Safe-Threads: a New Model for Object-Oriented Multi-Threaded L anguages

Luis MateuandJog Miguel Piquer
DCC - Universidadde Chile
Casilla2777,SantiagoChile

{Imateu,jpiquer

Abstract

Threadshave beenpresentin programminglanguages
for sometimenow However, they havea badimage among
softwae developes becausédhey lead to unreliable appli-
cations. Most of the problemsare producedby unexpected
critical sections,which are very difficult to find. Little
reseach hasbeendonerecentlyto increasethe safetyof
threadprogramming

In this paper we presenta new model of concurent
threadsfor objectorientedlanguages.We havecalledthem
safe-theads. We claim safe-theadsare a major improve-
mentovertraditional threadsbecausdirst, safe-theadsare
safefrom critical sectionproblems,and second,they are
locationtranspaenton a distributedsystem.

The main characteristicsof our model are that static
variablesare not shaed amongsafe-theadsand that the
objectsmustprovide an explicit interfaceto be shared.

We alsooutline howthe modelcould be implementedn
Java.

1 Introduction

Threadsn Java have a very negative image. On the In-
ternetmary importantcritics have beenpointing out their
weaknessesFor example,the SubArctic Java Toolkit au-
thorswrote:

We urge you to think twice about using
threadsin caseswhele they are not absolutely
necessamfl7].

Elliotte RustyHarold,awell-known bookwriter on Java,
said:

There is a cost associated with multi-
threading Multi-threading is to Java what
pointerarithmeticis to C, thatis, a sourceof dev-
ilishly hard to find bugq21].

}@dcc.uchile.cl

Dave Dyerwrotefor JavraWorld Magazine

The Javalanguage containsone feature that
is so dangerous, so difficult to avoid using so
hard to usecorrectly, and so pervasivelyusedin-
correctly that it hasto rank as a seriousdesign
flaw. Thatfeatureis multithreadind10].

We think thatthe mainproblemwith threadss thatthey
areunsafe.A featureis saidto be unsafe whenthe costof
usingit improperlyis too high in deluggingtime or appli-
cationreliability. For examplethe explicit objectdeletion
of C++is unsafeandthus,it hasbeenreplacedoy garbage
collectionin Java.

Programmersvill facea majordangerwith threads to
leave critical sectionsundetected. A critical sectionoc-
curswhena sharedresource(typically a datastructure)is
manipulatedirom multiple threads. A critical sectionre-
quirescareful synchronizatioramongthreadsto avoid the
concurrentmanipulationof the sharedresource(through
semaphoresr monitorsfor example). Otherwise,the re-
sourcecouldbeleadto aninconsistenstate.

Unfortunately it is ratherdifficult to detectall potential
critical sectionson a large application,andthus, program-
merswill frequentlyleave somecritical sectionswithout
synchronization.And this is the main sourceof unsafety.
thesebugsaredevilishly hardto find because¢hey become
apparentt randomtimes. Final userscanexperiencereal
bugs, but be unableto reproducethemin presenceof the
applications programmer Therefore,threadshave a bad
imageamongsoftwaredevelopersbecausehey leadto un-
reliableapplications.

Most of the recentresearchhasbeenfocusedtowards
reproducinghe sharedmemorymodelon distributedmem-
ory systemgqi.e. transparenbbjectdistribution). However,
little effort hasbeendoneto improve the safetyof thread
programming.

The mainfocusof this paperis to proposea new model
of concurrentthreadsfor object orientedlanguages. The
primary goal of this modelis to be safefrom critical sec-
tion problems. The modelis valid for any concurrentand

objectorientedlanguagebut we will centerthe discussion
onJava[]].

Our model is inspired by the mechanismfor Remote
MethodInvocatiort of Jasa (abbreviated RMI). RMI was
developedfor distributedapplicationsrunningon different
Java Virtual Machines(JVMs), not sharingmemory Our
model extendsthis view to all threads,definingthat a set
of cooperatinghreadss lik e a setof communicatinglVMs
throughRMI, eachJVM runningasinglethread.

We arguethat the adoptionof this modelmakes multi-
threadedapplicationsmore robust and makes distribution
transparenfor threads,executingunderthe sameseman-
ticswhenrunningon sharednemoryor distributedmemory
machines.

2 Concurrency and Static Variables

A staticvariable(alsocalledclassvariable)is a variable
thatis relatedto the classitself and not to eachobjectbe-
longing to the class. It is instantiatedonly once,whenthe
classs first createdandit is sharecamongall objectsof the
classandits extensionslt is usedfor example to countthe
numberof instantiatecbbjectsof a givenclass,increment-
ing it in theobjects constructor

Whenaddingmulti-threadingto the language for sim-
plicity of implementationit is usuallydefinedthatthestatic
variablesare also sharedamongall threads. (This comes
from thenaturalsharingof classdefinitionsamongthreads.)
However, this behavior introducescritical sectionsin the
mostunexpectedplaces.

To betterunderstandhis problem,let uslook at a con-
crete example. A multi-threadedapplicationin Java re-
guireseachthreadto have its own dictionary The dictio-
narieswill never be shared,thusthey will never be used
concurrently

It is naturalthento usea sequentialibrary classdevel-
opedfor sequentiaprograms(single-threaded) However,
a problemariseswhenthe internalimplementatiorof this
library usesa static variable. For example, a static vari-
ablecouldbeusedfor aninternalmethodto returnasecond
valueto the caller (alsointernal). This simpledesignintro-
ducesanunexpectedritical sectionastwo concurrentalls
to theinternalmethodon differentdictionarieswill have un-
predictableresultg.

We will say a classis reentant when eachobject is
guaranteedo work properlyif its methodsareinvoked se-
guentially In otherwords,areentranclassallows multiple

LRMI specificatioravailableat:
http://java.sun.com/products/jdk/1.1/docs
rmi/index.html

2Note thataddingthe syndronizedattribute to the dictionarymethods
will not solve the problemin this casebecausesynchronizednethodsen-
suremutualexclusionfor accessingnstancevariablesnotstaticvariables.

/guide/

threaddo work concurrentlyondifferentobjects but it does
not ensureproperworking whenthereareconcurreninvo-
cationsof methodsf the sameobject.

The above dictionary classis not reentrant. But it can
be modifiedto bereentranty eliminatingarny useof static
variables As arule of thumb,a classdevelopedfor sequen-
tial programsis reentrantf andonly if (i) it doesnot use
staticvariablesand(ii) if it usesobjectsfrom otherclasses,
thoseclassearealsoreentrant.

Thisincompatibility of staticvariableswith concurreng
motivatedus to think of a threadmodelwhere static vari-
ableswould not be shared. In sucha model, all classes
would bereentrant.

3 Transparent Distribution

We say that the threadsare transparentlydistributed
whenthe executionsemanticsare presered if the threads
are executedon a shared-memorymachineor on a dis-
tributedsystem.

Java’s RemoteMethodInvocation(RMI) enablesa Java
Virtual Machine(JVM) to referenceobjectsthat belongto
anotherdVM. Typically, thoseJVMs arerunningon differ-
entmachinesnot sharingmemory The objectsbelonging
to adifferentJVM arecalledremoteobjects.

RMI is very usefulbecausét enablesa multi-threaded
applicationto executedistributedthreadsn multiple JVMs.
A threadcaninvoke methodsprovidedby remoteobjectsin
the sameway asthoseprovided by local objects. The run-
time ernvironmenttransparenthsendsthe argumentso the
remoteJVM, executeshe methodthereandthenretrieves
thereturnedvalue.

However, in Java the threadsare not transparenthydis-
tributed becausethe threadsexecutingin the sameJVM
sharethe staticvariableswhile thoseexecutingon different
JVMsdo not.

One solutionwould be to extend RMI andthe runtime
to provide static variable sharingamongdifferent JVMs.
However, thisis really difficult to implement.This factwas
a confirmationthatit wasnecessaryo take the inverseso-
lution: thatthe threadsexecutingin the sameJVM do not
sharethe staticvariables.This will alsoleadto transparent
distribution of threads.

4 The Safe-Threads M ode€l

To defineourmodelof safe-threads/e will introducethe
concepof logical VM or LIVM. An LIVM is conceptually
a JavaVirtual Machine It has: a singlelogical processor
for executingonesafe-threadpgicalmemoryfor allocating
objectsandits own setof staticvariables,not sharedwith
otherLJVMs.

A safe-threadunningin an LJVM will createobjects.
Suchobjectsalways stay in the sameLJVM wherethey
werecreatedandits methodsareinvokedthere.

An LIVM is conceptuallya JVM, but differsin imple-
mentation A JVM is typically implementedisaheavy pro-
cesswith its own addresspace.In contrastseveral LJVM
may be run on the sameheary process. In fact, a single
JVM may be multiplexedto simulatesereral LJVMs, pro-
videdthateachLJVM keepits own setof staticvariables.

Our modelfor safe-threadss inspiredby the following
metaphor a programrunning multiple safe-threadss like
a distributed systemcomposedodf several communicating
JVMs throughRMI, whereeachJVM runsasinglethread.
Thereforein our model, a safe-threactorrespondgo one
threadin the distributedsystemandanLJVM is equivalent
to a single-threadedVM which doesnot sharestaticvari-
ableswith otherJVMs.

The adoptionof this metaphotasthe following conse-
guences

e AnLJVMcanuseforeignobjects.ObjectsonanLJVM
canreferenceobjectsresidenton anotherLJVM (see
figure 1). We will call theseobjectsforeign objects.
Suchobjectscanlive in the sameJVM, i.e. they are
not necessarilyemoteobjects.

e Methodsof foreign objectsare executedin the LIVM
whele they were created. An LIJVM only executes
methodsof local objects. Whena safe-threadnvokes
amethodof a foreignobject,the safe-threadnovesto
the LJVM owning suchobjectandthe methodis exe-
cutedthere.Thesafe-threagnovesbackuponmethod
return(seefigure 2).

e An object can be refeencedfrom another LIVM if
an only if it implementsthe shaed interface A
sharedinterfaceis ary interface extendingthe inter-
faceShared andis equivalentto theremoteinterface
of RMI.

e A safe-theadonly knowsa foreign objectthroughits
shawedinterface Therefore,a safe-threacdtaninvoke
methoddoreignly if andonly if they aredefinedin the
sharednterface. A safe-threadannot accesghein-
stancevariablesof foreignobjectsnorinvokethemeth-
odsthatarenotin thesharednterface.

e Uponforeignmethodnvocationobjectargumentgan
bepassedyrefeenceonlyif they havea shaedinter-
face Asin RMI, objectargumentsiothaving ashared
interfacearepassedy copy.

We did notreusetheremoteinterfaceof RMI for foreign
objectto stressthat foreign objectsare not necessarilye-
moteobjects they canlivein aforeign LJVM runningin
thelocal JVM.

As we canseein figure 2, a safe-threaadtanexecuteon
mary LIJVMs, asit invokesmethodsf foreignobjects.Sev-
eral LJVMs can be distributed on different machines,as
shavnin figure 3.

Finally, to make this model safe from critical section
problems,we statethat an LIVM is a monitor. In other
words, to ensurethe sequentiainvocationof all methods
on a samelLJVM, we definethat only one safe-threadx-
ecutesat onetime on a givenLJVM. The LJVM actsasa
monitor[17, anda safe-thread:an give up the monitorto
anothersafe-threadisingconditionvariables.

Therefore,the main differencebetweena JVM and an
LIJVM is: a JVM canexecutemary threadsconcurrently
while anLJVM never hasmorethanonesafe-threagctive
becausét is amonitor.

5 An Example

A consequencef our modelis thatan LIVM have its
own standardinput and standardoutput. In Java those
streamsrereferencedby staticvariableqSystem.in and
System.out)andsoeveryLJVM haveits own versionof
them.In this examplewe will usethatfeature.

We wantto implement,in Java, a classicUnix pipeline
betweentwo commandsFor example,in Unix the follow-
ing piped commandscount the lines containingthe word
hello in thefile notes.txt

grep hello notes.txt | wc

We canusethe samedesignprinciple with safe-threads.
Let ussupposéahatthecommandgrep andwc areimple-
mentedin Java by the classesGrep and Wcrespectiely.
Each classhasits own static methodmain. The Unix
pipelinecanbeimplementedvith thefollowing code:

import java.io.*;

public class CountHello {

public static void main(String[] args) {
/I Create the output side of the pipe

PipedOutputStream out=

new PipedOutputStream();
/I Create an LJVM for executing wc
LIVM wec= new WcLIVM(out); /I (A)
wec.start();

/I Change the standard output
/Il for Grep.main (B)
System.setOut(new PrintStream(out));

/I Execute Grep in the current LIJVM
String[] args= { "hello", "notes.txt" b
Grep.main(args);

System.out.close();

/I Now wait wc to finish

wc.join();

b}

JVM dcc.uchile.cl

LIVM A LIJVM B

LIVM C

[Tt

I

1 | U

D An object

Local
Reference

Foreign
Reference

Figure 1. Many LJVMs on the same JVM

JVM dcc.uchile.cl

LIVM A LIJVM B

LJVM C

— |

=

] L
[]

Safe-thread

Figure 2. Execution of foreign methods

class WcLJVMextends LJIVM {
WcLJIVM(PipedOutputStream out) {
/I Create the input side of the pipe,
/I connect it to the output side and
/I change the standard input for

/I Wc.main (C)
System.setIn(
new PipedinputStream(out));

}
public void run() {

String[] args= { }
Wec.main(args);

b}

This exampleis using standardJasa syntaxandis only
including the new classLIJVM. However, the executionse-
manticsaredifferentin two fundamentapoints:

e In (B) thevariableSystem.out is changedandwe
are only modifying it in the LIJVM of grep, without
changingthe correspondingariablein the LIVM of
wc. In (C) we changethe System.in variable of
the LIJVM of wc becausehe constructorof WcLIVM
will executein the newly createdLJVM for wc. This
meanghattheLJVM constructomustbeinvokedasa
foreignmethodand,for this exampleto work, we need
PipedOutputStream to definea sharednterface.
Its implementatioris notthesameasthe Java standard
one.

e In (A) thecompiledtypeof theexpression
new WcLIJVM(...) is LIVMandnot WcLJVM The
compiler should make this semanticschangewhen
the objectbeingcreatedby new is of a derived class

from LIVM. The type of the expressioncould not be
WcLJVMbecauset would give full accesgo the in-
stancevariables.

An importantfeaturehereis thatevenif it is known that
Grep andWcwereprogrammedasstrictly sequentiapro-
grams the multi-threaded=xamplewill work correctly We
canbesurethattheonly sharedbjectis theargumentof the
WcLJVMconstructor No staticvariablesaresharedamong
theLJVMs. BothLIJVMs in theexamplehave anequivalent
behavior to the Unix heavy-weightprocesses.

6 Implementation

We will outlinehereareferencémplementatiorof safe-
threaddor asingleJVM, usingJava asthetargetlanguage.
We will not seekan efficient implementationbut a clear
one.

Theimplementatiorrequireghedefinitionof theclasses
LIVM, SafeThreadlmp andtheinterfaceShared . The
classLIVM containsa hashtable to storethe static vari-
ablesfor thatLIJVM, anda monitorfor accessontrol. The
classSafeThreadlmp inheritsfrom Thread (now hid-
den) and definesan instancevariable that referenceghe
LIJVM wherethe safe-threads currentlyrunning. Thein-
terface Shared is usedby programmergo signal which
objectscanbeforeignobjects.

To compile static variable access,we proceedas fol-
lows: the currentexecuting safe-threads obtained,and
fromit, theLJVM whereit is executing.Thestaticvariable
is searchedn the hashtablebelongingto thatLJVM. The
variableis implementedhroughan objectwith aninstance
variableof theappropriataype.

JVM dcc.uchile.cl

LIVM A LJVM B

[T

-

_— L

JVM cornas.inria.fr

LJVM C

Figure 3. Many LJVMs on different JVM

When a sharedinterface is defined extending a class
without sharednterface the compilermustaddaninstance
variableof type LJVM. Therewe store,for eachobjectbe-
longingto thatclass,the LJVM wherethe objectwascre-
ated.

The definition of a methodof the foreign interfacere-
quires the following modifications. The object through
which the methodis invoked canbe in a differentLIVM
from the calling safe-threadln thatcase uponmethodini-
tialization, the LJVM field in the running safe-threadnust
be madeto referencehe newv LIVM, andits monitor must
be acquired.Whenthe methodreturns the previousLIVM
mustberestoredn the safe-threaéndthe monitormustbe
released.

Thecompilermustalsocloneall argumentsvhichdonot
have a sharednterface. The compilershouldsendanerror
messagevhenthe objectis not cloneablenor shared.

Finally, the classconstructorsnustbe calledonly once
perLJVM createdln practice,t is moreefficientto imple-
menta lazy invocationof the constructors whenthe first
objectof a given classis createdor the first time a static
variablefrom the classis accessed.

This descriptiondoesnot attemptto provide a detailed
implementationput to give anideaof theimplementation
overheadTheproposedmplementatiordoesnotintroduce
ary overheador sequentiaprogramsnot usingstaticvari-
ables. If the hashtable searchis well-coded,the overhead
of accessingtaticvariablesshouldbevery low.

The overheadfor multi-threadedprogramsshould be
non-&istentbecausehe main cost of invoking a method
of asharedbjectis acquiringthemonitor, which is present
in both models. However, this will dependon how the ap-
plicationsareprogrammed.

We arestartinga projectto implementsafe-threadsThe
goal is to have a platform for experimentationwith safe-
threads. We will basethe implementationon an in-house
developedpreprocessofor Jasa. We usedthis preproces-
sorto enrichJava with Ada’s rendez-wus[16°. Basically
we will changethe preprocessoso it will how read Java
enrichedwith safe-threadandwill producestandardlaa,
with the modificationsdescribedn this section.

3Theoriginal preprocessais currentlyavailableat:

http://www.dcc.uchile.cl/"Imateu/rendezvo us.html

7 Discussion

We arguethatthe static variablesmustbelocal to each
LJVM and not shared. For example, the Singletonde-
sign pattern[1] requiresthe useof static variables. This
shaws thatstaticvariablesarefrequentwhenusingsequen-
tial methodologiebecaus¢hey areusefulto implementm-
plicit parametersAny classusingthesevariabless useless
in a multi-threadedapplicationsharingstatic variablesbe-
causehenthey arenotreentran{seesection2).

As static variablesare not sharedamong LJVMs, all
classesdevelopedfor single-threadegrogramsare reen-
trantin applicationsrunning multiple safe-threadsSome-
timesasharedstaticvariableamongsafe-threads needed,
but this canalways be implementedencapsulatingt in an
objectandpassinga referenceo the objectto all the safe-
threadsneedingt.

We alsoarguethat, whena foreign methodis being ex-
ecuted the staticvariablesaccessedby the methodshould
be thoseof the LJVM wherethe object belongs,and not
thoseof theLIVM createdor therunningsafe-threadThis
is becausehoosingthe latterwould make theimplementa-
tion of distributedtranspareng of LIVMs very inefficient.
The formeris compatiblewith the currentimplementation
of JavaRMI.

We also definedthat foreign objectsare only known
throughtheir sharedinterface,insteadof allowing all ob-
jectsto be shared.We think that objectsharingis danger
ousdueto theunexpectectritical sectionghatcouldbecre-
ated.Thesharednterfaceforcesthe programmeto explic-
itly declarean objectassharedandthento encapsulat¢he
concurrenioperationdn a well-definedinterface. We also
requirethis encapsulatioffior propercompilationof shared
methods.

Ontheotherhand,it is usefulthatthe local, sharedpb-
jectsremainto be known by their classesgiving the com-
piler moreoptionsto optimizethemthanforcing to usethe
sharednterface.

Finally, we definedeachLJVM asa monitor, ensuring
mutual exclusion amongsafe-threadsrying to executein
the samelLJVM. In this way, all methodsof objectsin the
sameLJVM will always be invoked sequentially As we
statedin section2, reentrang togetherwith sequentiality

guarante@roperworking of sequentiatlasses.
Moreover, we ensurethat concurrentaccesseso shared
objectsaresynchronizedsothey aresafefrom critical sec-

tion problems,which was our first goal for safe-threads.

Herewe meansafefrom critical sectionsinside a foreign
methodexecutingfrom beginningto endin justoneLJVM.
Thisexplainswhy we chosethe prefix safeto namethesafe-
threads.

On the otherhand,someonecould believe that by plac-
ing coarse-graimonitorson LJVMs, we areincreasinghe
frequeng of deadlockproblems. We think that this will
not happen. On a traditional multi-threadedapplication,
programmersare encouragedo handleconcurreng in ev-
ery class,just to be guardedfrom unexpectedcritical sec-
tion problems. With safe-threadswe expectapplications
to bedecomposeth atiny setof classeslealingwith con-
curreng, and a large numberof classedlevelopedstrictly
under sequentiaimethodologieqwhich are better known
than concurrentmethodologies).Therefore thereare less
source®f deadlocko analyzethanwith traditionalthreads,
andsotherewill belessdeadlockproblems.

We chosecritical sectionsafenesss our first priority,
disrggarding deadlocksbecausewe estimatethat critical
sectionproblemsare more harmful than deadlocks. The
former damageghe applicationintegrity without shooting
it down immediately The problemwill be detectedvhen
it is too lateto find the source(aslike in the danglingref-
erenceproblemin C++). In contrast,when somethreads
arein deadlocktheir stateswill notchangesothey canbe
examinedat ary time to diagnosehe problem.

8 Reated Work

The first researchfor achieving safenesdrom critical
sectionsonconcurrenprogrammindanguagesvasleadby
Brinch Hansen[$ andHoare[13. Both works leadto the
developmenbf themonitorabstractionThemainideawas
that processesould not sharedatadirectly. The only way
to sharedatawasto put it inside a monitor. The monitor
provided operationgo manipulateconcurrentlythe shared
dataandensuredhatthoseoperationsvould beexecutedn
mutual-eclusion.

The work of Brinch Hansernleadto the developmentof
the ConcurrentPascalProgramminglLanguage[p and the
work of Hoareleadto CSP[13]andthe OccamProgram-
ming Language[1# All theselanguagesvere safefrom
critical sections,like our safe-threads.Unfortunately to
achieve safenessthey prohibitedthe useof pointers,be-
causeit wasdifficult to ensurethat two threadswould not
sharedata through pointers. Since object orientedlan-
guagesare foundedon pointers,languagedesignershave
beenchoosingamong(i) safetyandobjectorientationwith-
out concurreny, (ii) concurreng and object orientation

without safety or (iii) concurreng andsafetywithout ob-
jectorientation,i.e. no pointers.

Sequentialanguagetik e Smalltalk,Eiffel andC++have
chosen(i). ConcurrentPascal,CSPandOccamchose(iii).
Java is the mostfamousexample of a languagechoosing
(ii). Although the referencemanualclaim that Java has
monitors, Brinch Hansenpointedout in [7] that they are
nottruemonitors,atleastnotin thesensehathe conceved
them. He argues,andwe agreewith him, thatthe mostim-
portantsafetymeasurefor a parallel languageis to check
that processesaccesdlisjoint setsof variablesonly anddo
not inteferewith eachotherin time-dependentvays. As
Java threadscan sharedatawithout any synchronization,
Javamonitorsarenot true monitors.

Besidesourwork, to our knowledgethe only otherwork
combiningsafenessgoncurreng and objectorientationis
[9]. In thiswork, the authorasmplementech concurrentdi-
alectof Eiffel, providing multiple heary processesvithout
ary objectsharingandtherefore processesommunicating
throughmessagesThe disadwantageof this aproachis that
therewereno provisionsfor inter-proces®bjectreferences.

Recently a greateffort hasbeendoneto achieve trans-
parentobjectdistribution [3, 4, 8, 18, 19]. Otherworkscan
befoundin [2] and[22]. Themaingoalhasbeento simplify
theprogrammingof distributedmemorysystemdby emulat-
ing theobjectsof asharednemorycomputer Thereforethe
ideal systemhasbeentranspaentdistributedobjectsi.e. a
systemwhereevery objectcan be sharedtransparentlyby
ary threadrunningonary machine.

The Java RMI (RemoteMethodInvocation arisedasa
restrictedway to achieve transpareninvocationof remote
methodswithout modifying the Java languagenor the Java
Virtual Machine, at the expenseof true transparentdis-
tributed objects. ThereforeRMI is far from the ideal of
transparendistributedobjects.It isamazinghattherestric-
tionsof RMI inspiredusto conceve a modelfor safecon-
curreng. Basically we claim thattransparentbjectdistri-
butionis thewrongideal,becauseinmonitoredbjectshar
ing is unsafe.Theideal shouldbe safedistributed LJVMs
and, if we areright, the limitations of RMI madeit better
thanits ancestors.

Anotherproblemwith massve concurreng is the space
allocatedto all the stacks,aswe needa contiguousblock
for eachthread. In [15] we shaved that with generational
garbagecollection,heapallocationof framescanbe asfast
asstackallocation,but muchmoreefficientin memoryus-
age. In that paperthe study was donefor a Lisp dialect,
but theresultsshouldbequitesimilarin anObject-Oriented
languageasJava.

Finally, in a realimplementatiorof this modelin a dis-
tributedsystenmary new problemsarise asreplicationand
migrationof completeLJVMs. For the garbagecollection
of distributed objectsindirect GarbageCollection[19 20|

couldbeused.

9 Conclusions

In this paperwe have proposednev modelfor threads,
calledsafe-theads This modelis inspiredby the follow-
ing metaphor a programrunning multiple safe-threadss
like asetof communicatinglVMs throughRMI, eachJVM
runningasinglethread.

Thereforejn our model,we associatednelogical JVM
(LIVM) to eachsafe-thread. Objectsalways stay at the
samelLJVM wherethey were created,but an LJVM can
referenceobjectson anotherLJVM. An LIJVM caninvoke
methodsof objectdliving in anothel.JVM, but thosemeth-
odswill be executedin the LJVM wherethe objectlives.
Moreover, an LJVM is a monitor which synchronizesall
the methodsnvocationsof the objectsliving in the LIVM.

We have usedthe name logical JVM to stressthat
onephysicalJVM canbe multiplexed to implementmary
LJVMs. Thisis moreefficientthanusingoneJVM for each
LIJVM because (i) LIVMs implementedn the sameJVM
cansharghesamecode (i) referenceso foreignobjectsin
the sameJVM canbeimplementedasdirect pointers,and
(i) invocationof foreign methodsof objectsliving in the
samelJVM is aseficientastheinvocationof a synchronized
methodn standardlava. Of coursepnadistributedsystem,
oneJVM mustbe usedfor eachphysicalprocessar

Today therehave beentwo mainapproachefor concur
reng. Thefirst considerghe applicationasa setof heary
processeqjot sharingmemoryatall. Thesecondapproach
views the applicationsasa setof threadssharingmemory
In distributed systemsa combinationof both approchess
used. The former approachis more robust than the latter
becausét haslesscritical sectionproblems.However, the
formeris more expensve thanthe latterin memoryusage
andcommunicatiortime.

The main contribution of this work hasbeento propose
a modelfor concurreng which combinesthe bestof both
approches robustnessdecauset is safefrom the typical
problemsof critical sectionsin the sharedmemorymodel,
and lightnessin memoryusageand communicationtime.
Furthermoresafe-threadarelocationtransparentn a dis-
tributed system. This meansthat the executionsemantics
arethe samefor safe-threadsunningon a shared-memory
computeror safe-threadsunningon a distributedsystemor
acombinationof both.

Themaindisadwantagef ourmodelis thatsomeconcur
reng is lostby placingamonitorattheLJVM level because
it forbids the concurrentmanipulationof objectsliving in
the samelLJVM. On the otherhand,in Java, programmers
are encouragedo maximize concurreng by avoiding the
synchronizatiorof methodswhenthey believe thereis no
critical section.We claim thesefreedomis harmfulbecause

sooneror laterthe programmemill missa critical section
andthe costof this error will be hugein dehuggingtime.
The freedomto choosewhereto synchronizds unsafe(as
thefreedomof pointerarithmeticis unsafein C).

Today peopleacceptthe price of having a garbagecol-
lector to eliminatethe problemof danglingreferences.In
the sameway, we think peoplewill acceptloosing some
concurrenyg to eliminatethe problemof critical sections.

References

[1] Ken Arnold and JamesGosling, “The Java Program-
ming languagé€, Addison-Wésley, 1996.

[2] Henri Bal, JenniferSteinerand Andrew Tanenbaum,
“Programming Languagesfor Distributed Computing
Systems,ACM ComputingSurves, V. 21,N. 3, Septem-
ber1989.

[3] Andrew Black, Norman Hutchinson, Eric Jul and
Henry Levy, “Object Structurein the EmeraldSystent,
Proceedingsof the 1986 ACM Confeenceon Object-
OrientedProgrammingSystemsl_anguayesand Appli-
cations SIGPLAN Notices, V. 21, N. 11, November
1986.

[4] Andrew Black, Norman Hutchinson,Eric Jul, Henry
Levy andLarry Carter “Distribution andAbstractTypes
in Emerald, IEEE Transactionson Softwae Engineer
ing, V. 13,N. 1, pp.65-76,Januaryl987.

[5] Per Brinch Hansen,"Structured Multiprogramming),
Communicationsf the ACM, V. 15,N. 7, pp. 574-578,
July 1972.

[6] PerBrinchHansen;The Programmind-anguageCon-
current Pascal, IEEE Transactionsof Softwae Engi-
neering pp.199-207,Junel975.

[7] PerBrinchHansen;Java’sInsecureParallelism; ACM
SigplanNotices V. 34, N. 4, pp. 38—-45,April 1999.

[8] Luca Cardelli, “A languagewith Distributed Scopé€,
Proceeding®f the 22nd ACM Symposiunon Principles
of ProgrammingLanguajes pp.286—297 Januaryl995.

[9] DenisCaromel,“Towarda Methodof Object-Oriented
Concurrent Programming, Communicationsof the
ACM, V. 36,N. 9, pp.90-102,Septembel 993.

[10] Dave Dyer, “Can Assuresave Java from the perils of
multithreading™Not withoutyour help,butit’sabig step
in agooddirection;] JavaWrld WebMagazine
http://www.javaworld.com/javaworl d/
jw-10-1998/jw-10-assure.html

[11] Erich Gamma, Richard Helm, Ralph Johnsonand
JohnVlissides,“Design Patterns Elementsof Reusable
Object-OrientedSoftware; Addison-Wesley, 1995.

[12] C. A. R. Hoare, “Monitors: An OperatingSystem
StructuringConcept, Communication®f the ACM, V.
17,N. 10, pp.549-55770ctoberl974.

[13] C.A. R.Hoare,"CommunicatingSequentiaProcess,
Communication®f the ACM, V. 21, N. 8, pp. 666-677,
August1978.

[14] INMOS Limited: “OCCAM ProgrammingManual;
Prentice-Hallnternational 1984.

[15] Luis Mateu, “Efficient Implementationof Corou-
tines; LNCS 637, International Workshop on Mem-
ory Management Saint-Malo (France), pp. 230-247,
SpringerVerlag,Septembet 992.

[16] Luis Mateu, J. M. Piquerand JuanLebn, “Resur
rectingAda’s Rendez-dusin Java; Proceedingof the
XVIII InternationalConfeenceof the ChileanSocietyof
ComputerSciencelEEE, pp.106—-112Novemberl998.

[17] Hans Muller and Kathy Walrath, “Threads and
Swing; SunVérld Web Magazine
http://java.sun.com/products/jfc/tsc/
archive/tech _topics _arch/threads/
threads.html

[18] J. M. Piquer “A Re-Implementatiorof TransPve:
Lessondrom the Experiencé, Proc. Parallel Symbolic
Languaggesand SystemgPSLS'95) LNCS 1068, Vol |,
pp. 310-329 SpringerVerlag,Beaune France October
1995.

[19] J. M. Piquer “Indirect Distributed GarbageCollec-
tion: HandlingObjectMigration,” ACM Trans.on Pro-
grammingLanguaesand SystemsV. 18,N. 5, Septem-
ber1996,pp.615-647.

[20] J.M. Piguerandl. Visconti,“Indirect Reference.ist-
ing: A Rolust Distributed GC;” Proceedingsof Eu-
roPar'98, SouthamptonlUK, Septembefl 998, Lecture
Notesin ComputerScienceN. 1470,pp.610-619.

[21] Elliotte RustyHarold,“Java LectureNotes;,
http://metalab.unc.edu/javafag/course /
week1/14.html

[22] Tommy Thorn,“ProgrammingLanguagegor Mobile
Code; ACM ComputingSurvers V. 21,N. 3, September
1989.

