
Safe-Threads : a New Model for Object-Oriented Multi-Threaded Languages

Luis MateuandJośeMiguel Piquer
DCC - UniversidaddeChile
Casilla2777,Santiago,Chile�

lmateu,jpiquer � @dcc.uchile.cl

Abstract

Threadshavebeenpresentin programminglanguages
for sometimenow. However, they havea badimageamong
software developers becausethey lead to unreliableappli-
cations.Mostof theproblemsare producedby unexpected
critical sections,which are very difficult to find. Little
research has beendonerecentlyto increasethe safetyof
threadprogramming.

In this paper we presenta new model of concurrent
threadsfor objectorientedlanguages.Wehavecalledthem
safe-threads. We claim safe-threadsare a major improve-
mentovertraditional threadsbecausefirst,safe-threadsare
safefrom critical sectionproblems,and second,they are
locationtransparenton a distributedsystem.

The main characteristicsof our model are that static
variablesare not shared amongsafe-threadsand that the
objectsmustprovidean explicit interfaceto beshared.

We alsooutlinehowthemodelcouldbeimplementedin
Java.

1 Introduction

Threadsin Java have a very negative image. On the In-
ternetmany importantcritics have beenpointing out their
weaknesses.For example,the SubArcticJava Toolkit au-
thorswrote:

We urge you to think twice about using
threadsin caseswhere they are not absolutely
necessary[17].

Elliotte RustyHarold,awell-knownbookwriter onJava,
said:

There is a cost associated with multi-
threading. Multi-threading is to Java what
pointerarithmeticis to C, that is, a sourceof dev-
ilishly hard to find bugs[21].

Dave Dyerwrotefor JavaWorld Magazine:

TheJava language containsonefeature that
is so dangerous, so difficult to avoid using, so
hard to usecorrectly, andsopervasivelyusedin-
correctly that it has to rank as a seriousdesign
flaw. Thatfeature is multithreading[10].

We think thatthemainproblemwith threadsis thatthey
areunsafe.A featureis saidto beunsafe,whenthecostof
usingit improperlyis too high in debuggingtime or appli-
cationreliability. For examplethe explicit objectdeletion
of C++ is unsafe,andthus,it hasbeenreplacedby garbage
collectionin Java.

Programmerswill facea majordangerwith threads: to
leave critical sectionsundetected. A critical sectionoc-
curswhena sharedresource(typically a datastructure)is
manipulatedfrom multiple threads. A critical sectionre-
quirescarefulsynchronizationamongthreadsto avoid the
concurrentmanipulationof the sharedresource(through
semaphoresor monitorsfor example). Otherwise,the re-
sourcecouldbeleadto aninconsistentstate.

Unfortunately, it is ratherdifficult to detectall potential
critical sectionson a largeapplication,andthus,program-
merswill frequently leave somecritical sectionswithout
synchronization.And this is the main sourceof unsafety:
thesebugsaredevilishly hardto find becausethey become
apparentat randomtimes. Final userscanexperiencereal
bugs,but be unableto reproducethem in presenceof the
application’s programmer. Therefore,threadshave a bad
imageamongsoftwaredevelopersbecausethey leadto un-
reliableapplications.

Most of the recentresearchhasbeenfocusedtowards
reproducingthesharedmemorymodelondistributedmem-
ory systems(i.e. transparentobjectdistribution). However,
little effort hasbeendoneto improve the safetyof thread
programming.

Themainfocusof this paperis to proposea new model
of concurrentthreadsfor object orientedlanguages.The
primary goal of this model is to be safefrom critical sec-
tion problems.The model is valid for any concurrentand

1

objectorientedlanguage,but we will centerthediscussion
onJava[1].

Our model is inspired by the mechanismfor Remote
MethodInvocation� of Java (abbreviatedRMI). RMI was
developedfor distributedapplicationsrunningon different
Java Virtual Machines(JVMs), not sharingmemory. Our
modelextendsthis view to all threads,defining that a set
of cooperatingthreadsis likeasetof communicatingJVMs
throughRMI, eachJVM runningasinglethread.

We arguethat the adoptionof this modelmakesmulti-
threadedapplicationsmore robust and makes distribution
transparentfor threads,executingunderthe sameseman-
ticswhenrunningonsharedmemoryor distributedmemory
machines.

2 Concurrency and Static Variables

A staticvariable(alsocalledclassvariable)is a variable
that is relatedto the classitself andnot to eachobjectbe-
longing to the class. It is instantiatedonly once,whenthe
classis first created,andit is sharedamongall objectsof the
classandits extensions.It is used,for example,to countthe
numberof instantiatedobjectsof a givenclass,increment-
ing it in theobject’sconstructor.

Whenaddingmulti-threadingto the language,for sim-
plicity of implementation,it is usuallydefinedthatthestatic
variablesarealso sharedamongall threads. (This comes
from thenaturalsharingof classdefinitionsamongthreads.)
However, this behavior introducescritical sectionsin the
mostunexpectedplaces.

To betterunderstandthis problem,let us look at a con-
crete example. A multi-threadedapplicationin Java re-
quireseachthreadto have its own dictionary. The dictio-
narieswill never be shared,thus they will never be used
concurrently.

It is naturalthento usea sequentiallibrary classdevel-
opedfor sequentialprograms(single-threaded).However,
a problemariseswhenthe internal implementationof this
library usesa static variable. For example,a static vari-
ablecouldbeusedfor aninternalmethodto returnasecond
valueto thecaller(alsointernal).This simpledesignintro-
ducesanunexpectedcritical section,astwo concurrentcalls
to theinternalmethodondifferentdictionarieswill haveun-
predictableresults� .

We will say a class is reentrant when eachobject is
guaranteedto work properlyif its methodsareinvokedse-
quentially. In otherwords,a reentrantclassallowsmultiple

�
RMI specificationavailableat:

http://java.sun.com/products/jdk/1.1/docs /guide/
rmi/index.html�

Notethataddingthesynchronizedattribute to thedictionarymethods
will not solve theproblemin this casebecausesynchronizedmethodsen-
suremutualexclusionfor accessinginstancevariables,notstaticvariables.

threadsto work concurrentlyondifferentobjects,but it does
not ensureproperworking whenthereareconcurrentinvo-
cationsof methodsof thesameobject.

The above dictionaryclassis not reentrant. But it can
bemodifiedto bereentrantby eliminatingany useof static
variables.As aruleof thumb,aclassdevelopedfor sequen-
tial programsis reentrantif andonly if (i) it doesnot use
staticvariablesand(ii) if it usesobjectsfrom otherclasses,
thoseclassesarealsoreentrant.

This incompatibilityof staticvariableswith concurrency
motivatedus to think of a threadmodelwherestaticvari-
ableswould not be shared. In sucha model, all classes
wouldbereentrant.

3 Transparent Distribution

We say that the threadsare transparentlydistributed
whenthe executionsemanticsarepreserved if the threads
are executedon a shared-memorymachineor on a dis-
tributedsystem.

Java’s RemoteMethodInvocation(RMI) enablesa Java
Virtual Machine(JVM) to referenceobjectsthatbelongto
anotherJVM. Typically, thoseJVMs arerunningon differ-
ent machines,not sharingmemory. The objectsbelonging
to a differentJVM arecalledremoteobjects.

RMI is very usefulbecauseit enablesa multi-threaded
applicationto executedistributedthreadsin multipleJVMs.
A threadcaninvokemethodsprovidedby remoteobjectsin
thesameway asthoseprovidedby local objects.Therun-
time environmenttransparentlysendstheargumentsto the
remoteJVM, executesthe methodthereandthenretrieves
thereturnedvalue.

However, in Java the threadsarenot transparentlydis-
tributed becausethe threadsexecuting in the sameJVM
sharethestaticvariableswhile thoseexecutingon different
JVMsdo not.

Onesolutionwould be to extendRMI andthe runtime
to provide static variablesharingamongdifferent JVMs.
However, this is reallydifficult to implement.This factwas
a confirmationthat it wasnecessaryto take the inverseso-
lution: that the threadsexecutingin the sameJVM do not
sharethestaticvariables.This will alsoleadto transparent
distributionof threads.

4 The Safe-Threads Model

To defineourmodelof safe-threadswewill introducethe
conceptof logical JVMorLJVM. An LJVM is conceptually
a Java Virtual Machine. It has: a singlelogical processor
for executingonesafe-thread,logicalmemoryfor allocating
objectsandits own setof staticvariables,not sharedwith
otherLJVMs.

2

A safe-threadrunning in an LJVM will createobjects.
Suchobjectsalways stay in the sameLJVM where they
werecreatedandits methodsareinvokedthere.

An LJVM is conceptuallya JVM, but differs in imple-
mentation.A JVM is typically implementedasaheavy pro-
cesswith its own addressspace.In contrast,severalLJVM
may be run on the sameheavy process. In fact, a single
JVM maybemultiplexedto simulateseveralLJVMs, pro-
videdthateachLJVM keepits own setof staticvariables.

Our modelfor safe-threadsis inspiredby the following
metaphor: a programrunningmultiple safe-threadsis like
a distributed systemcomposedof several communicating
JVMs throughRMI, whereeachJVM runsa singlethread.
Thereforein our model, a safe-threadcorrespondsto one
threadin thedistributedsystemandanLJVM is equivalent
to a single-threadedJVM which doesnot sharestaticvari-
ableswith otherJVMs.

Theadoptionof this metaphorhasthe following conse-
quences:

� AnLJVMcanuseforeignobjects.ObjectsonanLJVM
canreferenceobjectsresidenton anotherLJVM (see
figure 1). We will call theseobjectsforeign objects.
Suchobjectscan live in the sameJVM, i.e. they are
not necessarilyremoteobjects.

� Methodsof foreign objectsare executedin the LJVM
where they were created. An LJVM only executes
methodsof local objects.Whena safe-threadinvokes
a methodof a foreignobject,thesafe-threadmovesto
theLJVM owning suchobjectandthemethodis exe-
cutedthere.Thesafe-threadmovesbackuponmethod
return(seefigure2).

� An object can be referencedfrom another LJVM if
an only if it implementsthe shared interface. A
sharedinterfaceis any interfaceextendingthe inter-
faceShared andis equivalentto theremoteinterface
of RMI.

� A safe-threadonly knowsa foreign objectthroughits
shared interface. Therefore,a safe-threadcaninvoke
methodsforeignly if andonly if they aredefinedin the
sharedinterface. A safe-threadcannot accessthe in-
stancevariablesof foreignobjectsnorinvokethemeth-
odsthatarenot in thesharedinterface.

� Uponforeignmethodinvocation,objectargumentscan
bepassedbyreferenceonly if they havea sharedinter-
face. As in RMI, objectargumentsnothaving ashared
interfacearepassedby copy.

Wedid not reusetheremoteinterfaceof RMI for foreign
object to stressthat foreign objectsarenot necessarilyre-
moteobjects: they canlive in a foreignLJVM runningin
thelocal JVM.

As we canseein figure2, a safe-threadcanexecuteon
many LJVMs,asit invokesmethodsof foreignobjects.Sev-
eral LJVMs can be distributed on different machines,as
shown in figure3.

Finally, to make this model safe from critical section
problems,we statethat an LJVM is a monitor. In other
words, to ensurethe sequentialinvocationof all methods
on a sameLJVM, we definethat only onesafe-threadex-
ecutesat onetime on a givenLJVM. The LJVM actsasa
monitor[12], anda safe-threadcangive up the monitor to
anothersafe-threadusingconditionvariables.

Therefore,the main differencebetweena JVM andan
LJVM is: a JVM canexecutemany threadsconcurrently
while anLJVM never hasmorethanonesafe-threadactive
becauseit is a monitor.

5 An Example

A consequenceof our model is that an LJVM have its
own standardinput and standardoutput. In Java those
streamsarereferencedbystaticvariables(System.in and
System.out) andsoeveryLJVM haveits own versionof
them.In this examplewewill usethatfeature.

We want to implement,in Java, a classicUnix pipeline
betweentwo commands.For example,in Unix thefollow-
ing piped commandscount the lines containingthe word
hello in thefile notes.txt :

grep hello notes.txt | wc

We canusethesamedesignprinciplewith safe-threads.
Let ussupposethatthecommandsgrep andwc areimple-
mentedin Java by the classesGrep andWc respectively.
Each classhas its own static methodmain . The Unix
pipelinecanbeimplementedwith thefollowing code:

import java.io.*;
public class CountHello {

public static void main(String[] args) {
// Create the output side of the pipe
PipedOutputStream out=

new PipedOutputStream();
// Create an LJVM for executing wc
LJVM wc= new WcLJVM(out); // (A)
wc.start();
// Change the standard output
// for Grep.main (B)
System.setOut(new PrintStream(out));
// Execute Grep in the current LJVM
String[] args= { "hello", "notes.txt" };
Grep.main(args);
System.out.close();
// Now wait wc to finish
wc.join();

} }

3

LJVM A
�

LJVM B
�

LJVM C
�

Local
�
Reference

Foreign
�
Reference

JVM dcc.uchile.cl
	

An object

Figure 1. Many LJVMs on the same JVM

LJVM A
�

LJVM B
�

LJVM C
�

Safe−thread
�

JVM dcc.uchile.cl
	

Figure 2. Execution of foreign methods

class WcLJVM extends LJVM {
WcLJVM(PipedOutputStream out) {

// Create the input side of the pipe,
// connect it to the output side and
// change the standard input for
// Wc.main (C)
System.setIn(

new PipedInputStream(out));
}
public void run() {

String[] args= { };
Wc.main(args);

} }

This exampleis usingstandardJava syntaxandis only
including the new classLJVM. However, theexecutionse-
manticsaredifferentin two fundamentalpoints:

� In (B) thevariableSystem.out is changed,andwe
are only modifying it in the LJVM of grep, without
changingthe correspondingvariablein the LJVM of
wc. In (C) we changethe System.in variableof
the LJVM of wc becausethe constructorof WcLJVM
will executein thenewly createdLJVM for wc. This
meansthattheLJVM constructormustbeinvokedasa
foreignmethodand,for thisexampleto work, weneed
PipedOutputStream to definea sharedinterface.
Its implementationis not thesameastheJavastandard
one.

� In (A) thecompiledtypeof theexpression
new WcLJVM(...) is LJVM andnot WcLJVM. The
compiler should make this semanticschangewhen
the objectbeingcreatedby new is of a derived class

from LJVM. The type of the expressioncould not be
WcLJVMbecauseit would give full accessto the in-
stancevariables.

An importantfeaturehereis thatevenif it is known that
Grep andWcwereprogrammedasstrictly sequentialpro-
grams,themulti-threadedexamplewill work correctly. We
canbesurethattheonly sharedobjectis theargumentof the
WcLJVMconstructor. No staticvariablesaresharedamong
theLJVMs. BothLJVMs in theexamplehaveanequivalent
behavior to theUnix heavy-weightprocesses.

6 Implementation

We will outlineherea referenceimplementationof safe-
threadsfor a singleJVM, usingJava asthetargetlanguage.
We will not seekan efficient implementation,but a clear
one.

Theimplementationrequiresthedefinitionof theclasses
LJVM, SafeThreadImp andtheinterfaceShared . The
classLJVM containsa hashtable to store the static vari-
ablesfor thatLJVM, anda monitorfor accesscontrol. The
classSafeThreadImp inheritsfrom Thread (now hid-
den) and definesan instancevariable that referencesthe
LJVM wherethe safe-threadis currentlyrunning. The in-
terfaceShared is usedby programmersto signal which
objectscanbeforeignobjects.

To compile static variable access,we proceedas fol-
lows: the current executingsafe-threadis obtained,and
from it, theLJVM whereit is executing.Thestaticvariable
is searchedin the hashtablebelongingto thatLJVM. The
variableis implementedthroughanobjectwith aninstance
variableof theappropriatetype.

4

LJVM A
�

LJVM B
�

LJVM C
�

JVM cornas.inria.fr

JVM dcc.uchile.cl

Figure 3. Many LJVMs on different JVM

When a sharedinterface is definedextending a class
withoutsharedinterface,thecompilermustaddaninstance
variableof typeLJVM. Therewe store,for eachobjectbe-
longing to that class,the LJVM wherethe objectwascre-
ated.

The definition of a methodof the foreign interfacere-
quires the following modifications. The object through
which the methodis invoked can be in a differentLJVM
from thecalling safe-thread.In thatcase,uponmethodini-
tialization, theLJVM field in the runningsafe-threadmust
bemadeto referencethenew LJVM, andits monitormust
beacquired.Whenthemethodreturns,thepreviousLJVM
mustberestoredin thesafe-threadandthemonitormustbe
released.

Thecompilermustalsocloneall argumentswhichdonot
have a sharedinterface.Thecompilershouldsendanerror
messagewhentheobjectis not cloneablenorshared.

Finally, the classconstructorsmustbe calledonly once
perLJVM created.In practice,it is moreefficient to imple-
menta lazy invocationof the constructors: whenthe first
objectof a given classis createdor the first time a static
variablefrom theclassis accessed.

This descriptiondoesnot attemptto provide a detailed
implementation,but to give an ideaof the implementation
overhead.Theproposedimplementationdoesnot introduce
any overheadfor sequentialprogramsnot usingstaticvari-
ables. If the hashtablesearchis well-coded,the overhead
of accessingstaticvariablesshouldbevery low.

The overheadfor multi-threadedprogramsshould be
non-existentbecausethe main cost of invoking a method
of asharedobjectis acquiringthemonitor, which is present
in bothmodels.However, this will dependon how theap-
plicationsareprogrammed.

We arestartinga projectto implementsafe-threads.The
goal is to have a platform for experimentationwith safe-
threads.We will basethe implementationon an in-house
developedpreprocessorfor Java. We usedthis preproces-
sor to enrichJava with Ada’s rendez-vous[16] � . Basically,
we will changethe preprocessorso it will now readJava
enrichedwith safe-threadsandwill producestandardJava,
with themodificationsdescribedin this section.�

Theoriginalpreprocessoris currentlyavailableat:
http://www.dcc.uchile.cl/˜lmateu/rendezvo us.html

7 Discussion

We arguethat the staticvariablesmustbe local to each
LJVM and not shared. For example, the Singletonde-
sign pattern[11] requiresthe useof static variables. This
shows thatstaticvariablesarefrequentwhenusingsequen-
tial methodologiesbecausethey areusefulto implementim-
plicit parameters.Any classusingthesevariablesis useless
in a multi-threadedapplicationsharingstaticvariablesbe-
causethenthey arenot reentrant(seesection2).

As static variablesare not sharedamongLJVMs, all
classesdevelopedfor single-threadedprogramsare reen-
trant in applicationsrunningmultiple safe-threads.Some-
timesasharedstaticvariableamongsafe-threadsis needed,
but this canalwaysbe implementedencapsulatingit in an
objectandpassinga referenceto theobjectto all thesafe-
threadsneedingit.

We alsoarguethat,whena foreignmethodis beingex-
ecuted,the staticvariablesaccessedby the methodshould
be thoseof the LJVM wherethe object belongs,and not
thoseof theLJVM createdfor therunningsafe-thread.This
is becausechoosingthelatterwould make theimplementa-
tion of distributedtransparency of LJVMs very inefficient.
The former is compatiblewith the currentimplementation
of JavaRMI.

We also defined that foreign objectsare only known
throughtheir sharedinterface,insteadof allowing all ob-
jectsto be shared.We think thatobjectsharingis danger-
ousdueto theunexpectedcritical sectionsthatcouldbecre-
ated.Thesharedinterfaceforcestheprogrammerto explic-
itly declareanobjectassharedandthento encapsulatethe
concurrentoperationsin a well-definedinterface. We also
requirethis encapsulationfor propercompilationof shared
methods.

On theotherhand,it is usefulthat the local, shared,ob-
jectsremainto beknown by their classes,giving thecom-
piler moreoptionsto optimizethemthanforcing to usethe
sharedinterface.

Finally, we definedeachLJVM asa monitor, ensuring
mutual exclusion amongsafe-threadstrying to executein
the sameLJVM. In this way, all methodsof objectsin the
sameLJVM will always be invoked sequentially. As we
statedin section2, reentrancy togetherwith sequentiality

5

guaranteeproperworkingof sequentialclasses.
Moreover, we ensurethatconcurrentaccessesto shared

objectsaresynchronized,sothey aresafefrom critical sec-
tion problems,which was our first goal for safe-threads.
Herewe meansafefrom critical sectionsinsidea foreign
methodexecutingfrom beginningto endin justoneLJVM.
Thisexplainswhywechosetheprefixsafeto namethesafe-
threads.

On the otherhand,someonecouldbelieve thatby plac-
ing coarse-grainmonitorson LJVMs, weareincreasingthe
frequency of deadlockproblems. We think that this will
not happen. On a traditional multi-threadedapplication,
programmersareencouragedto handleconcurrency in ev-
ery class,just to be guardedfrom unexpectedcritical sec-
tion problems. With safe-threads,we expect applications
to bedecomposedin a tiny setof classesdealingwith con-
currency, anda large numberof classesdevelopedstrictly
under sequentialmethodologies(which are betterknown
thanconcurrentmethodologies).Therefore,thereare less
sourcesof deadlockto analyzethanwith traditionalthreads,
andsotherewill belessdeadlockproblems.

We chosecritical sectionsafenessas our first priority,
disregarding deadlocksbecausewe estimatethat critical
sectionproblemsare more harmful than deadlocks. The
former damagesthe applicationintegrity without shooting
it down immediately. The problemwill be detectedwhen
it is too late to find the source(aslike in the danglingref-
erenceproblemin C++). In contrast,whensomethreads
arein deadlock,their stateswill not change,sothey canbe
examinedat any time to diagnosetheproblem.

8 Related Work

The first researchfor achieving safenessfrom critical
sectionsonconcurrentprogramminglanguageswasleadby
Brinch Hansen[5] andHoare[12]. Both works leadto the
developmentof themonitorabstraction.Themainideawas
thatprocessescouldnot sharedatadirectly. Theonly way
to sharedatawas to put it insidea monitor. The monitor
providedoperationsto manipulateconcurrentlythe shared
dataandensuredthatthoseoperationswouldbeexecutedin
mutual-exclusion.

The work of Brinch Hansenleadto thedevelopmentof
the ConcurrentPascalProgrammingLanguage[6] and the
work of Hoarelead to CSP[13]and the OccamProgram-
ming Language[14]. All theselanguageswere safefrom
critical sections,like our safe-threads.Unfortunately, to
achieve safeness,they prohibitedthe useof pointers,be-
causeit wasdifficult to ensurethat two threadswould not
sharedata through pointers. Since object oriented lan-
guagesare foundedon pointers,languagedesignershave
beenchoosingamong(i) safetyandobjectorientationwith-
out concurrency, (ii) concurrency and object orientation

without safety, or (iii) concurrency andsafetywithout ob-
jectorientation,i.e. no pointers.

SequentiallanguageslikeSmalltalk,Eiffel andC++have
chosen(i). ConcurrentPascal,CSPandOccamchose(iii).
Java is the most famousexampleof a languagechoosing
(ii). Although the referencemanualclaim that Java has
monitors,Brinch Hansenpointedout in [7] that they are
not truemonitors,at leastnot in thesensethatheconceived
them.He argues,andwe agreewith him, that themostim-
portantsafetymeasurefor a parallel languageis to check
thatprocessesaccessdisjoint setsof variablesonly anddo
not inteferewith eachother in time-dependentways. As
Java threadscan sharedatawithout any synchronization,
Javamonitorsarenot truemonitors.

Besidesourwork, to ourknowledgetheonly otherwork
combiningsafeness,concurrency andobjectorientationis
[9]. In this work, theauthorsimplementeda concurrentdi-
alectof Eiffel, providing multiple heavy processeswithout
any objectsharing,andtherefore,processescommunicating
throughmessages.Thedisadvantageof this aproachis that
therewerenoprovisionsfor inter-processobjectreferences.

Recently, a greateffort hasbeendoneto achieve trans-
parentobjectdistribution [3, 4, 8, 18, 19]. Otherworkscan
befoundin [2] and[22]. Themaingoalhasbeento simplify
theprogrammingof distributedmemorysystemsby emulat-
ing theobjectsof asharedmemorycomputer. Thereforethe
ideal systemhasbeentransparentdistributedobjects, i.e. a
systemwhereevery objectcanbe sharedtransparentlyby
any threadrunningonany machine.

The Java RMI (RemoteMethodInvocation) arisedasa
restrictedway to achieve transparentinvocationof remote
methodswithout modifying theJava languagenor theJava
Virtual Machine, at the expenseof true transparentdis-
tributed objects. ThereforeRMI is far from the ideal of
transparentdistributedobjects.It is amazingthattherestric-
tionsof RMI inspiredusto conceive a modelfor safecon-
currency. Basically, we claim that transparentobjectdistri-
bution is thewrongideal,becauseunmonitoredobjectshar-
ing is unsafe.The ideal shouldbesafedistributedLJVMs
and,if we areright, the limitations of RMI madeit better
thanits ancestors.

Anotherproblemwith massive concurrency is thespace
allocatedto all the stacks,aswe needa contiguousblock
for eachthread. In [15] we showed that with generational
garbagecollection,heapallocationof framescanbeasfast
asstackallocation,but muchmoreefficient in memoryus-
age. In that paperthe study was donefor a Lisp dialect,
but theresultsshouldbequitesimilar in anObject-Oriented
languageasJava.

Finally, in a real implementationof this modelin a dis-
tributedsystemmany new problemsarise,asreplicationand
migrationof completeLJVMs. For the garbagecollection
of distributedobjectsIndirect GarbageCollection[19, 20]

6

couldbeused.

9 Conclusions

In thispaper, wehaveproposedanew modelfor threads,
calledsafe-threads. This model is inspiredby the follow-
ing metaphor: a programrunningmultiple safe-threadsis
likeasetof communicatingJVMsthroughRMI, eachJVM
runningasinglethread.

Therefore,in ourmodel,weassociatedonelogical JVM
(LJVM) to eachsafe-thread. Objectsalways stay at the
sameLJVM where they were created,but an LJVM can
referenceobjectson anotherLJVM. An LJVM caninvoke
methodsof objectsliving in anotherLJVM, but thosemeth-
odswill be executedin the LJVM wherethe object lives.
Moreover, an LJVM is a monitor which synchronizesall
themethodsinvocationsof theobjectsliving in theLJVM.

We have used the name logical JVM to stress that
onephysicalJVM canbe multiplexed to implementmany
LJVMs. This is moreefficient thanusingoneJVM for each
LJVM because: (i) LJVMs implementedin thesameJVM
cansharethesamecode,(ii) referencesto foreignobjectsin
the sameJVM canbe implementedasdirect pointers,and
(iii) invocationof foreign methodsof objectsliving in the
sameJVM is aseficientastheinvocationof asynchronized
methodin standardJava. Of course,onadistributedsystem,
oneJVM mustbeusedfor eachphysicalprocessor.

Today, therehavebeentwo mainapproachesfor concur-
rency. Thefirst considerstheapplicationasa setof heavy
processes,not sharingmemoryat all. Thesecondapproach
views the applicationsasa setof threadssharingmemory.
In distributedsystemsa combinationof both approchesis
used. The former approachis more robust than the latter
becauseit haslesscritical sectionproblems.However, the
former is moreexpensive thanthe latter in memoryusage
andcommunicationtime.

Themaincontribution of this work hasbeento propose
a model for concurrency which combinesthe bestof both
approches: robustnessbecauseit is safefrom the typical
problemsof critical sectionsin the sharedmemorymodel,
and lightnessin memoryusageand communicationtime.
Furthermore,safe-threadsarelocationtransparenton a dis-
tributedsystem. This meansthat the executionsemantics
arethesamefor safe-threadsrunningon a shared-memory
computeror safe-threadsrunningonadistributedsystemor
acombinationof both.

Themaindisadvantageof ourmodelis thatsomeconcur-
rency is lostby placingamonitorattheLJVM levelbecause
it forbids the concurrentmanipulationof objectsliving in
the sameLJVM. On theotherhand,in Java, programmers
areencouragedto maximizeconcurrency by avoiding the
synchronizationof methodswhenthey believe thereis no
critical section.Weclaimthesefreedomis harmfulbecause

sooneror later the programmerwill missa critical section
andthe costof this error will be hugein debuggingtime.
The freedomto choosewhereto synchronizeis unsafe(as
thefreedomof pointerarithmeticis unsafein C).

Todaypeopleacceptthe price of having a garbagecol-
lector to eliminatethe problemof danglingreferences.In
the sameway, we think peoplewill acceptloosing some
concurrency to eliminatetheproblemof critical sections.

References

[1] Ken Arnold and JamesGosling, “The Java Program-
ming language,” Addison-Wesley, 1996.

[2] Henri Bal, JenniferSteinerand Andrew Tanenbaum,
“ProgrammingLanguagesfor Distributed Computing
Systems,” ACMComputingSurveys, V. 21,N. 3,Septem-
ber1989.

[3] Andrew Black, Norman Hutchinson, Eric Jul and
HenryLevy, “Object Structurein theEmeraldSystem,”
Proceedingsof the 1986 ACM Conferenceon Object-
OrientedProgrammingSystems,Languagesand Appli-
cations, SIGPLAN Notices, V. 21, N. 11, November
1986.

[4] Andrew Black, NormanHutchinson,Eric Jul, Henry
Levy andLarry Carter, “DistributionandAbstractTypes
in Emerald,” IEEE Transactionson Software Engineer-
ing, V. 13,N. 1, pp.65–76,January1987.

[5] Per Brinch Hansen,“StructuredMultiprogramming,”
Communicationsof theACM, V. 15, N. 7, pp. 574–578,
July1972.

[6] PerBrinchHansen,“The ProgrammingLanguageCon-
current Pascal,” IEEE Transactionsof Software Engi-
neering, pp.199-207,June1975.

[7] PerBrinchHansen,“Java’sInsecureParallelism,” ACM
SigplanNotices, V. 34,N. 4, pp.38–45,April 1999.

[8] Luca Cardelli, “A languagewith Distributed Scope,”
Proceedingsof the22ndACM Symposiumon Principles
of ProgrammingLanguages, pp.286–297,January1995.

[9] DenisCaromel,“Towarda Methodof Object-Oriented
Concurrent Programming,” Communicationsof the
ACM, V. 36,N. 9, pp.90–102,September1993.

[10] Dave Dyer, “Can Assuresave Java from the perilsof
multithreading?Not withoutyourhelp,but it’sabig step
in a gooddirection,” JavaWorld WebMagazine
http://www.javaworld.com/javaworl d/
jw-10-1998/jw-10-assure.html

7

[11] Erich Gamma, Richard Helm, Ralph Johnsonand
JohnVlissides,“DesignPatterns,Elementsof Reusable
Object-OrientedSoftware,” Addison-Wesley, 1995.

[12] C. A. R. Hoare, “Monitors: An OperatingSystem
StructuringConcept,” Communicationsof the ACM, V.
17,N. 10,pp.549–5577,October1974.

[13] C.A. R.Hoare,“CommunicatingSequentialProcess,”
Communicationsof the ACM, V. 21, N. 8, pp. 666-677,
August1978.

[14] INMOS Limited: “OCCAM ProgrammingManual,”
Prentice-HallInternational,1984.

[15] Luis Mateu, “Efficient Implementationof Corou-
tines,” LNCS 637, International Workshop on Mem-
ory Management, Saint-Malo (France), pp. 230–247,
Springer-Verlag,September1992.

[16] Luis Mateu, J. M. Piquer and JuanLeón, “Resur-
rectingAda’s Rendez-Vousin Java,” Proceedingsof the
XVIII InternationalConferenceof theChileanSocietyof
ComputerScience, IEEE,pp.106–112,November1998.

[17] Hans Muller and Kathy Walrath, “Threads and
Swing,” SunWorld WebMagazine,
http://java.sun.com/products/jfc/tsc/

archive/tech topics arch/threads/

threads.html

[18] J. M. Piquer, “A Re-Implementationof TransPive:
Lessonsfrom the Experience,” Proc. Parallel Symbolic
Languagesand Systems(PSLS’95), LNCS 1068,Vol I,
pp. 310–329,Springer-Verlag,Beaune,France,October
1995.

[19] J. M. Piquer, “Indirect Distributed GarbageCollec-
tion: HandlingObjectMigration,” ACM Trans.on Pro-
grammingLanguagesandSystems, V. 18,N. 5, Septem-
ber1996,pp.615–647.

[20] J.M. PiquerandI. Visconti,“Indirect ReferenceList-
ing: A Robust Distributed GC,” Proceedingsof Eu-
roPar’98, Southampton,UK, September1998,Lecture
Notesin ComputerScience,N. 1470,pp.610–619.

[21] Elliotte RustyHarold,“Java LectureNotes,”
http://metalab.unc.edu/javafaq/course /
week1/14.html

[22] TommyThorn,“ProgrammingLanguagesfor Mobile
Code,” ACM ComputingSurveys, V. 21,N. 3, September
1989.

8

