
Arranging Language Features for
More Robust Pattern-based Crosscuts

Kris Gybels and Johan Brichau
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussel, Belgium
{kris.gybels I johan.brichau} @vub.ac.be

ABSTRACT
A crosscut language is used to describe at which points an
aspect crosscuts a program. An important issue is how these
points can be captured using the crosscut language without
introducing tight coupling between the aspect and the pro-
gram. Such tight coupling harms the evolvability of the
program and the reusability of the aspect. Current pattern-
based capturing already offers a certain decoupling between
aspects and the program but it may still suffer from what we
call the arranged pattern problem. In this paper, we discuss
this problem and present a logic-based crosscut language
from which we distill what language features are beneficial
to avoid this problem.

1. INTRODUCTION
The goal of Aspect-Oriented Programming (AOP) [16] is to
modularize crosscutting concerns. Code that would other-
wise have been spread throughout other modules in the pro-
gram can now be encapsulated in an aspect. This is typically
done by letting an aspect specify two things: how it influ-
ences other modules and exactly where or at what points it
exerts its influence. Such points are generally referred to as
join points and specialized crosscut languages are used to de-
scribe these points. Well known examples of such languages
are AspectJ 's pointcut language [13], HyperJ ' s composition
language [26] and DJ 's traversal strategies [25].

It is important that crosscut languages are expressive enough
to accomplish the goals of AOP. The use of AOP should lead
to bet ter software because the localization of crosscutting
concerns makes the program easier to read, maintain and
evolve. However, simple crosscut languages often introduce
tight coupling between the aspect and the points in the pro-
gram it crosscuts. Such tight coupling hurts the evolvability

*Both authors are research assistants of the Fund for Scien-
tific Research, Flanders, Belgium (F.W.O.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1-58113-660 -9/03/002...$5.00

of an aspect-oriented program and should thus be avoided.

Especially enumeration-based crosscut languages lead to pro-
grams susceptible to evolutionary problems but the problem
may also affect pattern-based crosscut languages. In some
of the earliest AOP languages, such as COOL [19] and the
first versions of Aspect J, crosscuts were formed by explic-
itly enumerating join points by name. This clearly intro-
duces tight Coupling between the aspect and the modules
it crosscuts [29]: changing the program requires a review
of the crosscut enumerations which conflicts with the idea
of programs being oblivious [5] to the aspects applied to
them. Pat tern-based crosscutting, which can be found in
most current aspect languages, a t tempts to solve some of
the problems associated with enumeration-based crosscut-
ting by expressing crosscuts by stat ing properties of join
points instead of selecting them by name.

However a more subtle problem may occur in the pat tern
approach that also affects the evolvability of aspect-oriented
programs: the use of naming conventions or other ways of
structuring code in patterns so that these can be captured
by crosscuts. Problems with evolution and obliviousness oc-
cur in this case as well because programmers need to keep
these conventions in mind. We will refer to this problem
as the arranged patterns problem. Note that this problem
can also exist if the crosscut definition is separated from
the aspect code (such as with AspectJ ' s abstract pointcuts
or HyperJ ' s separate composition rules) which only decou-
ples the crosscut definition from the aspect. To really avoid
the situation in which aspect programmers rely on arranged
patterns, crosscut languages need to be made expressive
enough. More expressive crosscut languages allow to write
more complex patterns. This allows to avoid the arranged
pat tern problem, leading to less coupling between aspects
and the base program.

In this paper we take a look at a number of language features
that can be beneficial for expressing bet ter pattern-based
crosscuts. We distill these features from a crosscut language
that is based on a logic meta-language approach [33, 35, 23]
with reification of static and dynamic join point properties
as well as program structure and state.

In the next section we take a closer look at the different
approaches to capturing join points and what problems can

60

occur. In par t icular we discuss an example of implement ing
pa r t of the observer design p a t t e r n as an aspect. We then
discuss our crosscut language in full by breaking it down
into a number of dis t inct features. After this, we show how
it can be used to implement a more evolut ion-robust version
of such an observer aspect. We then discuss related work
and our conclusions.

2. CAPTURING JOIN POINTS
In this section we consider some approaches to captur ing
the join points of an aspect which are used by most current
AOP languages. An impor t an t cr i ter ium to evaluate the
different approaches is how t ight crosscuts are coupled to a
specific base program. In the case of t ight coupling, the
aspect can be syntact ical ly well separa ted from the base
program, bu t changes to the base program can immediate ly
require changes to the crosscut definition. This harms the
evolvability of the program and is in direct contras t wi th the
general goal of separat ion of concerns and AOP, which is to
make programs easier to evolve.

To i l lustrate the different approaches we use the example
of implement ing an Observer [7] on B u f f e r objects as an
aspect. Instances of B u f f e r are simple da t a s t ruc tures sup-
por t ing only operat ions to retr ieve (ge t) and insert (put) el-
ements, bu t we will consider wha t happens to the Observer
aspect when new operat ions are in t roduced in the B u f f e r
class. We will focus on the crosscut t h a t expresses when
changes happen in a Buffer object and thus observers need
to be notified.

2.1 Enumeration
The first approach we consider is enumera t ion of the join
points. This approach is used in the earliest incarnat ions of
some aspect languages: COOL [19] and the earliest versions
of Aspec tJ [14] are examples. In general, join points are
referred to by name and a crosscut definition boils down to
an enumera t ion of join points. As an example, consider the
following Aspec tJ poin tcut definition t h a t enumera tes the
s ta te changing methods on instances of Buf fe r :

pointcut changesState() :
execution(void Buffer.put(int)) II
execution(void Buffer.get())

This poin tcut would be used in an advice in the Observer
aspect where the advice would notify all observers of the
change.

Consider now what happens when the Buff e r class is evolved.
A method p u t A l l might be added for example. This would
unfor tunate ly break the Observer aspect, requir ing its
c h a n g e s S t a t e poin tcut to be modified to also cover this new
s ta te changing method.

The problem with enumera t ion is t h a t it t ightly couples the
aspect to a specific version of the B u f f e r class, thus mak-
ing it not very robust to changes in t h a t class: even simple
changes can require a change to the crosscut definition. An-
o ther problem with this approach is t h a t it does not scale
for use in large software systems where overly long enumer-
at ions might be needed.

2.2 Pattern Matching
A be t t e r way to capture join points t h a n using enumera-
t ion is by making use of pa t t e rns 1 which be t t e r describe
the in tended semant ics of a crosscut. The problem with
enumera t ion is t h a t the aspect weaver is unable to figure
out t h a t new jo inpoin ts t h a t arise after the evolut ion of a
program also fall under the in tended semant ics of a cross-
cut. In the observer example the in tended semant ics of the
changesSta te crosscut is "al l jo inpoints where the s ta te of
an object is changed". Whi le we cannot simply implement
this using such a na tu ra l language description, we can aim
at implement ing it using an executable specification in the
form of a pa t te rn . Such a p a t t e r n would simply describe
wha t is common to all the jo inpoints t h a t should ma tch the
crosscut. New crosscuts t h a t fall under the in tended seman-
tics of the crosscut should thus be automat ica l ly included
as well. This approach is found in most current AOP ap-
proaches such as Aspec t J and JAC [27].

The t e rm pa t t e rn -based crosscut t ing is closely related to
the t e rm proper ty-based crosscut t ing [15] though there is an
i m p o r t a n t difference. P roper ty -based crosscutt ing replaces
simple name-based enumera t ive crosscut t ing by associat ing
a richer set of proper t ies wi th each joinpoint . A crosscut
then expresses the na tu ra l language semantics of a cross-
cut by describing th rough condit ions the under lying pa t t e rn
found in the proper t ies of all the jo inpoints match ing it.
While a lot of the flexibility of this approach depends on
which propert ies are available it depends even more on the
linguistic means available in the crosscut language to express
the conditions. Hence we pu t forward the t e rm pa t te rn-
based crosscut t ing to take the focus away from the proper-
ties in themselves and encompass the linguistic means of the
crosccut language in the t e rm as well.

As an example of pa t t e rn -based crosscuts, consider a rewrite
of the e h a n g e s S t a t e po in tcu t using Aspec t J ' s pa t t e rn match-
ing mechanisms:

p o i n t c u t c h a n g e s S t a t e () :
w i t h i n (B u f f e r) ~&
(e x e c u t i o n (* p u t * (*)) [[

e x e c u t i o n (* g e t * (*))

This version is somewhat more robus t which is achieved by
using a simple language feature: the wildcard. Using this
definition, the new p u t t l l (i n t []) me thod will be au tomat -
ically cap tured by the pointcut . The use of the wildcard was
already described by Kers ten and Murphy as leading to bet-
ter decoupling of aspects and programs [12].

Bu t let 's consider a few other possible changes. W h a t if a
me thod c o l l e c t F i r s t E l e m e n t s , r e tu rn ing a collection wi th
a specified n u m b e r of elements from the buffer, or a me thod
wipe, simply delet ing all the elements in the buffer, is added?
Again the po in tcu t does not capture any new execution join-
points in t roduced by calling these new methods .

1 Note t h a t the t e rm pa t t e rn as used in this paper has noth-
ing to do wi th design pa t t e rn s [7]. We use the full t e rm
"design pa t t e rn" to refer to those kinds of pa t t e rns to avoid
confusion.

61

The problem with this po in tcu t is t h a t it still does not really
describe what it means for a me thod to be " s t a t e changing",
r a the r it relies on a naming convention. Fur the rmore this
naming convent ion only needs to be followed to allow the
po in tcu t to work: we could rename c o l l e c t F i r s t E l e m e n t s
to getFirstElements and wipe to putWipe but we would
only be doing it for the sake of the Observer aspect and
not because the name better expresses the intent of the
method, Essentially the Buffer class would be telling the
aspect where to crosscut and the aspect's pointcut would
only be saying "do it wherever the Buffer class tells us to
do it". We might then as well implement t h a t wi th regular
me thod calling ins tead of a crosscut [34].

Besides naming conventions there might be o ther ways in
which methods could be tagged, such as using a specially
named pa ramete r or n u m b e r of parameters , thereby essen-
tially a r ranging a pa t t e r n in the code which is easy to write
a pa t t e rn -based crosscut for. This s i tua t ion is to be avoided
because programmers will always need to r emember to fol-
low this convent ion when evolving the program. In general,
we can speak of the arranged pattern problem.

2.3 Arranged Patterns
The general goal of our work is to allow for be t t e r decou-
pling of aspects and programs by implement ing crosscuts as
pa t t e rns using more flexible linguistic means in the crosscut
language, a specific subgoal re lated to this is avoiding the ar-
ranged pa t t e rns problem. In general, arranged patterns oc-
cur because programmers purposefully s t ruc tu re thei r code
so t h a t af terwards this p a t t e r n can be cap tured by a crosscut
expression, as happened in the observer example wi th the
p rogramming conventions. Even worse, p rogrammers may
s ta r t to refactor exist ing code simply to get to a p a t t e r n
t h a t can be picked out by an aspect. This syntact ic (re)-
a r rangement violates the obliviousness proper ty of aspect
languages because this means t h a t the syntact ic s t ruc tu re
of the base program implicit ly de termines where a part icu-
lar aspect will crosscut the base code.

Arranged pa t t e rns cannot be avoided in all cases. How-
ever, crosscut languages should offer the capabi l i ty to ex-
press as much pa t t e rns as possible. In an ideal crosscut
language, any kind of pa t t e r n t h a t can be identified by a
p rogrammer (perhaps in na tu ra l language) should be de-
finable in the crosscut language. In l i terature, some illus-
t ra t ions and descript ions of people avoiding this a r ranged
pa t t e rn problem can be found. For example, Lipper t and
Lopes [17] have identified this problem in a previous ver-
sion of Aspec tJ when they used aspects to separate excep-
t ion handl ing from the core program. In some par t icular
cases, they lacked sufficient expressiveness to define the nec-
essary crosscuts and had to resort to a simple enumera t ion
of join points. Also, Hugunin [10] has expressed the desire
for more expressive poin tcut definitions in which we can de-
scribe crosscuts by the propert ies in which we are interested.
The c h a n g e s S t a t e crosscut should then be expressed as 'all
me thod executions t h a t change the s ta te of the B u f f e r ob-
ject ' . Douence et al. [4] also expressed thei r need for more
expressive crosscut languages, because they had to pollute
aspect code wi th crosscut 'bookkeeping ' code. In thei r work
on applying AOP to an OS kernel implementa t ion , Coady et
al. [3] describe t h a t they had to refactor some code into new

funct ions to allow the definit ion of a crosscut t ha t ma tched
the necessary code.

We have argued t h a t purposefully s t ruc tu r ing the base code
as an indicator for aspects to ~crosscut here ' is to be avoided.
This does not mean t h a t a crosscut definition should not be
allowed to use p rogramming conventions. On the contrary,
many conventions which can be considered a na tu ra l pa r t of
the base p rogram ' s development can be very useful to define
crosscuts. As such, we do th ink it is useful for crosscut
p rogrammers to be able to use such (stat ic) information.

3. BETTER CROSSCUTS WITH BETTER
LANGUAGE FEATURES

A pa t t e rn -based crosscut language should allow an AOP
programmer to write a crosscut as an executable specifi-
cat ion in the form of pa t t e rns as close to the in ten t of the
crosscut as possible to make the crosscut robus t to p rogram
evolutions.

The occurence of the a r ranged p a t t e r n problem seems to
suggest the need to fur ther enhance pa t t e rn -based crosscut
languages. As discussed, pa t t e rn -based crosscut languages
are founded on two ideas and thus the i r expressiveness also
hinges on these two: the jo inpoints and associated proper-
ties on one hand and on the o ther hand , the linguistic means
for describing a p a t t e r n as condi t ions on the propert ies. We
will focus on the second in this paper and make an a t t e m p t
at providing a list of language features necessary, t hough
maybe not sufficient, for improving the expressiveness of
crosscut languages. We do this by considering a crosscut
language we developed and distill the language features t h a t
seem most in teres t ing for wri t ing b e t t e r pa t t e rn -based cross-
cut expressions.

4. THE CROSSCUT LANGUAGE
In this section we in t roduce our own crosscut language. The
language is in essence a logic programnfing language, based
on Prolog [6], in which predicates are provided which allow
the wri t ing of crosscut expressions. ']?he reader need not
be familiar wi th logic p rogramming as the purpose of this
paper is exactly to explain wha t features of our crosscut
predicates and logic p rogramming itself are in teres t ing for
wri t ing pa t t e rn -based crosscut expressions.

The crosscut model of our language is a dynamic one, based
very much on t h a t of Aspect J, in which the join points are
related to key events in the execut ion of an object -or iented
program. The objec t -or iented language we have used as a
base language is Smal l ta lk [8]. Thus there are five types of
join points: message recept ions by an object , message sends
by an object , the accessing and upda t i ng of an objec t ' s s t a t e
and the execut ion of code blocks. For each type of join poin t
there are different types of proper t ies associated wi th each
join point . Many of these are dynamic properties.

For each type of join poin t there is a predicate in the lan-
guage, these predicates are shown in figure 1. Each pred-
icate takes at least one a rgument for which we always use
the variable ? jp . The value in this variable will be bound
to a represen ta t ion of the join point . Each predicate fur ther
takes some a rguments for some basic proper t ies associated

62

• reception(?jp, ?selector, ?arguments)
Used to express that ? jp is a message reception join
point, where the message with selector ? s e l e c t o r is
received with the arguments in the list ?arguments .

• send(?jp, ?selector, ?arguments)
The join point ? jp is a message send join point where
the message with selector ? s e l e c t o r is sent and passed
the arguments in the list ?arguments .

• reference(?jp, ?varName, ?value)
The join point ? jp is a reference join point where the
variable with name ? v a r N a m e is referenced at the
t ime it has the value ?va lue .

• assignment(?jp, ?varName, ?oldValue, ?newValue)
The predicate used for assignment join points, where
? v a r N a m e is the name of the variable being assigned,
?oldValue is the value of the variable before the as-
signment and ?newValue is the value of the variable
after the assignment.

• blockExecution(?jp, ?args)
The join point ? jp is a Smalltalk block execution join
point, where ?a rgs is a list of arguments that were
passed to the block.

F i g u r e 1: Lis t of basic predicates for captur ing cross-
cuts

with the join point.

Crosscut expressions are writ ten as logic queries about join
points. The query expresses the conditions a join point must
meet in order to match the crosscut expression. Though in
this paper we focus on the crosscut language of our aspect
language, we show an example of how crosscut expressions
are incorporated into advices:

before

?jp matching reception(Tip, test, ?arg)
do

Transcript show: 'executing test'

This advice expresses how and when to log a s tatement to
the transcript. The body or the "how" part of the advice
is implemented in our aspect language as Smaltalk code.
The crosscut or "when" part of the advice is the logic query
reception(?jp, test, ?arg), which captures all receptions of the
message test by any object.

In the next sections we take a closer look at some of the
features of our crosscut language. While there is not much
difference between our basic crosscut predicates (figure 1)
and the equivalents from AspectJ at first sight, much of
the extra flexibility comes from the fact that they are logic
predicates in a logic language. Some of the features we will
discuss next thus come from logic programming: unifica-
tion, rules and recursion. Others are made available through
other predicates in the language: the ability to reason about
more than just joinpoints themselves, but also their proper-
ties, the objects in the program and, through shadow join

points, the static structure of the program. In a later section
we will apply all these features to the Observer example.

Feature: Unification
Logic programming languages offer a simple, yet powerful
basic pat tern matching mechanism in the form of unifica-
tion. Unification is the process of making two structures
equal by filling in the corresponding "holes" in either one
with the values in the other.

A simple use of unification is as a wildcard pat tern-matching
mechanism, as illustrated in the following crosscut expres-
sion, note that variables are names beginning with a ques-
tion mark:

? jp matching
r e c e p t i o n (? j p , ?methodName, <? f i r s tArgument , 5>)

This crosscut expression would match any reception join
point, regardless of the name of the message as long as it
has two arguments of which the first can have any value and
the second should be the number 5.

The real value of unification however lies not just in its em-
ulation of more simple pat tern matching mechanisms but in
its effect of binding variables, in the next section this will al-
low us to put more complex conditions on join points. Unlike
wildcard matching there are variables involved in unification
which get bound to values. For example in the case above
the ? m e t h o d N a m e variable will be bound to the name of
the message sent which is one of the properties associated
with the join point held in the variable ?jp. Also, because of
the unification of the actual argument list with the pat tern
<?firstArgument, 5> the variable ? f i r s t A r g u m e n t will be
bound to the first actual argument sent with the message.

Feature: Reasoning about Properties
A crosscut language should allow one to put more complex
conditions on join point properties than simply requiring
the property to have a specific value. In our language, uni-
fication already provides the possibility to match properties
to specific values, for example the '5' value for the message
argument in the previous crosscut, but it also allows these
properties to be bound to variables. Because these variables
can be used as arguments to other predicates in the crosscut
we can put more complex conditions on properties.

Simply being able to pass around variables is not enough of
course, additional predicates are also needed to actually ex-
press conditions on the properties. Some of these predicates
in the language are simply standard Prolog predicates for
reasoning about numbers, lists, strings, etc. We have also
introduced predicates which reify the objects of the crosscut
program and their state.

There are three object reifying predicates. One is inObject
which provides access to the "context object" property of
a join point. The "context object" is the object in whose
context a join point originates. Another predicate is object-
Variable providing direct access to the state of objects. The
last predicate is objectResponse which can be used to express

63

t h a t an object should respond to a cer ta in message wi th a
cer tain response.

A simple example of using the same variable twice in one
crosscut expression is one t h a t would m a t c h all receptions
of messages wi th two arguments t h a t are the same:

? j p matching
reception(?jp, ?selector, <?arg , ?a rg>)

As an example of using a s t anda rd Prolog predicate we use
the member predicate in a var ian t of our earlier example:

?jp matching
reception(?jp, ?selector, <?firstArgument, 5>),
member(Yselector, <getProperty, saveToDatabase>)

The changed crosscut expression would now ma tch only a
• subset of the join points it ma tched earlier, namely those

t h a t have as message proper ty e i ther g e t P r o p e r t y or s ave -
T o D a t a b a s e . The member predicate is a s t anda rd Prolog
predicate expressing t h a t its first a rgument should be an
element in the list in i ts second argument .

As an example of using b o t h the object reifying predicates
and some s t anda rd Prolog predicates for dealing wi th num-
bers we consider the captur ing of imminent bankrupt ies on
account objects. The crosscut below captures receptions of
the message w i t h d r a w : wi th the amoun t to wi thdraw as
an a rgument and checks whe ther the current balance of the
account object minus t h a t amoun t would drop the balance
below zero:

? j p ma tch ing
r e c e p t i o n (? j p , w i t h d r a w : , <?amount>) ,
i n 0 b j e c t (? j p , ? o b j) ,
o b j e c t V a r i a b l e (? o b j , b a l a n c e , ? b a l a n c e) ,
d i f f e r e n c e (? b a l a n c e , ?amount, ? a f t e r W i t h d r a w a l) ,
b e l o w (? a f t e r W i t h d r a w a l , 0)

Feature: Link to Shadows
While we prefer a dynamic crosscut model because it can
lead to the inclusion of dynamic values in join point prop-
erties, a crosscut language should still also provide a more
s tat ic model of a program to aspects. The reason is the
same: to get as much proper t ies to ma tch on as possible.
As discussed earlier, p rogramming conventions are harmful
to the evolvability of A O P programs if they are arranged,
bu t na tura l ly occurring p rogramming conventions are useful
to AOP. The s ta t ic model is needed to be able to express
crosscuts making use of these conventions.

In our language we provide the s ta t ic model as a link from
the dynamic model to join point shadows. Join point shad-
ows [21] are expressions in the base program t h a t on exe-
cut ion lead to the dynamic join points. An example of this
is a message send s t a t emen t t h a t every t ime it is executed
results in a different message send join point , bu t all of these

have t h a t s t a t emen t as its shadow. A predicate shadow can
be used to link a join poin t to its shadow and vice-versa.

Jo in point shadows also have proper t ies associated wi th them,
some of which can be o ther join point shadows. The prop-
erties are typically the cons t i tuents of the s t a t e m e n t or ex-
pression. For example a message join point shadow has as
proper t ies the expressions t h a t are used as i ts arguments .
We stress t h a t here lies the difference wi th the dynamic mes-
sage send join points, the proper t ies are not the ac tual values
passed a round as a rguments dynamical ly bu t the code t h a t
describes these values. I t is also i m p o r t a n t to note t h a t these
proper t ies are expressions and can thus be the shadows of
o ther jo in points.

We now show an example of how join poin t shadows can be
used to write crosscuts based on a p rogramming convent ion
in the code. We use the example of a p rogramming con-
vent ion well known to Smal l ta lk programmers: except ion
handling. In Small talk, except ion handl ing is no t a primi-
t ive cons t ruc t of the language bu t is instead done by using
regular message sending. To catch exceptions occurr ing dur-
ing the execut ion of a code section, one sends the message
o n : d o : to t h a t sect ion of code. A code section t h a t un-
ders tands messages is a feature of Small ta lk known there in
as blocks. The o n : d o : message takes two arguments : the
first is the class of the except ion t h a t should be caught and
the o ther is ano ther block t h a t should be executed when an
except ion is caught. The second block is thus the except ion
handler .

We now want to cap ture the execut ion of except ion handlers
in our crosscut language:

? j p m a t c h i n g
b l o c k E x e c u t i o n (? j p , < ? e x c e p t i o n >) ,
shadow(? jp , ? b s) ,
e n c l o s i n g S h a d o w (? b s , ?ms) ,
messageShadow(?ms, o n : d o :)

The above crosscut expresses the following: ? j p should be
a join point which is the execut ion of a block wi th one ar-
gument . The shadow ? b s of t h a t join point should have
as its enclosing join point shadow ? m s and t h a t shadow
should be a message send expression wi th o n : d o : as mes-
sage. Some new concepts were in t roduced here: the shadow
of a block join point is the expression t h a t created t h a t block
and the enclosing shadow of a shadow is in this case s imply
the expression to which t h a t block shadow was used as an
argument .

Besides enclosingShadow there is ano the r predicate for re-
la t ing join point shadow to specific s ta t ic contexts: the
shadowln predicate can be used to specify t h a t a join point
shadow should lie in the context of a me thod of a class.

Addi t ional ly o ther predicates are provided which reify the
s ta t ic s t ruc tu re of the base program. Some of the more im-
po r t an t are: c[ass, method, subclass and hierarchy. The lat-
ter two are used to to specify the in ter re la t ionship be tween
classes. An example demons t r a t i ng sonm of the possibilities
this offers:

64

?jp matching
shadow(?jp, ?sp),
shadowln(?class, ?name, ?sp),
hierarchy(?class, Collection),
hierarchy(Dictionary, ?class)

The above crosscut captures all jo in points which lie in the
context of any method which in the class hierarchy is below
the Collection class bu t above the Dict ionary class.

Feature: Reusable Parameterized Rules
Once we have the capabil i ty of wri t ing complex pa t t e rns
in crosscuts we need to be able to t u r n these into reusable
elements of the language. The previously shown crosscut
which matches exception handler executions for example
is one t ha t could be generally useful in different aspects.
Reusabil i ty of course requires a form of parameter iza t ion to
make the definition of the pa t t e r n applicable to different sit-
uations. In the exception handler example we would want
to parameter ize the exception class, the actual exception
object etc. Logic languages provide rules for this purpose,
rules define new predicates in the language.

There are some part icular i t ies abou t how logic rules work
as opposed to the parameter ized reusabil i ty mechanisms of
other types of languages, such as procedures in procedural
languages, t h a t make logic rules especially sui ted to pa t t e rn-
based crosscutting:

i n / o u t p a r a m e t e r s : a logic rule does not make a distinc-
t ion between a rguments and re tu rn values, instead pa-
rameters are bound th rough unification.

m u l t i p l e s o l u t i o n s : like a crosscut expression, a rule ex-
presses a set of elements t ha t meet cer tain conditions.
Thus rules ma tch be t t e r wi th crosscuts t h a n proce-
dures etc. would.

m u l t i p l e i m p l e m e n t a t i o n s : for each predicate there can
be mult iple implementat ions . This is most ly useful for
expressing variat ions on a pa t te rn .

5. EXAMPLE: A MORE ROBUST CROSS-
CUT FOR OBSERVERS

The observer p a t t e r n problem was to capture in a crosscut
when observers are to be notified of changes to an object .
I t would be simple to write a crosscut t ha t captures s ta te
upda tes using the assignment predicate, bu t this is not a
good solution. The problem is t h a t methods can do multi-
ple s ta te upda tes wi th the object being in an inconsistent
s ta te unt i l they are all completed. Observers should thus
only be notified at the end of methods , which is typically
what is found in non-AOP implementa t ions of the observer
design pa t te rn : the upda tes are sent a t the end of methods .
Ano the r point to take into account, previously discussed by
Brichau et al. [2], is t h a t when a me thod recursively calls
o ther me thods on the object itself which also perform s t a t e
upda tes i t is preferable to do the notif ication only at the
end of the first me thod to avoid unnecessary overhead from
observers.

W h a t is needed is a way to detect the recursive pa t t e rn of
methods changing state. This is quite easily done in our
language by defining a simple rule over join point shadows:

Rule changesState(?class, ?methodName) if
shadowln(?class, ?methodName, ?sp),
assignmentShadow(?sp, ?variable)

Rule changesState(?class, ?methodName) i f
shadowln(?class, ?methodName, ?sp),
messageShadow(?sp, ?rcvr, ?msg),
selfReceiver(?rcvr),
changesState(?class, ?msg)

Two rules for the predicate changesState are defined. This
shows how rules are used, as well as the use of shadow join
points in b o t h rules and recursion in the second. The first
rule de termines t h a t a me thod is a s ta te changing method
if i t possibly does an ass ignment and the second determines
t ha t a me thod is also a s ta te upda t ing me thod if it does a
self call to a me thod t h a t is in t u rn a s ta te upda t ing method.
Using this predicate an advice for not ifying observers is eas-
ily defined:

In the appl icat ion section on the observer aspect we will
demons t ra te the use of rules and in par t icular how mult iple
implementa t ions for a single rule can be useful.

Feature: Recursion
A final feature to consider is the use of recursion in the
language. This fully turns it into a computa t iona l ly com-
plete language, which is fur ther discussed in a la ter section.
Recursion is useful for captur ing pa t t e rns t h a t are defined
recursively. We've found this to be mostly useful in com-
b ina t ion with join point shadows to describe programming
pa t t e rns which depend on detect ing sequences of me thod
calling chains. We've used this as a solution to the ob-
server example of problems with pa t t e r n robustness we've
discussed earlier. The solut ion is presented in the next sec-
t ion as an applicat ion of our crosscut language.

after ?jp matching
reception(?jp, ?msg, ?args),
inObject(?jp, ?obj),
objectClass(?obj, ?class),
changesState(?class, ?msg),
not(caller(?jp, ?obj))

do
observers notify

The first four condit ions in the crosscut capture all the mes-
sage reception points which result in the invocat ion of an
upda t ing method. The last condi t ion fur ther restr icts this
to only those messages not sent by the object itself so t h a t
notif icat ion is only sent after the first message t h a t was sent
from outside to the object . The advice body simply notifies
all observers registered wi th the aspect in which the advice

65

would normal ly be defined. Note also t h a t the first condi-
t ion uses a basic jo inpoint predicate, the second and th i rd
use "reasoning abou t propert ies" predicates, the four th uses
the changesState predicate for which we defined rules above
and in the last condi t ion logic negat ion is used along wi th a
non-basic proper ty predicate.

This version of the crosscut is close to the in tended s ta te
upda t i ng semant ics and is thus robus t towards addi t ions of
new methods in a Buffer class such as those described in sec-
t ion 2. Fur thermore , the crosscut is actual ly fully decoupled
from the Buffer class and works for o ther classes as well.

The changesState predicate and the above advice only deal
wi th local changes to objects, we leave dealing wi th changes
to subobjec ts to ano the r p a r t of the Observer aspect. In the
Buffer example we have so far assumed the Buffer is imple-
mented as an array and elements are s tored into this array
by assigning to it directly. If ins tead the Buffer 's da ta el-
ement keeping is implemented using a more advanced type
of container where s tor ing elements is done by sending a
message to i t the above advice alone is not sufficient. To
also handle this case we let an aspect ins tance of the Ob-
server aspect associated wi th one object receive notif icat ions
from the aspect instances associated wi th t h a t objec t ' s sub-
objects and forward these to its own observers. To avoid
the sending of too many notif icat ion messages we have also
a t t e m p t e d more e labora te versions of the Observer aspect
where observers can explicitely specify which da t a querying
me thods they use on an observer and the aspect will t hen
only moni tor those changes which can have an effect on the
result of those da t a querying methods . In teres ted readers
can find a more e labora te discussion in the first au thor ' s
l icentiate 's d isser ta t ion [9].

6. LANGUAGE IMPLEMENTATION
One issue left to address is how a powerful crosscut language
can be efficiently suppor ted by an aspect weaver. A naive
weaver implementa t ion s t ra ightforwardly derived from the
semant ics of our crosscut language would produce programs
wi th unacceptable performance. To overcome this problem
we used some techniques and ideas found in abs t rac t inter-
p re ta t ion and par t ia l evaluat ion [11]. We explain how our
current weaver works and wha t fur ther opt imizat ions we can
still introduce.

6.1 Current Status
A naive weaver implementa t ion would be one t h a t operates
fully at runt ime. Run t ime weaving is necessary because of
the use of dynamic join point properties. The weaving pro-
cess would be based on the simple semant ics of a crosscut
language: at every join point , or key execut ion step in an OO
program, check whether any crosscut expression matches the
point. Bu t this would clearly br ing program execution to a
crawl.

We've opt imized the naive weaver implementa t ion by taking
into account t h a t many crosscuts can be easily e l iminated
based solely on the condit ions they pu t on stat ic properties.
Our weaver thus operates in two phases: a compila t ion phase
and a run- t ime phase. In the compila t ion phase it acts as a
source t ransforming weaver by using each join point shadow
in the program as a par t ia l jo in point descript ion wi th which

it evaluates all crosscut expressions. T h e crosscut evaluat ion
can ei ther result in a definitive match , a definitive mi sma tch
or a possible ma tch meaning the crosscut depends on dy-
namic propert ies. In the ma tch or possible ma tch cases the
source is t r ans formed to include a call to the run- t ime phase
of the weaver. In the possible ma tch case the weaver will
re-evaluate the crosscut a t run t ime using a full jo in poin t
descript ion to check the ma tch ing of crosscuts. The process
is described in more detai l in the first au tho r ' s l icent ia te 's
d isser ta t ion [9].

6.2 Future Work
Besides e l iminat ing crosscuts the remain ing ones can also be
reduced to the condi t ions t h a t depend on dynamic proper-
ties. Whi le current ly not implemented in our weaver, th is
can be done by using program special izat ion [11]. In essence
this would lead to an aspect weaver t h a t performs as well
as one for an aspect language wi th a purely s ta t ic crosscut
model where advices can still const ra in the i r applicabil i ty
based on dynamic p rogram propert ies , we'll fu r ther discuss
this compar ison in the context of Aspec t J in the re la ted
work section.

A final intr icacy of our language is t h a t i t allows a form of
dynamic weaving [28]. I t is s imple for example to write a
crosscut expression cap tu r ing message points where the ex-
act name of the message depends on the value of an ob jec t ' s
ins tance variable. Pa r t i a l evaluat ion and special izat ion are
of no help here bu t we expect to find efficient solutions for
this type of crosscut in the dynamic weaving research. So
far we have not yet exper imented wi th this feature of our
crosscut language and thus did not need to implement such
opt imizat ions.

7. DISCUSSION
7.1 Crosscutting: Computing or Describing?
In this paper we have broken down our crosscut language
into a n u m b e r of features which may be in teres t ing for o ther
crosscut language designers to pick up bu t let us take a
look now at wha t our language as a whole is. All features
combined our language is a computationally complete logic
language targeted at describing crosscuts and making use of
full static and dynamic program reification.

This raises a few points to consider, the most i m p o r t a n t of
which we consider why we used a computa t iona l ly complete
logic language. A re la ted i m p o r t a n t quest ion to consider is
whe ther crosscut t ing should be computed or described. The
reason for using a computa t iona l ly complete language is t h a t
we did not want to l imit the expressiveness of our language
from its conception. By fur ther combining this computa-
t ional completeness wi th extensive reification of s ta t ic and
dynamic program proper t ies we've created a flexible cross-
cut language. One may wonder whe the r in doing so we have
not re in t roduced the complexit ies of full m e t a p rogramming
into AOP. We however argue t h a t most of the difficulties
wi th using full m e t a p rogramming s tem from using me ta
p rogramming in an impera t ive type of language where ap-
plying program t rans format ions becomes a job of juggling
t hem so t h a t a correct result is achieved, the improvement
provided by (low-level) AOP is i ts more specification-like
approach: mos t of the t r ans fo rmat ion work is absorbed into

66

the weaver wi th the A O P programmer specifying wha t and
where to apply a t rans format ion and leaving the how to do
it to the weaver. Fur ther clarity and unders tandab i l i ty of
aspects is provided by also clearly spl i t t ing the wha t and
where and by possibly using specialized languages for speci-
fying either. The need for an unders t andab le specification of
a crosscut is also the mot iva t ion for the use of a declarat ive
language.

7.2 Related Work
In this section we will discuss some other crosscut languages
and other work done on improving the expressiveness of
crosscut languages.

Aspec t J ' s crosscut language has gone th rough a number of
evolut ionary steps. The earliest versions used a simple enu-
mera t ion based scheme for captur ing crosscuts: the enu-
mera t ion of the names of methods whose invocat ion should
be captured by the aspect [20]. Later versions of Aspec t J
evolved to the use of a dynamic crosscut model and a pa t t e rn -
based language [13]. Unti l recently many of the features
we've discussed or equivalents seemed to be missing from
AspectJ . Especially variable b inding was troublesome: while
it was possible to b ind values to variables, these only served
to expose poin tcut values to advices and could not be used
wi th in a pointcut . This is i m p o r t a n t as variables are a key
feature in our language to suppor t most of the other features
such as parameter ized rules and condi t ioning of properties.
The recently in t roduced " i f ' cons t ruc t in the language has
however pu t an interest ing twist on mat ters . The " i f ' con-
s t ruc t in Aspec t J ' s crosscut language was in t roduced as a
way of condi t ioning join point propert ies as i t allows one to
use boolean Java expressions in a po in tcu t and these can
make use of any variables bound in the pointcut . I t is still
not possible however to define poin tcuts t h a t take param-
eters instead of exposing t hem nor can this be done wi th
the primit ive pointcuts and other features we discussed are
lacking as well.

Reverse Graphics [22] was one of the earliest aspect language
but surprisingly it used an expressive language for picking
out join points. This is not to say it had an expressive cross-
cut language. It is difficult to say exactly what the crosscut
language of RG is as it did not yet make clearly the now
more common dis t inct ion between the when or where and
how par ts of an aspect ' s influence. Ra the r the RG weaver
called aspects which were implemented as procedures tak-
ing join points as arguments . The aspect procedures could
then decide whether or not to manipu la te these join points
and how to manipu la te them if so. Thus w h e n / w h e r e and
how where implemented in a single procedure in the same
language. This clearly allowed for flexible ways to decide
where to crosscut a program, but exactly why the different
features of the language were useful for expressing this was
not yet studied.

Ano the r example of using an exist ing p rogramming language
as the basis for a crosscut language can be found in the work
of b o u n c e et al. [4] who used a funct ional language. They
also discussed the p a t t e r n match ing basis of a crosscut lan-
guage, though they used this t e rm most ly to refer to the
pa t t e rn in a sequence of join points r a the r t h a n as the pat-
te rn under lying a collection of join points as we did in this

text . Nevertheless, we found similari t ies between our use of
logic queries to describe a set of join points and thei r use of
funct ions to select the join points belonging to a sequence.
A dynamic crosscut model impl icat ing dynamic join point
propert ies was also used in combina t ion wi th this compu-
ta t iona l expressiveness, unfor tuna te ly l i t t le demons t ra t ion
was given of the possibilit ies offered by this combinat ion.
The addi t ional use of including a reification of a s ta t ic cross-
cut model as join point proper t ies was also not considered
though in earlier work the use of a funct ional t r ans format ion
language wi th a purely s tat ic crosscut model was explored
[30]. W h e t h e r the funct ional or logic parad igm is be t t e r
sui ted as the crosscut language basis can be left to debate,
t hough t radi t ional ly logic languages have been used more
for p a t t e r n descript ions and funct ional languages for t rans-
formations.

An impor t an t example of such a use of logic languages can be
found in Minsky 's works on law-based systems [24]. Logic
rules are used to describe ' laws' t h a t enforce global, and
crosscutt ing, propert ies of a software system. The laws can
be described in te rms of program-execut ion events (such as
message-sends), which makes this sys tem remarkably sim-
ilar to our logic crosscut language. Indeed, Minsky's law-
based systems can not only enforce the appl icat ion of laws
in the system, the laws themselves can trigger addi t ional
behaviour.

The use of par t ia l evaluat ion as a weaver implementa t ion
technique to make crosscuts wi th dependencies on dynamic
propert ies feasible was also discussed by Masuha ra et al.
[21]. However the crosscut language used was taken from an
Aspec t J version before the "if" cons t ruc t was in t roduced so
the same remarks abou t the flexibility of the language apply.
Though a trick often applied by Aspec t J programmers to
gain some of the flexibility of our crosscut language was
also made feasible by par t ia l ly evaluat ing advices: the use
of the computa t iona l ly complete advice language to express
par t of a crosscut. This remains however a trick and not a
desirable solut ion as it de t rac t s from readabil i ty by mixing
the crosscut (where /when) and the advice 's body (what)
again. For example, a crosscut specification such as our
rules for changesState t h a t is beyond the abilities of a simple
crosscut language would have to be implemented in the body
of an advice and is no longer reusable in different crosscuts.

7.3 Aspect-Oriented LogicMeta Programming
Our work is founded on De Volder 's original proposal for us-
ing Logic Meta P rog ramming as a basis for Aspect-Oriented
P rog ramming [33]. This work concent ra ted most ly on the
use of LMP as a framework for wri t ing source t ransforma-
t ion based weavers. Our work thus extends this use of LMP
by showing t h a t i t can also be a good basis for crosscut lan-
guages. We note however t h a t our weaver for this language
is not itself implemented in LMP. We in tend to combine
these two uses of LMP by offering our language as one of
the aspect languages in Br ichau 's work on an open weaver
in which he explores the rapid cons t ruct ion of weavers for
user-defined composable aspect languages [1].

8. SUMMARY AND CONCLUSION
Crosscut definitions should avoid t ight coupling of an aspect
to the base program. Even pa t t e rn -based languages can suf-

67

fer from coupling through the arranged pattern problem. [12]
Advanced crosscut languages should weaken the coupling of
the aspect to the base program and hence, provide cross-
cuts that are more robust towards evolution. Avoiding this
problem requires an expressive crosscut language that offers
a powerful mechanism to describe the underlying pattern of
the points crosscut by an aspect. [13]

In this paper we distilled some key features of a logic-programming-
based crosscut language that allow the writing of more ad-
vanced pattern-based crosscuts. We can summarize this pa-
per as a set of "lessons learned" for three interested parties. [14]
We advise aspect programmers to avoid using arranged pat-
terns and make patterns more robust. This requires assis-
tance from crosscut language designers who can add certain
language features to crosscut languages to allow the writing
of better pattern-based crosscuts. And finally all depends on [15]
weaver implementers to use some more advanced techniques
to make the powerful crosscut languages possible.

9. REFERENCES
[1] Johan Brichan, Kim Mens, and Kris De Volder.

Building composable aspect-specific languages using
logic metaprogramming. In D. Batory, C. Consel, and
W. Taha, editors, Proceedings of GPCE Conference,
LNCS, pages 110-127. Springer-Verlag, 2002.

[2] Johan Brichau, Wolfgang De Meuter, and Kris De
Volder. Jumping aspects. In Tarr et al. [32].

[3] Yvonne Coady and Cregor Kiczales. Exploring an
Aspect-Oriented approach to OS code. In Tarr et al.
[31].

[4] R6mi Douence, Olivier Motelet, and Mario Sfidholt. A
formal definition of crosscuts. Technical Report
01/3/INFO, Ecole des Mines de Nantes, 2001.

[5] Robert E. Filman. Aspect-oriented programming is
quantification and obliviousness. In Tarr et al. [31].

[6] Peter Flach. Simply Logical. John Wiley & Sons, 1994.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: elements of reusable
Object-Oriented software. Addison-Wesley, 1995.

[8] Adele Goldberg and Dave Robson. Smalltalk-80: the
language. Addison-Wesley, 1983.

[9] Kris Gybels. Aspect-Oriented Programming using a
Logic Meta Programming language to express
cross-cutting through a dynamic joinpoint structure.
Licentiate's thesis, Vrije Universiteit Brussel, 2001.

[10] Jim Hugunin. The next steps for aspect-oriented
programming languages (in java). In Workshop on
New Visions for Software Design and Productivity:
Research and Applications, 2001.

[11] Nell D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program
Generation. Prentice Hall International, 1993.

Mik Kersten and Gaff C. Murphy. Atlas: A case study
in building a web-based learning environment using
aspect-oriented programming. In Proceedings of the
A CM Conference on Object-oriented Programming,
Systems, Languages, and Applications, pages 340-352.
ACM, 1999.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold. Getting
started with AspectJ. Communications of the A CM,
44(10):59-65, 2001.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Proceedings of ECOOP 2001,
LNCS. Springer-Verlag, 2001.

Gregor Kiczales, Jim Hugunin, Mik Kersten, John
Lamping, Cristina Lopes, and William G. Griswold.
Semantics-based crosscutting in aspectj. In Peri Tarr,
Anthony Finkelstein, William Harrison, Bashar
Nuseibeh, Harold Ossher, and Dewayne Perry, editors,
Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering at ICSE 2000, 2000.

[16] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the European
conference on Object-Oriented Programming.
Springer-Verlag, jun 1997.

[17] Martin Lippert and Cristina Videira Lopes. A study
on exception detection and handling using
aspect-oriented programming. In Proceedings of the
22nd International Conference on Software
Engineering. ACM Press, 2000.

[18] Cristina Lopes, Gregor Kiczales, Bedir Tekinerdogan,
and Wolfgang de Meuter, editors. International
Workshop on Aspect-Oriented Programming at
ECOOP, 1998.

[19] Cristina Videira Lopes. D: A language framework for
distributed programming. Technical Report
SPL97-010, P9710047, Xerox PARC, 1997.

[20] Cristina Videira Lopes. Recent developments in
AspectJ. In Lopes et al. [18].

[21] Hidehiko Masuhara, Gregor Kiczales, and Chris
Dutchyn. Compilation semantics of aspect-oriented
programs. In Gary T. Leavens and Ron Cytron,
editors, Foundations of Aspect-Oriented Languages
Workshop at AOSD 2002, number 02-06 in Tech
Report, pages 17-26. Department of Computer
Science, Iowa State University, 2002.

[22] Anurag Mendhekar, Gregor Kiczales, and John
Lamping. RG: A case study for Aspect-Oriented
Programming. Technical Report SPL97-009 P9710044,
Xerox Palo Alto Research Center, 1997.

[23] Kim Mens, Isabel Michiels, and Roel Wuyts.
Supporting software development through
declaratively codified programming patterns. In
Proceedings of the 13th SEKE Conference, pages
236-243. Knowledge Systems Institute, 2001.

68

[24] Naftaly Minsky. Law-governed regularities in object
systems. Theory and Practice of Object Systems
(TOPAS) (John Wiley), 2(4), 1996.

[25] Doug Orleans and Karl Lieberherr. Dj: Dynamic
adaptive programming in java. In Reflection 2001:
Meta-level Architectures and Separation of
Crosscutting Concerns, Kyoto, Japan, September
2001. Springer Verlag. 8 pages.

[26] Harold Ossher and Peri L. Tarr. Hyper/J:
multi-dimensional separation of concerns for Java. In
Proceedings of ICSE 2000, pages 734-737, 2000.

[27] Renaud Pawlak, Lionel Seinturier, Laurence Duchien,
and Gerard Florin. Jac: A flexible and efficient
solution for aspect-oriented programming in java. In
Reflection 2001: Meta-level Architectures and
Separation off Crosscutting Concerns , Kyoto, Japan,
September 2001. Springer Verlag.

[28] Andrei Popovici, Thomas Gross, and Gustavo Alonso.
Dynamic weaving for Aspect-Oriented Programming.
In Gregor Kiczales, editor, 1st international conference
on Aspect-Oriented Software Development, april 2002.

[29] Andreas Speck, Elke Pulverrniiller, and Mira Mezini.
Reusability of concerns. In Tarr et al. [32].

[30] Mario Sfidholt and Pascal Fradet. Aop: towards a
generic framework using program transformation and
analysis. In Lopes et al. [18].

[31] Peri Tarr, Lodewijk Bergmans, Martin Griss, and
Harold Ossher, editors. Proceedings of the Workshop
on Advanced Separation of Concerns at OOPSLA
2000, 2000.

[32] Peri Tarr, Maja D'Hondt, Christina Lopes, and
Lodewijk Bergmans, editors. International Workshop
on Aspects and Dimensional Computing at ECOOP,
2000.

[33] Kris De Volder. Aspect-Oriented Logic Meta
Programming. In Proceedings of the Second
International Conference on Metalevel Architectures
and Reflection, volume 1616 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[34] Detlef Vollmann. Visibility of join-points in AOP and
implementation languages. In Pascal Constanza,
Gunther Kniesel, Katharina Mehner, Elke
Pulvermuller, and Andreas Speck, editors, Second
Workshop on Aspect-Oriented Software Development,
2002.

[35] Roel Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Proceedings of
TOOLS-USA '98, 1998.

69

