletin
board that guarantees that every participant can see the published information and that
nobody can delete posted message. For a discussion on bulletin boards and an example
of their use in another cryptographic protocol, the interested reader is referred to [6].

Strong Accumulators from Collision-Resistant Hashing 7

We rely on broadcast channels in order to ensure that the publication of the successive
accumulator values that correspond to updates of the set cannot be forged. In particular,
an adversary who controls the manager of the accumulator cannot publish different
accumulator values to different groups of participants.

3.1 Preliminaries

Our scheme is inspired by time stamping systems like those described in [3, 2]. In these
systems a document needs to be associated to a certain momentin time. The solution
proposed there is to divide the time in periods (e.g. hours, days), and place each docu-
ment as a leaf at the bottom of a binary tree (say,T) with other documents that belong
to the same period of time, sayt. Then the values associated to each pair of leaves with
the same parent node are hashed in order to derive the value ofthe parent node. This
process is repeated until the valuev of the root node of the tree is computed. This value
v is then published as a representative of the treeT for periodt. Later, a given document
m can be proven to belong to a certain period of timet by presenting a valid subtree of
treeT corresponding to time periodt that includes the documentm.

We use the above approach to build an accumulator scheme thatworks for dynamic
sets and also allows proofs of nonmembership. In this case, building a proof of non-
membership is somehow similar to the trick of Kocher (in [10]) — instead of storing
elements of the set, we store pairs of consecutive elements of the set. Then, proving that
an elementx is not in the accumulated setX amounts to simply proving that there exists
elementsxα andxβ, xα < x < xβ, such that a pair(xα,xβ) is stored in the tree.

Our solution uses collision-resistant hash functions, which we formalize as families
of functions. In practice we can use a well known hash function like SHA-256, for
example. We start recalling the standard notion of collision-resistant hash functions.

Definition 4. A hash-function family is a functionH : K×M→Y where K and Y are
non-empty sets and M and Y are sets of strings.

Definition 5. (Collision-Resistance) LetH : K ×M → Y be a hash-function family.
Let k be a security parameter, where k= |K|= |Y|. ThenH is collision-resistant if and
only if for every polynomial time probabilistic algorithm Awe have:

Pr[κ R
← K;(m,m′)← A(k) : m 6= m′, H κ(m) = H κ(m

′)] = neg(k)

whereκ R
← K means thatκ is selected uniformly at random in the set of keys K.

In the followingH will denote a randomly selected function of a collision-resistant
hash-family functionH : K×M→Y, whereM is the set of all binary strings andY is
the set{0,1}k, for a large enough security parameterk∈ N.

We assume the setX we want to accumulate is ordered and denote byxi the ith

element ofX = {x1,x2, ...,xn}, n∈N. Letx0 =−∞ andxn+1 = +∞ two special elements
such that−∞≺ x j ≺+∞ for all x j ∈X, where≺ is the order relation onX (for example,
the lexicographic order on bit strings).

Observe that showingx∈ X is equivalent to proving that:

(xα,xβ) ∈ {(xi ,xi+1) : 0≤ i ≤ n} ∧ (x = xα∨x = xβ).

8 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

On the other hand, showing thatx /∈ X corresponds to proving:

xα ≺ x≺ xβ ∧ (xα,xβ) ∈ {(xi ,xi+1) : 0≤ i ≤ n}.

Consider now the following recursive definition oflabeled binary tree T:

• T equals the empty treeNil , or

• T = (S; left, right) whereS is a label (string) andLeft(T) = le f t andRight(T) =
right are trees.

Here left and right are theleft and right child of T respectively. Each treeT has
associated a nodeN = node(T) which is called the root ofT as well as theparent
of Left(T) and Right(T). Each nodeN = node(S; left, right) has associated a string
Label(N) = S. Sometimes we identify the tree with its root and we writeLabel(T)
to denoteLabel(node(T)). We say thatN′ is a node ofT if N′ = node(T) or N′ is a
node ofLeft(T) or Right(T). A leaf is a node of the form(S;Nil,Nil). If T = Nil, then
we say thatT has depth 0 and denote it asdepth(T) = 0. Otherwise, letdepth(T) =
1+max{depth(Left(T)),depth(Right(T))}. A treeT is balancedif |depth(Left(T))−
depth(Right(T))| ≤ 1. It is a well known fact that a balanced tree withn nodes has
maximum depthO(log(n)).

The set{H(xi ||xi+1) : 0≤ i ≤ n} will be called thebaseof X underH. SinceH is a
collision-resistant hash function and no twoxi are identical,H(xi ||xi+1) 6= H(x j ||x j+1)
for i 6= j, except with negligible probability.

A balanced binary treeT is called amodelof X underH if:

• For every nodeN in T there are stringsValN andProofN, called node value and
node proof respectively, such thatLabel(N) = (ValN;ProofN).

• The base ofX is {ValN : N is a node ofT}.

• T hasn+1 nodes.

• ProofN = H(ValN||ProofLeft(N)||ProofRight(N)) for every nodeN of T (where
ProofNil corresponds to the empty string).

Figure 1 depicts a toy example of a model of a set.

H(x6||x7) H(x7||x8)

H(x3||x4) H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x3)

H(−∞||x1)

Fig. 1. A tree modelT of the setX = {x1, . . . ,x8}. Only node values are shown. Note that the
place of the values in the tree is irrelevant.

Strong Accumulators from Collision-Resistant Hashing 9

A subtreeT ′ of a labeled binary treeT is a tree such that: (a)Label(T ′) = Label(T),
(b) Left(T ′) is a subtree ofLeft(T) or Left(T ′) = Nil, and (c)Right(T ′) is a subtree of
Right(T) or Right(T ′) = Nil.

d e

c

g h

f

b

k l

j

n o

m

i

a

Fig. 2. A tree and its minimal subtree (nodes with values in boldface) generated bythe node of
value j. Children of the nodes that are on the path fromj to a are underlined.

Let T be a labeled binary tree. We denote its collection of node values byV (T). We
say thatV ⊆ V (T) generates a minimal subtree U of Tif U is a subtree ofT obtained
by taking all nodes inT that belong to all paths fromT ’s root to a node whose value is in
V (the paths include both the root ofT and the nodes of value inV) and all the children
of these nodes. Figure 2 illustrates the concept of minimal subtree. IfU is generated by
a singleton{S}, then we say thatU is generated byS.

Proposition 2. LetH :K×M→Y be a collision-resistant hash function family and H
a uniformly chosen function inH . Let X⊂M be an adversarially-chosen polynomial
size set (on the security parameter k), and T be a model of X under H. Then, given T ,
no adversary can efficiently compute a labeled binary tree T′ and a value V such that
V ∈ V (T ′)\V (T) and ProofT ′ = ProofT , except with negligible probability.

Proof. Let A be a polynomial time stateful adversary which works in two phases. First,
on input the security parameter and a hash functionH ∈ H , A outputs a setX ⊂M of
size polynomial onk. Then, given a modelT for X underH, it outputs a labeled bi-
nary treeT ′ and a valueV satisfying the conditions of the proposition. SinceProofT ′ =
ProofT and valueV is in V (T ′) but not inV (T) there must exist a nodeN′ in T ′ and a
nodeN in T such thatProofN′ = H(ValN′ ||ProofLeft(N′)||ProofRight(N′)) andProofN =
H(ValN||ProofLeft(N)||ProofRight(N)) are equal butValN||ProofLeft(N)||ProofRight(N) 6=
ValN′ ||ProofLeft(N′)||ProofRight(N′). NodesN andN′ can be found efficiently by simply
traversing both trees in some fixed order.

Now, let B be an adversary that is given a uniformly selected at random collision-
resistant hash functionH ∈ H . B first queriesA to obtain a setX which it uses to build a
modelT for X underH. Then,B runsA as a subroutine to obtain another labeled binary
tree T ′ and a valueV such thatProofT = ProofT ′ andV ∈ V (T ′) \ V (T). Finally,
following the procedure mentioned above,B will be able to find a collision forH.

10 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

3.2 A Strong Universal Accumulator with Memory using Hash Trees

In this section we use hash trees to build a universal accumulator with memory.

THE CONSTRUCTION. Let k∈ N be the security parameter and letX = {x1,x2, ...,xn}
be a subset ofM = {0,1}k. We define the accumulator schemeHashAcc below.

• The memorym is a model ofX.

• Setup: The algorithm first setsX equal to the empty set. Then, it picks a hash
functionH uniformly at random from the familyH by first computing a random
index i ∈ K (say using standard multiparty computation techniques among all
participants, including the accumulator manager) and thensettingH = Hi .1 The
algorithm then initializesm to a single root nodeNm with valueH(−∞||+ ∞).
Finally, the accumulator manager publishesAccinit = Proo fNm

.

• Witness: On inputx∈M and memorym, it computes the witnessw = (w1,w2)
as follows. First, the algorithm setsw1 = (xα,xβ) wherex= xα or x= xβ if x∈X.
Otherwise, ifx /∈ X the algorithm setsw1 = (xα,xβ) wherexα ≺ x≺ xβ. Finally,
it setsw2 as the minimal subtree ofm generated by the valueH(xα||xβ).

• Belongs: On inputx∈M, witnessw = ((x′,x′′),u), and accumulator valueAcc,
it first checks if the following conditions hold: (a)Proofu = Acc, (b) H(x′||x′′) ∈
Vu, (c) (x = x′ or x = x′′), and (c’) (x′ ≺ x ≺ x′′). The algorithm outputs 1 if
conditions (a), (b), and (c) hold; it outputs 0 if (a), (b), and (c’) hold. Otherwise,
it outputs⊥.

• Updateop: On input an elementx ∈ M, an accumulator valueAccbefore, and a
memorymbefore, it proceeds as follows. Consider two cases depending on whether
the update is an addition (op = add) or a deletion (op = del).

If op = add andx 6∈ X, the algorithm addsx into X by modifyingmbefore as
follows:
1. It replaces the valueH(xα||xβ) from the appropriate node inmbefore (where

xα ≺ x≺ xβ) by the valueH(xα||x).

2. It augments the treembeforewith a new leafN of valueH(x||xβ) so the result-
ing treemafter is a balanced tree. LetVPar(N) be the (parent) node whereN is
attached as a leaf.

The resulting tree is denotedmafter. Figure 3 illustrates the process of inserting
an element intombefore.

Once treemafter is built, the new accumulator is simply the value of the root of
the tree, namelyAccafter = Proofmafter

. The witnesswadd = (add,wadd,1,wadd,2)

that the update (addition) has been done correctly is computed as follows:

• wadd,1 corresponds to the minimal subtree ofmbefore generated by the set
{H(xα||xβ),ValVPar(N)

}, and,

• wadd,2 corresponds to the minimal subtree ofmafter generated by the set
{H(xα||x),H(x||xβ)}.

1 A common heuristic to avoid interaction is to simply pickH =SHA-256 [12], for example.

Strong Accumulators from Collision-Resistant Hashing 11

H(x6||x7) H(x7||x8)

H(x3||x4)

H(x||x3)

H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x)

H(−∞||x1)

Fig. 3. Insertingx into the tree of Figure 1 wherex2 ≺ x≺ x3.

If op = del, deletingx from X is done in a similar way as follows. First,
the update algorithm locates the two nodes ofmbefore that containx. Let Vα and
Vβ be those nodes, and letH(xα||x) andH(x||xβ) be their respective values, for
somexα ≺ x≺ xβ. The goal is to remove these nodes and replace them with a
new node with valueH(xα||xβ) in a way that the derived tree is still balanced.
This is done by first replacingVα with the single node with valueH(xα||xβ),
and then replacingVβ with a leaf nodeL (for example, the rightmost leaf on
the last level of the tree). These replacements yield a new treemafter whose root
label is set to the value of the accumulatorAccafter = Proo fmafter. The witness
wdel = (del,wdel,1,wdel,2,wdel,3) is then computed as follows:

• wdel,1 corresponds to the minimal subtree ofmbefore generated by the set
{H(xα||x),H(x||xβ),ValL},

• wdel,2 is the pair(xα||xβ) such thatxα ≺ x≺ xβ, and

• wdel,3 is the minimal subtree ofmafter generated byH(xα||xβ).

The algorithmUpdateop outputs the new accumulator valueAccafter, the modified
memorymafter, and the update witnesswop.

• CheckUpdate: On input an elementx ∈ M, two accumulator valuesAccbefore,
Accafter, and an update witnessw, it proceeds as follows. Ifw = (add,w1,w2)
then, the algorithm outputs 1 provided that:

• w1 is a tree obtained by adding a leaf tow2,

• Except for the node of valueH(xα||xβ) (for xα ≺ x≺ xβ) all nodes which
are common tow1 andw2 have the same value in either one of the trees,

• Proofw1
= AccbeforeandProofw2

= Accafter, and

• H(xα||x),H(x||xβ) ∈ V (w2).

Otherwise, it outputs 0. We omit the casew = (del,w1,w2,w3) which is similar.

SECURITY. We now prove that the schemeHashAcc of the previous section is secure
under Definition 3.

First, note that if memorym is a model ofX, then the memory obtained after exe-
cutingUpdate in order to add a new elementx /∈X, is a model ofX∪x. Indeed, suppose

12 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

H(x3||x4) H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x3)

H(−∞||x1)

H(x3||x4)

H(x||x3)

H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x)

H(−∞||x1)

(a) (b)

Fig. 4. (a) The minimal subtree of the tree shown in figure 1 and generated by
{H(x2||x3),H(x4,x5)}. (b) The minimal subtree of the tree shown in Figure 3 and generated
by {H(x2||x),H(x||x3)}.

xα ≺ x≺ xβ and letH(xα||xβ) be the value of a nodeV in m. By replacing nodeV with
the node of valueH(xα||x) and adding the node of valueH(x||xβ), we clearly obtain a
set of values{H(xi ||xi+1), 0≤ i ≤ n+1} that corresponds to the successive intervals of
the setX∪{x} (wheren = |X|).

Intuitively, CheckUpdate must guarantee that the updated memory (tree) used to
compute the new accumulated value still has the property of having all the successive
intervals of the accumulated set as node values, that each interval appears once and only
once in the tree, and that no other node value can belong to thetree.

Theorem 1. LetH :K×M→Y be a collision-resistant hash function family. Then, the
accumulator schemeHashAcc is a secure strong universal accumulator scheme (with
memory).

Proof. We need to prove the propertiesConsistency, Addition, andDeletion.

• (Consistency)First, we note thatAcc⇒ X implies that there exists a memorym

which is a model ofX. Let us now suppose that there is an adversaryA that can
compute a valuex and two witnessesw1,w2 such thatBelongs(x,w1,Acc) = 1
andBelongs(x,w2,Acc) = 0. We assume without lost of generality thatx ∈ X.
Any such adversaryA is in fact able to findxα andxβ, xα ≺ x≺ xβ, such that
H(xα||xβ) belongs toV (m). Sincem is a model forX, by Proposition 2 this
adversary will only succeed with negligible probability. The argument forx /∈ X
is analogous.

• (Secure Addition)Consider the case where the update is the addition of a valuex
such thatxα ≺ x≺ xβ andH(xα,xβ) belongs to the base ofX, whereAccbefore⇒
X. Assume thatCheckUpdate(x,Accbefore,Accafter,w) = 1 where bothx andw =
(add,Ubefore,Uafter) are arbitrarily chosen by the adversary, andAccafter ; X ∪
{x}. Then, for some two elementsu,v ∈ M the adversary is effectively able
to build a treeS∗ = Uafter containing a valueH(u||v) that does not belong to
(V (mbefore)∪{H(xα||x),H(x||xβ)})\{H(xα||xβ)} = V (mafter) and such that in
additionProo fS∗ = Proo fUafter = Accafter = Proo fmafter. This contradicts Propo-
sition 2.

Strong Accumulators from Collision-Resistant Hashing 13

• (Secure Deletion)This case is similar to the addition of an element.

EFFICIENCY. We analyze the computational efficiency of the proposed scheme.

Theorem 2. Let n be the size of X. The witnesses of (non)membership and ofupdates
have size O(log(n)). The update processUpdate, the verification processesBelongs

andCheckUpdate can be done in time O(log(n)).

Proof. It is enough to show that a minimal subtreeU of T generated by a constant
number of node values has a sizeO(log(n)). Indeed, first note that a minimal subtree
of a tree generated by a constant number of node values is the union of the minimal
subtrees generated by each of the values. It is easy to see that the size of a minimal
subtree generated by a node value is proportional to the depth of the node. This, and the
fact thatT is balanced, implies the desired conclusion.

4 Efficiency in Practice

Our solution is theorically less efficient than the scheme proposed in [11]. Nonetheless,
if one considers practical instances of these schemes the difference effectively vanishes
as in most implementations hash functions operations are significantly faster than RSA
exponentiations – which is the core operation used by the schemes in [11, 5]. Table 2
shows the time taken by one single RSA exponentiation versusthe time taken by our
scheme for update operations as a function of the number of the accumulated elements.
For the time measurements, we used theopensslbenchmarking command (see [13]) on
a personal computer. Notice that RSA timings were obtained using signing operations,
as in the scheme proposed in [11] where exponents may not be small. Timings for SHA
operations were measured using an input block of 1024 bits. The comparison is based
on the fact that our scheme requires at most 4×2log(N) hash computations, whereN
is the number of accumulated elements, given that at most four branches of the Merkle
tree used in our construction (three forwdel,1 and one forwdel,3, see Section 3.2) will
have to be recomputed in the case of deletions.

Our results show that even for large values ofN using a hash-based scheme is still
very efficient. Moreover, our scheme is faster than using a single RSA operation with a
2048-bit key.

Table 1.Running time for RSA and SHA operations.

Algorithm Note Operations per second
SHA-256 input block of 1024 bits 65507
SHA-512 input block of 1024 bits 16856
RSA-512 signing operation 1179
RSA-1024 signing operation 236
RSA-2048 signing operation 40

14 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

Table 2.Comparison of performance between simple RSA exponentiation and logarithmic num-
ber of computations of SHA.N is the number of elements that are accumulated. Time is repre-
sented in milliseconds.

N RSA-512RSA-1024RSA-2048SHA-256 SHA-512
23 0,845 4,23 25 0,37 1,42
210 0,845 4,23 25 1,22 4,75
220 0,845 4,23 25 2,44 9,5
230 0,845 4,23 25 3,66 14,24

5 The e-Invoice Factoring Problem

In this section we describe an application of strong universal accumulators that yields an
electronic analog of a mechanism calledfactoringthrough which a company, henceforth
referred to as the Provider (P), sells a right to collect future payment from a company
Client (C). The ensuing discussion is particularly concerned with the transfer of pay-
ment rights associated to the turn over of invoices, that is,invoice factoring. The way
invoice factoring is usually performed in a country like Chile is thatP turns a purchase
order fromC to a third party, henceforth referred to as Factoring Entity(FE). The latter
givesP a cash advance equal to the amount ofC’s purchase order minus a fee. Later,
FE collects payment fromC.

There are several benefits to all the parties involved in a factoring operation. The
provider obtains liquidity and avoids paying interests on credits that he/she would oth-
erwise need (it is a common practice for some clients as well as several trading sectors
in Chile to pay up to 6 months after purchase). The client getsa credit at no cost and is
able to perform a purchase for which he might not have found a willing provider.

The main phases of a factoring operation are summarized below: (a) C requests
from P either goods or services, (b)P delivers the goods/services toC, (c) P makes a
factoring request toFE, (d) FE either rejects or acceptsP’s request — in the latter case
FE givesP a cash advance onC’s purchase, (e) later,FE asksC to settle the outstanding
payment, and finally (f)C paysFE.

A risk for FE is thatP can generate fake invoices and obtain cash advances over
them. This danger is somewhat diminished by the fact that such dishonest behavior
has serious legal consequences. More worrisome forFE is thatP may duplicate real
invoices and request cash advances from severalFEs simultaneously. But, Chile’s local
practice makes this behavior hard to carry forth. Indeed, invoices are printed in blocks,
serially numbered and pressure sealed by the local IRS agency (known asServicio de
Impuestos Internos (SII)). A FE will request the physical original copy of an invoice
when advancing cash toP. It is illegal, and severely punished, to make fake copies or
issue unsealed invoices.

Approximately half a decade ago, an electronic invoicing system began operating
in Chile. Background and technical information concerningthis initiative can be down-
loaded from the website of the SII, specifically from [8].

The newly deployed electronic invoicing system has been widely successful. It has
been hailed as a major step in the government modernization.Furthermore, it has cre-
ated strong incentives for medium to small size companies toenter the so called “infor-

Strong Accumulators from Collision-Resistant Hashing 15

mation age”. Nevertheless, the system somewhat disrupts the local practice concerning
factoring. Specifically, aFE will not be able to request the original copy of an invoice,
since in a digital world, there is no difference between an original and a copy. This
creates the possibility of short term large scale fraud being committed by unscrupulous
providers. Indeed, a provider can “sell” the same invoice tomany distinctFEs. We re-
fer to the aforementioned situation created by the introduction of electronic invoicing
as thee-Invoice Factoring Problem. In the full version of this paper we show how to
address this problem using strong universal accumulator schemes.

6 Conclusion

We introduced the notion of strong universal accumulator scheme, which provide al-
most the same functionality as do the universal accumulatorschemes defined in [11],
namely (a) a set is represented by a short value called accumulator, (b) it is possible
to add and remove elements dynamically from the (accumulated) set, and (c) proofs of
membership and nonmembership can be generated using a witness and the accumulated
value. In this notion, however, the accumulator manager does not need to be trustworthy
and might be compromised by an adversary.

We also give a construction of a strong universal accumulator scheme based on
cryptographic hash functions which relies on a public data structure to compute accu-
mulated values and witnesses (of membership and nonmembership in the accumulated
set). We argue that the proposed scheme is practical and efficient for most applica-
tions. In particular, we discuss an application to a concrete and relevant problem — the
e-invoice factoring problem .

References

1. N. Baríc and B. Pfitzmann. Collision-free accumulators and fail-stop signed scheme without
trees. InAdvances in Cryptology - Proceedings of Eurocrypt ’97, volume 1233 ofLNCS,
pages 480–494. Springer–Verlag, 1997.

2. D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiency and reliability of digital
time-stamping. In R.M. Capocelli, A. DeSantis, and U. Vaccaro, editors,Sequences II: Meth-
ods in Communication, Security, and Computer Science, pages 329–334. Springer–Verlag,
1993.

3. J. Benaloh and M. De Mare. One-way accumulators: A decentralisedalternative to digital
signatures. InAdvances in Cryptology - Proceedings of Eurocrypt ’93, volume 765 ofLNCS,
pages 274–285. Springer–Verlag, 1993.

4. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalentto factoring. InAd-
vances in Cryptology - Proceedings of Eurocrypt ’98, volume 1233 ofLNCS, pages 59–71.
Springer–Verlag, 1998.

5. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In Moti Yung, editor,Advances in Cryptology - Proceed-
ings of Crypto ’02, volume 2442 ofLNCS, pages 61–76, Berlin, 2002. Springer–Verlag.

6. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-
authority election scheme. InAdvances in Cryptology - Proceedings of Eurocrypt ’97, vol-
ume 1233 ofLNCS, pages 103–118. Springer–Verlag, 1997.

16 Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo

7. I. Damg̊ard. Collision free hash functions and public key signature schemes. InAdvances in
Cryptology, Proceedings of Eurocrypt ’87, volume 308 ofLNCS, pages 203–216. Springer–
Verlag, 1988.

8. Servicio de Impuestos Internos. Información sobre factura electrónica.
(https://palena.sii.cl/dte/mn info.html [June 19, 2008]).

9. N. Fazio and A. Nicolisi. Cryptographic accumulators: Definitions, constructions and appli-
cations, 2003. (http://www.cs.nyu.edu/∼nicolosi/papers/accumulators.ps [June
19, 2008]).

10. P. C. Kocher. On certificate revocation and validation. In R. Hirschfeld, editor,Financial
Cryptography, volume 1465 ofLNCS, pages 172–177. Springer–Verlag, 1998.

11. J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. In
Proceedings of Applied Cryptography and Network Security - ACNS ’07, volume 4521 of
LNCS, 2007.

12. National Institute of Standards and Technology (NIST).FIPS Publication 180: Secure Hash
Standard (SHS), May 1993.

13. OpenSSL Project. OpenSSL Package, June 2008. (http://www.openssl.org [June 19,
2008]).

