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Abstract

We define and design succinct indexes for several ab-
stract data types (ADTs). The concept is to design
auxiliary data structures that occupy asymptotically
less space than the information-theoretic lower bound
on the space required to encode the given data, and
support an extended set of operations using the basic
operators defined in the ADT. As opposed to succinct
(integrated data/index) encodings, the main advantage
of succinct indexes is that we make assumptions only
on the ADT through which the main data is accessed,
rather than the way in which the data is encoded. This
allows more freedom in the encoding of the main data.
In this paper, we present succinct indexes for various
data types, namely strings, binary relations and multi-
labeled trees. Given the support for the interface of
the ADTs of these data types, we can support various
useful operations efficiently by constructing succinct in-
dexes for them. When the operators in the ADTs are
supported in constant time, our results are comparable
to previous results, while allowing more flexibility in the
encoding of the given data.

Using our techniques, we design a succinct encod-
ing that represents a string of length n over an al-
phabet of size o using nHg + o(nlgo) bits' to sup-
port access/rank/select operations in o((lglgc)?) time.
We also design a succinct text index using nHjy +
o(nlg o) bits that supports pattern matching queries in
O(mlglgo + occlg't nlglga) time, for a given pat-
tern of length m. Previous results on these two prob-
lems either have a lg o factor instead of lglgo in terms
of running time, or are not compressible.

1 Introduction

The rapid growth of large text sets and the need for effi-
cient searches in these sets, has led to a trend of succinct
representation of text indexes (perhaps including the
text itself). Succinct data structures were first proposed
by Jacobson [12] to encode bit vectors, (unlabeled) trees
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and planar graphs in space close to the information-
theoretic lower bound, while supporting efficient nav-
igational operations. This technique was successfully
applied to various other abstract data types (ADTs),
such as dictionaries, strings, binary relations [2] and
labeled trees [2, 8]. In most of the previous results,
researchers encode the given data, and use both the
encoding and the auxiliary data structures to support
various operations. Therefore, these techniques often
require the given data to be stored in specific formats,
e.g. [2, 7, 8, 10, 11]. We thus call this type of design
succinct encodings of data structures.

The concept of succinct indexes was originally pro-
posed to prove the lower bounds [5, 14] and to analyze
the upper bounds [18] on the space required to encode
some data structures: it limits the definition of the en-
coding to the index. In this paper, we formulate the
distinction between the index and the raw data, and ap-
ply it to the design of succinct data structures. Given
an ADT, our goal is to design auxiliary data structures
(i.e. succinct indexes) that occupy asymptotically less
space than the information-theoretic lower bound on the
space required to encode the given data, and support
an extended set of operations using the basic operators
defined in the ADT. Succinct indexes and succinct en-
codings are closely related, but they are different con-
cepts: succinct indexes make assumptions only on the
ADT through which the given data is accessed, while
succinct encodings represent data in specific formats.
Succinct indexes are also more difficult to design: one
can design a succinct encoding from a succinct index,
but the converse is not true.

Although succinct indexes were previously pre-
sented primarily as a technical restriction to prove
lower/upper bounds, we argue that in fact they are more
adequate to the design of a library of succinct tools for
multiple usages than succinct encodings, and that they
are even directly required in certain applications. Some
of the advantages of succinct indexes over succinct en-
codings are:

1. A succinct encoding requires the given data to be
stored in a specific format. However, a succinct
index applies to any encoding of the given data that
supports a specific ADT. Thus when using succinct
indexes, the given data can be either stored to



achieve maximal compression or to achieve optimal
support of the operations defined in the ADT.

2. The existence of two succinct encodings supporting
two non-identical sets of operations over the same
data type does not imply the existence of a sin-
gle encoding supporting the union of the two sets
of operations without storing the given data twice,
because they may not store it in the same format.
However, we can always combine two different suc-
cinct indexes for the same ADT to yield one index
that supports the union of the two corresponding
sets of operations in a straightforward manner.

3. In some cases, we do not need to store the given
data explicitly because it can be computed from
different but related data and still support the
operations defined in the ADT. Hence a succinct
index is the only additional memory cost.

In this paper, we design succinct indexes for strings,
binary relations and multi-labeled trees on the standard
word RAM model with word size ©(lgn), where n
denotes the problem size. Given the support for the
interface of these ADTs, we can support an extended set
of operations efficiently. The succinct indexes occupy
negligible space compared to the information-theoretic
lower bound for representing the given data.

Based on the succinct index for strings, we design
a succinct encoding that represents a string of length
n over an alphabet of size o using nHy + o(nlgo)
bits?, which supports access/rank/select operations in
o((lglgo)?) time. We also design a succinct text index
using nHy, 4 o(nlg o) bits that supports searching for a
pattern of length m in O(mlglge + occlg' ™ nlglga)
time (occ is the number of occurrences of the pattern).

2 Background

Here we outline the design of succinct data structures
for several data types. We cite the results that we use
in the design of succinct indexes, and those upon which
we improve.

2.1 Bit Vectors A key structure we use is a bit vec-
tor B of size n that supports rank and select opera-
tions. We assume that the positions in B are numbered
1,2,...,n. For a € {0, 1}, the operator bin_rankp(a, z)
returns the number of occurrences of a in B[l..z], and
the operator bin_selectp(a,r) returns the position of
the 7' o in B. We omit the subscript B when it is
clear from the context. Lemma 2.1 addresses the prob-
lem, in which part (a) is from Jacobson [12] and Clark
and Munro [4], while part (b) is from Raman et al. [17].

2H}, denotes the k*!' order entropy of a given string.

LEMMA 2.1. A bit vector B of length n with v 1s can
be represented using either: (a) n + o(n) bits, or (b)
lg (7) + O(nlglgn/lgn) bits, to support the access to
each bit, bin_rank and bin_select in O(1) time.

A less powerful version of bin_rank(1, z), denoted
bin_rank’(1, z), returns the number of 1s in B[l..z] in
the restricted case where B[z] = 1.

LEMMA 2.2. ([17]) A bit vector B of length n with v
Ls can be represented using lg () +o(v) +O(lglgn) bits
to support the access to each bit, bin_rank’(1,z) and
bin_select(l,r) in O(1) time.

2.2 Strings and Binary Relations Grossi et
al. [10] generalized bin rank and bin_select opera-
tors to a string (or a sequence) S of length n over
an alphabet of arbitrary size o, and the operations
include: string rank(e,z), which returns the num-
ber of occurrences of « in S[1..z]; string_select(a,r),
which returns the position of the rth occurrence of «
in the string; and string.access(z), which returns
the character at position z in the string. They gave
an encoding that takes nHy + o(nlgo) bits to sup-
port these three operators in O(lgo) time, where n is
the length of the string. Golynski et al. [9] gave an
encoding that uses n (Igo + o(lgo)) bits and supports
string rank(e,z) and stringaccess(z) in O(lglgo)
time, and string select(a,r) in constant time.

Barbay et al. [2] extended the problem to the en-
coding of sequences of n objects where each object can
be associated with a subset of labels from [¢], this asso-
ciation being defined by a binary relation of ¢ pairs from
[n]x[o]. The operations include: label_rank(e,z),
which returns the number of objects labeled a up
to (and including) z; label_select(a,r), which re-
turns the position of the 7™ object labeled «; and
label access(z,a), which checks whether object z is
associated with label a. Their representation supports
label rank and label access in O(lglgo) time, and
label _select in constant time using t(lgo + o(lg o))
bits?.

2.3 Ordinal Trees An ordinal treeis a rooted tree in
which the children of a node are ordered and specified
by their ranks. Preorder and postorder traversals of
such trees are well-known. We also use a different
order for traversals, namely DFUDS, which is the order
associated with the depth first unary degree sequence [3]

3Tn this paper, we assume that each object is associated with

at least one label (thus ¢ > n), and that n > o. Barbay et
al. [2] showed how to extend the results to other cases by simple
reductions.



representation, where all the children of a node are listed
before its other descendants (see Figure 2 in Section 3.3
for an example).

Various succinct data structures were designed to
represent ordinal trees [3, 8, 12, 13, 16]. Benoit et
al. [3] proposed the DFUDS representation of an ordinal
tree using 2n+o(n) bits to support various navigational
operations, which is close to the lower bound suggested
by information theory (2n — ©(lgn) bits). Jansson et
al. [13] extended this representation to support a richer
set of navigational operations. Some of the operations
supported in [3] and [13] are (we refer to each node by
its preorder number):

e child(z,i), i*" child of node = for i > 1;

e child rank(z), number of left siblings of node x;

e depth(z), depth of node z, i.e. the number of edges
in the rooted path to z;

e level anc(z,i), i ancestor of node = for i > 0
(given a node z at depth d, its i'" ancestor is the
ancestor of z at depth d — i);

e nbdesc(z), number of descendants of node z;

e degree(z), degree of node z, i.e. the number of its

children;
e LCA(z,y), lowest common ancestor of z and y.

2.4 Labeled and Multi-Labeled Trees A labeled
tree is a tree in which each node is associated with a
label from a given alphabet [o], while in a multi-labeled
tree, each node is associated with at least one label?.
We use n to denote the number of nodes in a labeled
/ multi-labeled tree, and ¢ to denote the total number
of node-label pairs in a multi-labeled tree®. As we only
consider ordinal trees, we assume that labeled / multi-
labeled trees are ordinal trees.

Geary et al. [8] defined labeled extensions of the
first six operators defined in Section 2.3. Their data
structures support those in constant time, but use 2n +
n(lgo+O0(clglglgn/lglgn)) bits, which is much more
than the asymptotic lower bound of n (Igo — o(lg o))
suggested by information theory when o is large. Fer-
ragina et al. [6] proposed another structure for labeled
trees that supports locating the first child of a given
node z labeled « in constant time, and finding all the
children of z labeled « in constant time per child. But
it does not efficiently support the retrieval of the ances-
tors or descendants by labels. Also it uses 2nlgo+0(n)
bits, which is almost twice the minimum space required
to encode the tree. Barbay et al. [2] gave an encoding

TWe use [i] to denote the set {1,2,...,i}.

5In this paper, we assume that each node of the tree is
associated with at least one label (thus ¢ > n), and that n > o.
Barbay et al. [2] showed how to extend the results to other cases
by simple reductions.

for labeled trees using n (Igo + o(lg o)) bits to support
the retrieval of the ancestors or descendants by labels in
O(lglgo) time, which is generalized to represent multi-
labeled trees in t (Igo + o(lg o)) bits.

3 Succinct Indexes

We introduce succinct indexes in two steps: we first
define the ADTs and then design succinct indexes for
these ADTs.

3.1 Strings We first design succinct indexes for a
given string S of length n over alphabet [¢]. We adopt
the common assumption that o < n (otherwise, we can
reduce the alphabet size to the number of characters
that occur in the string). We define the ADT of a
string through the string access operator that returns
the character at any given position of the string. To
generalize the operators on strings defined in Section
2.2 to include “negative” searches, we define a literal as
either a character, a € [o], or its negation:

DEFINITION 3.1. Consider a string S[1..n] over the
alphabet [o]. A position x € [n] matches a literal « € [o]
if S[x] = a. A position € [n] matches the literal &
if S[z] # «. For simplicity, we define [7] to be the set

{1,...,5}.
We then consider the following operators:

DEFINITION 3.2. Consider a string S € [o]", a lit-
eral « € [o] U [6] and a position = € [n] in
S. The a-predecessor of position z, denoted by
string pred(e, ), is the last position matching a be-
fore position x, if it exists. Similarly, the a-successor
of position z, denoted by string succ(a, z), is the first
position matching a after position z, if it exists.

To illustrate the operations above, consider the
string bbaaacdd. We have string pred(a,7) = 5, as po-
sition 5 is the last position in the string before position 7
whose character is a. We also have string pred(a,5) =
2, as position 2 is the last position before position 5
whose character is not a. We use these definitions to

state our results.

LEMMA 3.1. Given support for string access in
f(n,0) time on a string S € [0]", there is a succinct
index using n-o(lg o) bits that supports string rank for
any literal « € [o)U [5] in O(lglgolglglgo(f(n,o) +
lglgo)) time, and string select for any character

a € o] in O(lglglgo(f(n,o) +1glgo)) time.

Proof. As string rank(@,z) = ¢ — string rank(a,z)
for a € [o], we only need to show how to support
string rank and string select for a € [o].



We conceptually treat the given string S as an nxo
table E with rows indexed by 1,2, ...,0 and columns by
1,2,...,n. For any a € [¢] and z € [n], entry E[a][z] =1
if S[z] = «, and E[a][z] = 0 otherwise. Reading F
in row major order yields a conceptual bit vector A of
length on with exactly n 1s. We divide A into blocks of
size 0. The cardinality of a block is the number of 1s in
it. To make use of string access to support operators
on blocks, we group blocks into chunks. To be specific,
we conceptually divide S into chunks of length o (we
assume that n is divisible by o for simplicity), so that

for the i chunk C, we have C[j] = S[(i — 1)o + j],
where i € [n/o] and j € [¢]. Thus each chunk consists
of exactly o blocks, one for each row of the chunk.
We denote the block corresponding to the a'® row of
a chunk C by C,, where a € [0]. We store the following
data structures:

e For the entire string, we construct a bit vector B
which stores the cardinalities of all the blocks in
unary, in the order they appear in A, i.e. B =
11101!20...1'=0, where /; is the cardinality of the 7!
block of A. The length of B is 2n, as there are
exactly n 1s in A, and n blocks. We store it using
Part (a) of Lemma 2.1 in 2n + o(n) bits.

e For each chunk C', we construct a bit vector X that
stores the cardinalities of the blocks in C' in unary
from top to bottom, ie. X; = 01101/20...1%-0,
where [, is the cardinality of block C,. We store
it in 20 + o(o) bits using Part (a) of Lemma 2.1 as
its length is 20.

For each chunk C, we construct an array R such

that R[j] = bin_rankp(1,j) mod lgeo, where D is

the block C¢p;;. Each element of R is an integer in
the range [0,1g o — 1], so R can be stored in o lglgo
bits.

e For each chunk C, we construct a conceptual
permutation 7 on [¢], defined later in the proof. We
store an auxiliary structure P to support the access
to m given 7~! using O(clgo/lglglg o) bits [15].

e For each block C, in a chunk C, let F, be a
conceptual, “sparsified” bit vector for C, in which
only every lgoth 1 of C, is present (i.e. Fo[j] =1
iff Co[j] = 1 and bin_rank(1, j) on C, is divisible
by lgo). We construct a y-fast trie [19] over F.
This y-fast trie uses O(lgo x I,/ lgo) = O(l,) bits
(as the trie is on universe [o], we use a word size of
O(lgo) for it). The o y-fast tries corresponding to
all the blocks in a given chunk thus occupy O(o)
bits in total.

Using the bit vector B, the support for string rank
and string select operations on S can be reduced, in
constant time, to supporting these operations on a given
chunk (see Section 2 of [9]). Hence we only need to show

how to support string rank and string select on a
given chunk C.

We first show how to support bin_rank’(1,j) on
block D = Cg¢pj) (note that D[j] = 1). For this,
we first compute C[j] in f(n,o) time. Then we
use the y-fast trie corresponding to Fc[;) to compute
lgo|bin_ranky(1,j)/lgo] in O(lglgo) time, and re-
trieve R[j] in constant time. The sum of the above two
is the result. Thus bin_rank/, (1, j) can be computed in
O(f(n,o) +lglgo) time.

The permutation m for a chunk C can be obtained
by writing down the positions (relative to the starting
position of the chunk) of all the occurrences of each
character « in increasing order, if a appears in C,
for a = 1,2,---,0. Using 71 to denote the inverse
of m, we see that 7=1(j) is equal to the sum of the
following two values: the number of characters smaller
than C[j] in C, and bin_rank/(1, j) on block D = Ce¢;).
The first value can be easily computed using X in
constant time, and we have already shown how to
compute the second value in O(f(n,o) + lglgo) time
in the previous paragraph. Therefore, we can compute
any element of 7=! in O(f(n,o) + 1glgo) time. We
can further use P to compute any element of 7 in
O(lglglgo(f(n,o) + 1glgo)) time [15] (note that the
f(n,0) +1glgo term in the above claim comes from the
time required to retrieve a given element of 7=1).

Golynski et al. [9, Section 2.2] showed how to com-
pute string select on a chunk C' by a single access to
7 plus a few constant-time operations. When combined
with our approach, we can support string select
for any character & € [o] in O(lglglgo(f(n,o) +
lglgo)) time. They also showed how to com-
pute string rank by calling string select O(lglgo)
times. Thus we can support operator string rank in
O(lglgolglglgo(f(n,o) +1glgo)) time.

As there are n/o chunks, the sum of the space costs
of the auxiliary structures constructed for all the chunks
is clearly O(nlgo/lglglgo) bits. The overall space cost
of all the auxiliary structures is therefore n - o(lgo). O

LEMMA 3.2. Using at most 2n+o(n) additional bits, the
succinet index of Lemma 3.1 also supports string pred
and stringsucc for any literal @« € [o] U [o] in

O(lglgolglglgo(f(n,o) +1glgo)) time.

Proof. We support string pred;
string succ can be supported similarly. For a € [o],
string pred(a, z) = string select(a, string rank
(a, z) — 1). Hence we only need to show how to support
string pred(a, z) when « € [5].

We require another auxiliary structure. In the
bit vector A, there are n 1s, so there are at most n
runs of consecutive 1s. Assume that there are u runs

show how to



and their lengths are pi,p2, ..., pu, respectively. We
store these lengths in unary using a bit vector U, i.e.
U = 17101720 .--17+0. The length of U is n + u < 2n,
and we store it using Part (a) of Lemma 2.1 in at most
2n + o(n) bits.

To support string pred(a, z) for a € [7], let ¢ be
the character such that @ = ¢. We first retrieve S[z — 1]
in f(n,o) time. If S[z — 1] # ¢, then we return z — 1.
Otherwise, we compute the number, j, of 1s up to po-
sition (¢ — 1)o + 2 — 1 in A (this position in A corre-
sponds to the (z — 1)*™" position in the ¢ row in table
E). Let C be the chunk that contains the (n — 1) po-
sition of S. As j = bin_rankg(l,bin_selectp(0, (¢ —
Unjo+ |(x —1)/c])) + bin ranke (1, (z — 1) mod o),
we can compute j in O(f(n, o) +1glgo) time (the proof
of Lemma 3.1 shows how to compute bin_rank}, (1, k) in
O(f(n,0) +1glgo) time, for any block D and position
k such that D[k] = 1). The position in U that corre-
sponds to the (z — 1)*® position in the ¢ row in table
F is v = bin_selecty(1,j). Thus the number of con-
secutive 1s preceding and including position » in U is
¢ = v —bin_selecty (0, bin_ranky (0,v)). If ¢ > 2 — 1,
then there is no 0 in front of position z — 1 in row ¢
of table E, so we return —oo. Otherwise, we return
x — q — 1 as the result. All the above operations take

O(f(n,0) 4+ 1glgo) time. O

Combining Lemmas 3.1 and 3.2, we have our first
main result:

THEOREM 3.1. Given support for string access in
f(n,o) time on a string S € [0]", there is a succinct
index using n - o(lgo) bits that supports string rank,
string pred and stringsucc for any literal a €
[oc] U [5] in O(lglgolglglgo(f(n,o) + lglgo)) time,
and string select for any character a« € [o] in

O(lglglgo(f(n,o) +1glgo)) time.

We can alternatively define the ADT of a string
through the string select(a,r) operator, where a €
[]. Although this definition seems unusual, it has a
useful application in Section 4.2. With this definition,
we have:

COROLLARY 3.1. Given support for string select
(for any character o € [o]) in f(n,o) time on a string
S € [o]™, there is a succinct index using n - o(lgo) bits
that supports string rank for any literal a € [o] U [7]
and string access in O(lglgof(n,o)) time.

Proof. As in the proof of Theorem 3.1, we divide string
S and its corresponding conceptual table F into chunks
and blocks, and store bit vector B for the entire string
and bit vector X for each chunk. We also store the

same set of y-fast tries for chunks. With the f(n,o)-
time support for string select on S, using the method
described in the proof of Theorem 3.1, we can support
string rank on S in O(lglgo) time.

Now we need to provide support for string access.
We first design the data structures supporting the ac-
cess to m and 7! for any chunk C (see the proof of
Theorem 3.1 for the definition of 7 and 7=!). We
assume that C is the i*h chunk. From the defini-
tion of m we have that m(j) = binselectc,(l,r),

where « = binranky(0,binselectx(l,j)), and
r = binselectx(l,j) — binselectx(0,a). «
and r can clearly be computed in O(1) time. As
bin_selectc,(1,7) = string_select(a,r + z), where

th row of E up to po-

sition (¢ — 1)lgo (we can compute z by performing
rank/select operations on B in constant time), we can
compute 7(j) in f(n,o) time. For each chunk C, in-
stead of storing the auxiliary structure P in the proof
of Theorem 3.1, we construct an auxiliary structure P’
using O(olgo/lglgo) bits to compute any element of
7~'in O(lglgof(n,o)) time [15]. Finally, we use the

method of Golynski et al. [9, Section 2.2] to compute
C[j] in O(lglgo f(n,o)) time using the access to =1,
which in turn can be used to support string access in
O(lglgof(n,o)) time.

Similar to the proof of Theorem 3.1, the above
auxiliary data structures (B, X, y-fast tries, and P’)

occupy n - o(lg o) bits. O

z is the number of 1s in the «

3.2 Binary Relations We define the interface of
the ADT of a binary relation through the following
operator: object_access(z,i), which returns the i*h
label associated with z in lexicographic order, and
returns 4oo if no such label exists. We also generalize
the definition of literals to binary relations (i.e. the
z'h object matches literal a € [o] if it is associated with
label a; otherwise, it matches the literal a). We have:

THEOREM 3.2. Given support for object_access in
f(n,o,t) time on a binary relation formed by t pairs
from an object set [n] and a label set [o], there is a suc-
cinct index using t-o(lg o) bits that supports label rank
for any literal o € [o] U [6] and label_access for any
label a € [o] in O(lglgolglglgo(f(n,o,t) + lglgo))
time, and label _select for any label a € [o] in

O(lglglgo(f(n,o,t) +1glgo)) time.

Proof. As with strings, we also conceptually treat a
binary relation as an n x o table E, and entry E[a][z] =
1 iff object z is associated with label a. A binary
relation on ¢ pairs from [n] x [0] can be stored as
follows [2] (See Figure 1 for an example):
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Figure 1: An example of the

e a string ROWS of length ¢ drawn from alphabet [o],
such that the i*P label of ROWS is the label of the
ith pair in the column-major order traversal of E;

e a bit vector COLUMNS of length n + ¢ encoding the
number of labels associated with each object in
unary.

To design a succinct index for binary relations, we
explicitly store the bit vector COLUMNS using Part (a) of
Lemma 2.1in n+t+o(n+t) bits. We now show how to
support string access on ROWS using object_access.
To compute the i*" character in ROWS, we need to com-
pute the corresponding object, z, and the rank, r, of the
corresponding label among all the labels associated with
z. The position of the (0 in COLUMNS corresponding to
the ith character in ROWS is [ = bin_selecteryms (0, 7).
Therefore, = bin rankegums(1,!) + 1, and r = 1 —
bin_selecteorums (1,2 — 1) if 2 > 1 (r = | otherwise).
Thus with these additional operations, we can support
string access using one call to object_access in ad-
dition to some constant-time operations.

We store a succinct index for ROWS using The-
orem 3.1 in ¢ - o(lgo) bits. As we can support
string access on ROWS using object_access, the in-
dex can support string rank and string select on
ROWS for any label a € [¢]. Using the approach of
Barbay et al. [2, Theorem 1] to support label _rank,
label _select and label_access operations on binary
relations using rank/select on ROWS and COLUMNS, we
can support these operators. The run times of the algo-
rithms can be easily computed from Theorem 3.1 and
[2]. The space of the index is the sum of space cost
of storing COLUMNS and the index for ROWS, which is
t-o(lgo). O

3.3 Multi-Labeled Trees We define the interface of
the ADT of a multi-labeled tree through the following
operator: node_label(z,i), which returns the i*! label
associated with node z in lexicographic order. We store
the tree structure as part of the index (as it takes
negligible space), and hence do not assume the support
for any navigational operation in the ADT. Recall that
we refer to nodes by their preorder numbers (i.e. node
z is the z'® node in the preorder traversal).

To support the navigational operations on an ordi-
nal tree, we have the following lemma:

» O
N O

encoding of a binary relation.

4 5/6\9 10 11
7 8
DFUDS: ((() ((O)))(O))(cO)))

Figure 2: An ordinal tree (where each node is assigned
its rank in DFUDS order) and its DFUDS representation [3].

Lemma 3.3. Using the DFUDS representation [3, 13], an
ordinal tree with n nodes can be encoded in 2n + o(n)
bits to support all the navigational operations defined in
Section 2.3 and the following operations in O(1) time:
e find dfuds(i), the rank in DFUDS order of the
it* node in preorder;
e find pre(i), the rank in preorder of the i" node in
DFUDS order.

Proof. As it is shown in [3] and [13] how to support
all the navigational operations defined in Section 2.3,
we only need to provide support for find dfuds(i) and
find pre(i). In the rest of the proof, we use the
operators defined in [3], which are supported in constant
time.

In the balanced parentheses representation of the
DFUDS sequence of the tree [3], each node corresponds
to an opening parenthesis and a closing parenthesis. We
observe that in the sequence, the opening parentheses
correspond to DFUDS order, while the closing parentheses
correspond to the preorder. For example, in Figure 2,
the 6" node in DFUDS order (which is the 5th node in
preorder) corresponds to the 6" opening parenthesis,
and the 5" closing parenthesis.

With this observation, find dfuds(i) means that
for the node, z, that corresponds to the " closing
parenthesis, we need to compute the rank of the cor-
responding opening parenthesis among opening paren-
theses. To compute this value, we first find the open-
ing parenthesis that matches the closing parenthesis
that comes before node z. Its position in the sequence
is: j = find.open(selecteiose(i — 1)). With j, we



can compute the position of the parent of x, which is
p = selecteiose (Tankeiose (7)) + 1, and child rank(z)
(denoted by r), which is r = select iose (Tankeiose (P) +
1) — j. Finally, rankepen (p + 7 — 1) is the result.

The computation of find_pre(i) is exactly the
inverse of the above process. O

We now define permuted binary relations and
present a related lemma that we need to design succinct
indexes for multi-labeled trees.

DEFINITION 3.3. Given a permutation m on [n] and a
binary relation R C [n] X [o], the permuted binary
relation w(R) is the relation such that (z,a) € w(R)
if and only if (n='(z),a) € R.

LEMMA 3.4. Consider a permutation m on [n], such
that the access to m(i) and w='(i) is supported in
O(1) time. Given a binary relation R C [n] X
[c] of cardinality t, and support for object_access
on R in f(n,o,t) time, there is a succinct index
using t - o(lgo) bits that supports label_rank and
label_access in O(lglgolglglgo(f(n,o,t) + lglgo))
time, and labelselect in O(lglglgo(f(n,o,t) +
lglg o)) time, on both R and m(R) for any label o € [o].
Proof. The proof of Theorem 3.2 shows how to support
string access on ROWS using object_access on R and
bin_rank/bin_select on COLUMNS, which allows us to
design a succinct index for R using a succinct index for
ROWS and the bit vector COLUMNS. We denote ROWS' and
COLUMNS’ to be the string and bit vector corresponding
to m(R), and store COLUMNS’ in n+t+o(n+1t) bits using
using Part (a) of Lemma 2.1. Thus to design a succinct
index to support efficient retrieval for both R and m(R),
we only need to show how to support string access
on the string ROWS'.

To support string access(i) on ROWS', we first
compute the object 2 corresponding to the i*" element of
ROWSI USiIlg r = bin_rankchUMst (1, bin_selectcgwm\]sz
(0,7)) + 1. Let » = i — bin_selecteoums’ (1,2 — 1). We
have that the ith element of ROWS’ corresponds to the rth
label of z in m(R). As object z corresponds to object
y = 7~ 1(x) in ROWS, we have that string accessygys/ (i)
= object_accessg(y, 7). Thus we can support
string accessyy. (4) in f(n,o,t) time. O

To efficiently find all the a-ancestors of any given
node, for each node and for each of its labels a we
encode the number of a-ancestors of z. To measure
the maximum number of such ancestors, we define
the recursivity of a node, motivated by the notion of
document recursion level of a given XML document [20].

DEFINITION 3.4. The recursivity p, of a label e in a
multi-labeled tree is the mazimum number of occurrences
of a on any rooted path of the tree. The average
recursivity p of a multi-labeled tree is the average
recursivity of the labels weighted by the number of nodes
associated with each label a (denoted by t,): p =

t Laelo) (tapa)-

Note that p is usually small in practice, especially
for XML trees. Zhang et al. [20] observed that in
practice the document recursion level (when translated
to our more precise definition, it is the maximum value
of all p,’s minus one, which can be easily used to bound
p) is often very small: in their data sets, it was never
larger than 10. With this definition, we have:

THEOREM 3.3. Consider a multi-labeled tree on n
nodes and o labels, associated in t relations, of average
recursivity p. Given support for node label in f(n,o,1)
time, there is a succinct index using t - o(lg o) bits that
supports (for a given node x) the enumeration of:

e the set of a-descendants of x (denoted by D) in
O(|D|lglgolglglgo(f(n,o,t) +1glgo)) time;

e the set of a-children of x (denoted by C) in
O(|Cllglgolglglgo(f(n,o,t) +1glgo)) time;

e the set of a-ancestors of x (denoted by A) in
O(lglgolglglgo(f(n,o,t) +1glg o)+ |A|(Iglg pa +
lglglgo(f(n,o,t) + lglgo))) time using t(lgp +
o(lg p)) bits of extra space.

Proof. We encode the underlying ordinal tree structure
in 2n + o(n) bits using Lemma 3.3. The sequence of
nodes referred by their preorder (DFUDS order) num-
bers and the associated label sets form a binary relation
R, (R4). Lemma 3.3 provides constant-time conver-
sions between the preorder numbers and the DFUDS or-
der numbers, and node_label supports object_access
on R,. By Lemma 3.4, we can construct succinct in-
dexes for R, and Ry using ¢ - o(lgo) bits, and support
label rank, label_select and label_access opera-
tions on either of them efficiently.

Using the technique of Barbay et al. [2, Corollary
1], the succinct index for R, enables us to enumerate
all the descendants of a node z matching label a in
O(|D|1glgolglglgo(f(n,o,t) + lglgo)) time (we can
alternatively use the succinct index for Ry to achieve the
same result). Similarly, the succinct index of R4 enables
us to enumerate all children of a node z matching «
in O(|C|1glgolglglgo(f(n,o,t) +1glgo)) time, as the
DFUDS order traversal lists the children of any given node
consecutively.

As there is no order in which the ancestors of
each node are consecutive, we store for each label «
of a node x the number of ancestors of z matching «.



To be specific, for each label a such that p, > 1, we
represent those numbers in one string S, € [po]> (see
Definition 3.4), where the i*" number of S,, corresponds
to the ith node labeled a in preorder. As the lengths
of the strings (Sa.)ae[o] are implicitly encoded in R,
we encode for each label « its recursivity p, in unary,
using at most ¢t + o + o(t + o) bits. We use the
encoding of Golynski et al. [9, Theorem 2.2] to encode
each string S, in t4(lgps + o(lg ps)) bits to support
string rank and string.access in O(lglgpy) time
and string select in constant time. The total space
used by these strings is Zoze[a] to(lg po + o(lg pa)). By

concavity of the logarithmic function, this is at most
taPa taPo

(Sacpte) (1 (Spsisins) +o (25i)) - =
t(lgp +o(lgp)).

To support the enumeration of all the a-ancestors
of a node z, we first find from R, the number, p,
of a-nodes preceding z in preorder using label_rank.
Then we iterate ¢ from 1. In each iteration, we first
find the position p; in S, of the character 7 immediately
preceding position p,: it corresponds to the p;t" a-node
in preorder (this can be located using label_select
on Rp). If this node is an ancestor of z (this can be
checked using depth and level_anc in constant time),
output it, increment 7 and iterate, otherwise stop. Each
iteration contains a label_select on R, and some rank
and select operations on S,, so each is performed in
O(lglg po +1glglgo(f(n,0,t) +1glg o)) time. Hence it
takes O(lglgolglglg o(f(n, o, t)+lglgo)+|Al(lglg pa+
lglglgo(f(n,o,t) +1glgo))) time to enumerate A. O

We can also support the retrieval of the first a-
descendant, child or ancestor of node z that appears
after node y in preorder:

COROLLARY 3.2. The structure above also supports
(for any two given nodes x and y) the selection of:
e the first a-descendant of x after y in preorder in
O(lglgolglglgo(f(n,o,t) +1glgo)) time;
e the first «a-child of x after y in preorder in
O(lglgolglglgo(f(n,o,t) +1glgo)) time;
e the first a-ancestor of x after y in preorder in

O(lglg po+lglgolglglgo(f(n,o,t)+lglgo)) time.

Proof. Using the index in Theorem 3.3, we can easily
support the first operation. The support for the second
operation is nontrivial only when y is a descendant of
z. In this case, we first locate the child of xz, node u,
that is also an ancestor of y using depth and level_anc.
Then the problem is reduced to the selection of the first
a-child of z after u in preorder, which can be computed
by performing rank/select operations on Rj.

To support the search for the first a-ancestor of z
after y, we assume that y precedes z in preorder (other-

wise the operator returns co), and that y is an ancestor
of z (if not, the problem can be reduced to the search
for the first a-ancestor of node z after node LCA(z, y)).
Using rank and select on the relation R, and some nav-
igational operators, we can find the first a-descendant z
of y in preorder in O(lglgolglglgo(f(n,o,t) +1glgo))
time. Node z is not necessarily an ancestor of z, but it
has the same number, i, of a-ancestors as the node we
are looking for. We can retrieve ¢ from the string S, in
O(lglg po) time. Finally, the first a-ancestor of z after
y is the a-node corresponding to the value i immedi-
ately preceding the position corresponding to z in S,
found in O(lglgolglglgo(f(n,o,t) +1glgo) +1glgpa)
time. O

The operations on multi-labeled trees are important
for the support of XPath queries for XML trees [1, 2].
The main idea of our algorithms is to construct indexes
for binary relations for different traversal orders of the
trees. Note that without succinct indexes, we would
need to encode different binary relations separately and
waste a lot of space.

4 Applications

4.1 High-Order Entropy-Compressed Succinct
Encodings for Strings Given a string S of length n
over alphabet [¢], we now design a high-order entropy-
compressed succinct encoding for it that supports
string access, string rank, and string select ef-
ficiently. Golynski et al. [9] considered the problem
and suggested a method with space requirements propo-
tional to the k*™" order entropy of a different but related
string. Here we solve the problem in its original form.

THreOREM 4.1. A string S of length n over alphabet [o]
can be represented using nHy + o(nlgo) bits, for any
positive integer k such that k+1go = o(lgn), to support
string access in O(1) time. The representation also
supports string rank, string pred and string succ
for any literal a € [o] U [5] in O((Iglgo)?lglglgo)
time, and string_select for any character a € [o]

O(lglgolglglgo)) time.

Proof. We use the approach presented by Sadakane and
Grossi [18] to store S in nHy+O(nlgolglgn/lgn) (Hg
denotes the k' order entropy of S) for any positive in-
teger k such that k +1go = o(lgn). This representation
allows us to retrieve S[7] in O(1) time (i.e. operator
string access can be supported in O(1) time). We
store a succinct index for S using Theorem 3.1, and
the support for the above operations immediately fol-
lows. The overall space is nH, +O(nlgolglgn/lgn)+



O(nlgo/lglglgo). The last two terms sum up to
O(nlgo(lglgn/lgn + 1/1glglgo)) = o(nlgo). O

Using similar approaches, we can design succinct
encodings for binary relations and multi-labeled trees
based on our succinct indexes, and compress the under-
lying strings (recall that we reduce the operations on
binary relations and multi-labeled trees to rank/select
on strings and bit vectors) to high-order entropies.

4.2 High-Order Entropy-Compressed Text In-
dexes for Large Alphabets Text indexes are data
structures that facilitate text searching. Given a text T
of length n and a pattern P of length m, whose sym-
bols are drawn from the same fixed alphabet X, the goal
is to look for the occurrences of P in T. We consider
three types of queries: existential queries, cardinality
queries, and listing queries. An ezistential query re-
turns a boolean value that indicates whether P occurs
as a substring in T. A cardinality query returns the
number, occ, of occurrences of P in T. A listing query
lists all the positions of occurrences of P in T.

We now apply our index to design space-efficient
suffix arrays. We first present the following lemma to
encode strings in 0'" order entropy while supporting
rank and select:

LEMMA 4.1. A string S of length n over alphabet [o]
can be represented using n(Ho + o(lg o)) bits to support
string access and string.rank for any literal o €
[o]U [5] in O(lglg o) time, and string_select for any
character o € [o] in O(1) time.

Proof. As in the proof of Theorem 3.1, we consider the
conceptual table E for string S. Each row of E is a bit
vector, and we denote the a'? row by E[a] for a € [o].
For each a € [o], we store E[a] using Lemma 2.2 in
lg (n”a)+o(na)+0(lg lgn) ~ nalg 2% 40(na)+0(Iglgn)
bits, where n, is the number of occurrences of « in §.
Summing the space cost of all the Fla]’s for a € [o],
the last two terms clearly sum to n - o(lg o), while the
first term on the right-hand side sums to nHqg + nlge.
Therefore, the total space cost is n(Hg + o(lg o)) bits.
With FE stored as above, string select can be
supported in O(1) time, as stringselect(a,i) =
bin_selectp,(1,i), for a € [s]. With the constant-
time support for string select on S, we can con-
struct a succinct index using Corollary 3.1 to support
string rank and stringaccess in O(lglgn) time.
This index uses n-o(lgo) bits, so the overall space cost
is n(Ho + o(lg o)) bits. O

81f ¢ < /Ign/2, we can support all the operations in constant
time using table lookups. When o > /Ign/2, we can bound n in
terms of o, and hence this term is o(nlgo).

We can represent suffix arrays by encoding the
Burrows-Wheeler transformed string of the raw text
(denoted by T®"") appropriately [7, 11]. Ferragina et
al. [7] also presented how to design a high-order entropy-
compressed suffix array given an encoding of T®"" that
occupies space in 0'" order entropy plus an appropriate
lower order term. Combining these results with Lemma
4.1 yields:

THEOREM 4.2. A text string T of length n over alphabet
[o] can be stored using nHy + o(nlgo)) bits for any
k< pBlg,n and 0 < B < 1. Given a pattern P of length
m, this encoding can answer existential and cardinality
queries in O(mlglgo) time, list each occurrence in
O(1g"*“ nlglgo) time for any ¢ where 0 < ¢ < 1, and
output a substring of length 1 in O((1 +1g'T“ n)lglgo)
time.

Grossi et al. [10] designed a text index that uses
nHy +o(nlg o) bits, and supports existential and cardi-
nality queries in O(mlgo + polylog(n)) time. Golyn-
ski et al. [9] reduced the lg o factor in the query time to
a lglgo, but their index is not compressible. Our text
index has the advantages of both these indexes.

5 Conclusions

In this paper, we define succinct indexes for the design
of data structures. We show their advantages (listed
in Section 1) by presenting succinct indexes for strings,
binary relations and multi-labeled trees, and applying
them to various applications.

The concept of succinct indexes is of both theo-
retical and practical importance to the design of data
structures. In theory, the separation of the ADT and
the index enables researchers to design an encoding
of the given data to achieve desired results or trade-
offs more easily, as the encoding only needs to support
the ADT. In addition, to support new operations, re-
searchers merely need to design additional succinct in-
dexes without redesigning the whole structure. In prac-
tice, this concept allows developers to engineer the im-
plementation of ADTs and succinct indexes separately,
and the fact that multiple succinct indexes for the same
ADT can be easily combined to provide one succinct
index makes it possible to further divide the implemen-
tation of succinct indexes into several (possibly concur-
rent) steps. This is good software engineering practice,
to allow separated testing and concurrent development,
and to facilitate the design of expandable software li-
braries. Furthermore, succinct indexes provide a way to
support efficient operations on implicit data, which is
common in both theory and practice. We thus expect
that the concept of succinct indexes will influence the
design of succinct data structures.
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