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Abstract— A large fraction of an XML document typically = possible to making just one pass over the data, while using as
consists of text data. The XPath query language allows text |ittle main memory as possible to hold intermediate resaris
search via the equal, contains, and starts-with predicatesSuch data structures. Instead, the indexed approach prepesctss
predicates can efficiently be implemented using a compresse XML collection to build,a data structure on it, so that later
self-index of the document’s text nodes. Most queries, hower, ] ¢ - ' A
contain some parts of querying the text of the document, plus dueries can be solved without traversing the whole cothecti
some parts of querying the tree structure. It is therefore a A serious challenge of the indexed approach is that the index
challenge to choose an appropriate evaluation order for a gen  can use much more space than the original data, and thus may
query, which optimally leverages the execution speeds of éext  pave 1o be manipulated on disk. Indexed schemes access the
and tree indexes. Here the SXSI system is introduced; it stes the dat domlv th tial th . th
tree structure of an XML document using a bit array of opening f”‘ a more randomly a.n sequentia one_s’ us given the way
and closing brackets, and stores the text nodes of the docume disk costs favor sequential accesses, an indexed schenbe can
using a global compressed self-index. On top of these indexe outperformed by a streaming one even if the former accesses
sits an XPath query engine that is based on tree automata. The g relatively small fraction of the data. This is especiallyetin
engine uses fast counting queries of the text index in orderot applications where the data itself can fit in main memory but

dynamically determine whether to evaluate top-down or botom- the ind t that st . hes d t dt
up with respect to the tree structure. The resulting system ks € Index cannot, so that streaming approaches do not need to

several advantages over existing systems: (1) on pure treeigries access the disk at all. Those applications are becoming more
(without text search) such as the XPathMark queries, the SXB common as current main memories become able of holding

system performs on par or better than the fastest known systes g few gigabytes of XML data. Examples of such systems are

MonetDB and Qizx, (2) on queries that use text search, SXSI Qizx/DB [1], MonetDB/XQuery [2] and Tauro [3].

outperforms the existing systems by 1-3 orders of magnitude . . ) .
(depending on the size of the result set), and (3) with respeto In this work we aim at an index for XML that uses .Ilttle
memory consumption, SXSI outperforms all other systems for Space compared to the size of the data, so that the indexed

counting-only queries. collection can fit in main memory for moderate-sized data,
thereby solving XPath queries without any need of resorting
to disk. An in-memory index should outperform streaming

As more and more data is stored, transmitted, querieafproaches, even when the data fits in RAM. Note that
and manipulated in XML form, the popularity of XPath andisually, main memory XML query systems (such as Saxon [4],
XQuery as languages for querying semistructured datadpre@alax [5], Qizx/Open [1], etc.) use machine pointers to
faster. Solving those queries efficiently has proved to beequrepresent XML data; this blows up the memory consumption
challenging, and has triggered much research. Today tBerao about 5-10 times the size of the original XML document.
a wealth of public and commercial XPath/XQuery engines, An XML collection can be regarded essentially adeat
apart from several theoretical proposals. collection (that is, a set of strings) organized into teee

In this paper we focus on XPath, which is simpler and fornsructure so that the strings correspond to the text data and the
the basis of XQuery. XPath query engines can be rouglhge structure corresponds to the nesting of tags. The gmrobl
divided into two categoriessequentialand indexed In the of manipulating text collections within compressed spae i
former, which follows astreamingapproach, no preprocessingnow well understood [6]-[8], and also much work has been
of the XML data is necessary. Each query must sequentiatigrried out on compact data structures for trees [9]-[13]. |
read the whole collection, and the goal is to be as close thss paper we show how both types of compact data structures

I. INTRODUCTION



can be integrated into a compressed index representation foTo connect tree nodes and texts, we defjlobal identifiers
XML data, which is able to efficiently solve XPath queries. which give uniqgue numbers to both internal and leaf nodes, in
A feature inherited from its components is that the conglepth-first preorder. Figure 1 shows a toy collection (tdp le
pressed indexeplacesthe XML collection, in the sense thatand our model of it (top right), as well as its representation
the data (or any part of it) can be efficiently reproduced fromsing our data structures (bottom), which serves as a rgnnin
the index (and thus the data itself can be discarded). Thét reexample for the rest of the paper. In the model, the tree is
is called aself-index as the data is inextricably tied to itsformed by the solid edges, whereas dotted edges display the
index. A self-index for XML data was recently proposed [14]gonnection with the set of texts. We created a dummy root
[15], yet its support for XPath is reduced to a very limitedabeled & as well as dummy internal nodes @ and %
class of queries that are handled particularly well. Note how the attributes are handled. There are 6 texts, which
The main value of our work is to provide the first practicare associated to the tree leaves and receive consecuttve te
and public tool for compressed indexing of XML data, dubbe@umbers (marked in italics at their right). Global identiie
Succinct XML Self-IndexSXSI), which takes little space, are associated to each node and leaf (drawn at their left).
solves a significant portion of XPath (currently we suppofthe conversion between tag names and symbols, drawn within
at leastCore XPath[16], i.e., all navigational axes, plus thethe bottom-left component, is used to translate queriestand
three text predicates: (equality), contains and starts-witf), ~recreate the XML data, and will not be further mentioned.
and largely outperforms the best public softwares suppgprti Some notation and measures of compressibility follow,
XPath we are aware of, namely MonetDB and Qizx. Thereceding a rough description of our space complexitiegako
main challenges in achieving our results have been to obtéims will be in base 2. Thempirical k-th order entropy[17]
practical implementations of compact data structurestéiats, Of @ sequences, Hy(S) < logo, is a lower bound to the
trees, and others) that are at a theoretical stage, to qeveddtput size per symbol of any-th order compressor applied
new compact schemes tailored to this particular problem, a® S. We will build on self-indexes able of handling text
to develop query processing strategies tuned for the specfipllections?’ of total lengthu within uwHy(T') + o(ulogo)
cost model that emerges from the use of these compact deita- On the other hand, representing an unlabeled tree of
structures. The limitations of our scheme are that it is int hodes require@n — o(n) bits, and several representations
memory (this is a basic design decision, actually), thas it HSing2n + o(n) bits support many tree query and navigation
static (i.e., the index must be rebuilt when the XML dat@perations in constant time. The labels require in prircipl
changes), and that it does not handle XQuery. The last tRg1ern logt bits. Sequences can be stored within their zero-

limitations are subject of future work. order entropy,S|Hy(S) + o(|S|log o), so that any element
S[i] can be accessed, and they can also answer queries
Il. BASIC CONCEPTS ANDMODEL rank.(S,4) (the number ofc’s in S[1,i]) and select.(S, j)

(the position of thej-th ¢ in S). These are essential building
We regard an XML collection aéi) a set of strings and blocks for more complex functionalities, as seen later.

(i) a labeled tree. The latter is the natural XML parse tree The final space requirement of our index will include:
defined by the hierarchical tags, where the (normalized) tagl) wHy(T) + o(ulog o) bits for representing the text col-
name labels the corresponding node. We add a dummy root lectionT in self-indexed form. This supports the string
so that we have a tree instead of a forest. Moreover, each text searches of XPath and can (slowly) reproduce any text.
node is represented as a leaf labefedhttributes are handled  2) 2n + o(n) bits for representing the tree structure. This
as follows in this model. Each node with attributes is added a  supports many navigational operations in constant time.
single child labeled® and for each attribut@t t r =val ue 3) dlogd + o(dlogd) bits for the string-to-text mapping,
of the node, we add a child labeledit r to its @node, and a e.g., to determine to which text a string position belongs,
leaf child labeledsto theat t r -node. The text contental ue or restricting string searches to some texts.
is then associated to that leaf. Therefore, there is exacily ~ 4) Optionally, ulogo or wHy(T) + o(ulogo) bits, plus
string content associated to each tree leaf. We will refer to  O(dlog %), to achieve faster text extraction than in 1).

those strings atexts 5) 4nlogt 4+ O(n) bits to represent the tags in a way that
Let us callT the set of all the texts and its total length they support very fast XPath searches.
measured in symbols; the total number of tree nodey, 6) 2n + o(n) for mapping between tree nodes and texts.

the alphabet of the strings and = |X|, ¢ the total number  As a practical yardstick: without the extra storage of texts
of different tag and attribute names, addthe number of (item 4) the memory consumption of our system is about
texts (or tree leaves). These recetegt identifierswhich are the size of the original XML file (and, being a self-index,
consecutive numbers assigned in a left-to-right parsinghef includes it!), and with the extra store the memory consuompti
data. In our implementatioR is simply the set of byte valuesis between 1 and times the size of the original XML file.

1 to 255, and 0 will act as a special terminator calfed his In Section Ill we describe our representation of the set
symbol occurs exactly once at the end of each text'iand of strings, including how to obtain text identifiers from tex
is lexicographically smaller than the other symbolssinWe positions. This explains items 1, 3, and 4 above. Section IV
can easily support multi-byte encodings such as Unicode. describes our representation for the tree and the labelghan
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Fig. 1. Our running example on representing an XML collettio

way the correspondence between tree nodes and text idemtifcd 7' can be read in reverse order by starting from end-

works. This explains items 2, 5, and 6. Section V describesarker locationi and applyingLF (i) recursively: we get

how we process XPath queries on top of these compact d&¥&'[i], T*“*[LF ()], T"**[LF(LF(i))] etc. and finally, after

structures. In Section VI we empirically compare our SXSi steps, get the first symbol &f. The valuesC|[c| can be

engine with the most relevant public engines we are aware sfored in a small array af log v bits. The functiorrank.(L, i)

can be computed i (log o) time with awavelet treedata

structure requiring only. Hy (T') + o(ulog o) bits [19], [21].
Text data is represented as a succinct full-text self-indexpattern matching is supported vimckward searchingn

[6] that is generally known as theM-index[18]. The index the BWT [18]. Given a patterd® of lengthm, the backward

supports efficient pattern matching that can be easily eet#n search starts by finding the randep,ep] of rows in M

to support different XPath predicates. that haveP[m] as a prefix, sayp = C[P[m]] andep =

C[P[m] + 1]. At each step € {m —1,m —2,...,1} of the

_ : . backward search, the randep, ep] is updated to match all
Given a stringI” of total lengthu, from an alphabet of size .« of M that haveP[i, m] as a prefix. New ranggy’, ep/]

o, the alphgbet—friendly FM—ind§>{19] requireSqu(T) + s given by sp’ = C[P[i]] + rankpy;(L,sp — 1) + 1 and

o(ulogo) bits of space. The mdex_supports coun_tlng thgp/ = C[Pli] + rankpy (L, ep). Each step take®)(log o)

number of occurrences of a pattefhin OI(JFP| logo) time.  time [19], and finallyep — sp+ 1 gives the number of time®

Locating the occurrences takes extlog™™“ ulogo) time ooy inT. To find out the location of an occurrence, the text

per answer for any constaat> 1. is traversed backwards (virtually, usidgF’ on 7**) until a
The FM-index is based on the Burrows—Wheeler transforg&mmed position is found. If evely— @(1Og1+e «) positions

of a stringT" [20]. AssumeT" ends with the special end-markery¢ g sampled, locating take(! log o) time per occurrence.

$. Let M be a matrix whose rows are all the cyclic rotations

of T in lexicographic order. Now the last columh of M B. Text Collection and Queries

forms a permutation df” which is the BWT stringl, = 7", The textual content of the XML data is stored &s

The matrix is only conceptual; the FM-index operates only derminated strings so that each non-empty element comelspo

the actuall®™* sequence. See Figure 1 (bottom right). to one text. LetT" be the concatenated sequencedafexts.
The resulting permutation is reversible. The first colum8ince there are sever$is in T', we fix a special ordering such

of M, denotedF’, contains all symbols of in lexicographic that the end-marker of theth text will appear atF'[i] in M.

order. There exists a simple last-to-first mapping from syisib This generates a vali@@®** of all the texts and makes it easy

in L to F [18]: Let C[¢] be the total number of symbolsto extract thei-th text starting from its$-terminator.

in T that are lexicographically less than Now LF-mapping Now 7°** contains all end-markers in some permuted order.

can be defined a5 F'(i) = C[L[i]] +rank;(L,i). Symbols This permutation is represented with a data structure, téeno

IIl. TEXT REPRESENTATION

A. FM-Index and Backward Searching



Doc, that allows two-dimensional range searching [22] (sementation of these extensions requires regular expressidn
Figure 1). Mapping from &-terminator in positiori’***[i] to approximate searching functionalities, which can be stppo
its entry in Doc can be calculated byankg(7°“t,4). Given a within our index using the generddacktracking framework
range[sp, ep] of T*** and a range of text identifiers:, y], [23]: The idea is to alter the backward search to branch re-
Doc can be used to output identifiers of &Herminators cursively to different rangesp’, ep’] representing the suffixes
within [sp, ep] x [z, y] range inO(log d) time per answerDoc ~ of the text prefixes (i.e. substrings). This is done simply by
requiresdlog d (1 + o(1)) bits of space. computingsp, = C|[c] + rank.(L,sp — 1) + 1 and ep/, =

The basic pattern matching feature of the FM-index can 8gc] + rank.(L, ep) for all ¢ € ¥ at each step and recursing
extended to support XPath functions sucts&sts-with ends- on eachisp’, ep.]. Then the pattern (or regular expression)
with, contains and operators-, <, <, >, > for lexicographic can be compared against all substrings of the texts, altpwin
ordering. Given a pattern and a range of text identifiers to b search for approximate occurrences [23]. The running tim
searched, these functions return all text identifiers thatichh becomes exponential in the number of errors allowed, but
the query within the range. In addition, existential (isrthe different branch-and-bound techniques can be used torpbtai
a match in the range?) and counting (how many matchgsactical running times [24], [25]. We omit further detdilere,
in the range?) queries are supported. Time complexities airce these extensions are out of the scope of this paper.
O(|P|log o) for the search phase, plus an extra for reportin

1) starts-with{ P, [x,y]): The goal is to find texts iz, y]
range prefixed by the given patterR. After the normal  The FM-index can be built by adapting any BWT construc-
backward search, the randep,ep] in T** contains end- tion algorithm. Linear time algorithms exist for the taskit b
markers of all texts prefixed by. Now [sp, ep] x [z,y] can their practical bottleneck is the peak memory consumption.
be mapped tdDoc, and existential and counting queries caflthough there exist general time- and space-efficient con-
be answered irO(log d) time. Matching text identifiers can struction algorithms, it turned out that our special case of
be reported inD(log d) time per identifier. text collection admits a tailored incremental BWT constirt

2) ends-witliP, [z, y]): The given pattern is appended withalgorithm [26] (see the references and experimental compar
$. Backward searching is localized to teisy] by choosing ison therein for previous work on BWT construction): The
sp = z andep = y as the starting interval. After thetext collection is split into several smaller collectiorend
backward search, the resulting range,ep] contains all a temporary index is built for each of them separately. The
possible matches, thus, existential and counting queaes éemporary indexes are then merged, and finally converted int
be answered in constant time. To find out text identifiers fé static FM-index.
each occurrence, text must be traversed backwards to find 2he current implementation supports all the XPath text
sampled position of the beginning of the current text. Cest gueries based on substring matching. We have also imple-
O(llog o) per answer. mented approximate string matching and an experimental

3) operator= (P, [z,y]): texts that are equal t&, and in support for regular expressions. To enable fast text etkrac
range, can be found as follows. Do the backward search adf@m the collection, we allow storing the texts in plain fam
ends-with then map to the$-terminators like instarts-with in nlogo bits, or in an enhanced LZ78-compressed format
Time complexities are same as starts-with (derived from the LZ-index [27]) usingH,(T") + o(ulog o)

4) containgP, [z, y]): To find texts that contai®, we start bits. These secondary text representations are couplédawit
with the normal backward search and finish likeeinds-with ~delta-encoded bit vector storing starting positions ohet@xt
In this case there might be several occurrences inside dAél’. This requiresD(dlog %) more bits.
text, which have to be filtered. Thus, the time complexity is
proportional to the total number of occurrencéX|/logo) )
for each. Existential and counting queries are as slow 4s Data Representation
reporting queries, but th@(| P|log o)-time counting of allthe  The tree structure of an XML collection is represented
occurrences of? can still be useful for query optimization. by the following compact data structures, which provide

5) operators<, <, >, >: The operator< matches texts navigation and indexed access to it. See Figure 1 (bottayn lef
that are lexicographically smaller than or equal to the give 1) Par: The balanced parenthese®presentation [28] of
pattern. It can be solved like tlsgarts-withquery, but updating the tree structure. This is obtained by traversing the tree i
only theep of each backward search step, while= 1 stays depth-first-searcDFS) order, writing a' (" whenever we
constant. If at some point there are no occurrencesvathin  arrive at a node, and a)" when we leave it (thus it is
the prefix L[1, ep], we find those of smaller symbols in theeasily produced during the XML parsing). In this way, every
range. This can be done by regarding the wavelet tree of thede is represented by a pair of matching opening and closing
BWT as a range search data structure (as in previous warkrentheses. A tree node will be identified by the position
[22]). Other operators can be supported in similar fashioof its opening parenthesis iRar (in other words, in this
and time complexities are the same astarts-with representation a node is just an integer index witbém). In

The new XPath extensiorXPath Full Text 1.0 suggests particular, we will use the balanced parentheses impleament
a wider selection of functionality for text searching. Impl tion of Sadakane [13], which supports a very complete set

%. Implementation details

IV. TREEREPRESENTATION



of operations, including finding théth child of a node, in rooted ate. This isselectiqq(Tag, rankiag(Tag, x)+1)

constant time. OveralPar uses2n + o(n) bits. This includes if it is < Closgx), and undefined otherwise.
the space needed for constant-time binary rankBaimnwhich « TaggedPreg,tag): The last node labelethg with pre-
are very efficient in practice. order smaller than that of node and not an ancestor of

2) Tag: A sequence of the tag identifiers of each tree node, z. Letr = rank;qq(Tag, x —1). If selectioq(Tag,r—1)
including an opening and a closing version of each tag, tkkmar is not an ancestor of node, then we stop. Otherwise,
the beginning and ending point of each node. These tags are we setr = r — 1 and iterate.
numbers in[1, 2t] and are aligned withPar so that the tag of « TaggedFollz,tag): The first node labeledug with pre-
nodei is simply Tagj]. order larger than that of, and not in the subtree af.

We will also needrank andselect queries orTag Several This is selectiqg(Tag, rank,s(Tag, Clos€z)) + 1).

sequence representations supporting these are known [29%y connecting the Text and the Tre€onversion between
_Gl_ve_n thatTag IS not too cr|t|c_al in the overa_ll space, butig numbers, tree nodes, and global identifiers, is easily
it is in time, we opt for a practical representation that favo carried out by usingPar and a bitmapB of 2n bits that marks

speed OVer Space. First, we s.tore the tags In an array usfig opening parentheses of tree leaves, plug extra bits to
log(2t) bits per field, which gives constant time access tg,

) ) tpport rank/select queries. Bitm&penables the computation
Tagi]. The rank and select queries over the sequence gfio following operations:

tags are answered by a second structure. Consider the binary o )
matrix M[1..2¢][1..n] such that entry(i, j) is 1 if and only ~ * LeafNumbefz): Gives the number of leaves up ioin

if Tagj] = i. We represent each row of the matrix using @ This isrank, (B, z). o
Okanohara and Sadakane’s structsee r ay [30]. Its space Textldgz): Gives thg range of text identifiers that de-
requirement for each row is &; log i_n + k(2 + o(1)) bits, scend from node. This is simply[LeafNumbefz —1)+
wherek; is the number of times symbal appears inTag. 1, LeafNumbe{Closg(z))). S

The total space of both structures adds up2tdog(2t) + . X!\/IL!dTex_t_(d): GlV(_as_the global identifier for the text
2nHy(Tag)+n(2+0(1)) < 4nlogt+O(n) bits. They support with identifier d. This is Preorddselect: (B, d)).

access and select (1) time, and rank i (log ) time. « XMLIdNode(z): Gives the global identifier for a tree
nodex. This is just Preordér).

B. Tree Navigation
We define the following operations over the tree structure, Displaying Contents
which will be useful to support XPath queries over the tree. .
Most of these operations are supported in constant timepexc CIVen a noder, we want to recreate its text (XML) content,
when arank overTagis involved. Lettag be a tag identifier. thatis, return the string. We traverse the structure sigftom
1) Basic Tree OperationsThese are direcly inherited from Par[z], retrieving the tag names and the text contents, from the
Sadakane’s implementation [13]. We mention only the mol@xt identifiers. The time i&)(log o) per text symbol (00(1)
important ones for this paper:is a node (a position iPar). if we use the redundant text storage described in Sectipn Il
» Closdz): The closing parenthesis matchiftgr|z]. If andO(1) per tag.
is a small subtree this takes a few local accesseatq « GetText(d): Generates the text with identifiel
otherwise a few nonlocal table accesses. « GetSubtredx): Generates the subtree at node
o Preordefz) = rank (Par,i): Preorder number of.
 SubtreeSizer) = (Closgx)—x+1)/2: Number of nodes D. Handling Dynamic Sets
in the subtree rooted at
« IsAncesto(x,y) = z < y < Closdx): Whetherz is an
ancestor ofy.
o FirstChildz) = x + 1: First child of z, if any.
o NextSiblingz) = Clos€xz)+1: Next sibling ofz, if any.
« Parenfz): Parent ofxr. Somewhat costlier than Closg « Insert a new identifier to the result.
in practice, because the answer is less likely to be nearr Remove a range of identifiers (actualy, a subtree).

zIn Par. To remove a range faster than by brute force, we use a data
2) Connecting to TagsThe following operations are es-structure of2n — 1 bits representing a perfect binary tree over
sential for our fast XPath evaluation. the interval of global identifiers, so that leaves of thisasin
» SubtreeTags:, tag): Returns the number of occurrencesree represent individual positions and internal nodegearof
of tag within the subtree rooted at node This is positions (i.e., the union of their child ranges). A bit mautk

During XPath evaluation we need to handle sets of interme-
diate results, that is, global identifiers. Due to the meatsan
of the evaluation, we need to start from an empty set and later
carry out two types of operations:

rankiq.g(Tag, Clos€z)) — rankiq.q(Tag, x — 1). each such internal node can be set to zero to implicitly det al
« Tag(x): Gives the tag identifier of node. In our repre- its range to zero. A position is in the set iff all of its patlorin
sentation this is jusTagz]. the root to it is not zero. Thus one can easily insert elements

» TaggedDese,tag): The first node labeledag with in O(logn) time, and remove ranges within the same time, as
preorder larger than that of nodeand within the subtree any range can be covered with(logn) binary tree nodes.



V. XPATH QUERIES

Ri,Ra,t' Fa ¢ = (b, R) (not)
(

The aim is to support a practical subset of XPath, while &y 77 FA T =0 ") R, Ro v Fa =6 = (.0)

being able to guarantee efficient evaluation based on tre dat Ri.Rot' A é1 = (b1, Ba)

structures described before. As a first shot we will support Ri,Ra,t A ¢ = (ba, Ra)

the “Core XPath” subset [16] of XPath 1.0. It supports all R Ral Fa 61V s = (b1, ) © (b3, Fia) ")

12 na\{igational axes, all node tests, and filters with B_(mlea Ri,Ro,t' b4 d1 = (b, Ry)

operations (and, or, not). In our prototype implementataih Ri1,Ro,t' Fa ¢2 = (b2, R2)

axes have been implemented, but only the forward fragment R1,R2, U Fa g1 Ad2 = (b1, R1) ® (bz,Rz)(and)
(consisting of self, child, descendant, and followinglisip) q € dom(R;) )

has been fully optimized. We therefore focus here only an R1,R2,t' Faliqg= (T7R(q))(lem“ght)
these two axes. A node test (nonterminal NodeTest below) (mark)

is either the wildcard (**'), a tagname, or a nodetype test, Ri,Re, t" Famark = (T, {t'})

i.e., one of t.ext(.) or nqde(); the node type tests comment() eval pred(p)=b when no other rule applies
and processing-instruction() are not supported in oureerr R1,Ra,t' Fap=(b,0) (pred) R Ra,? Fa 6= (L, D)

prototype. Of course, we support all text predicates of KPat
1.0, i.e., the=, contains, and starts-with predicates. Here |s

where:

T=11=T
an EBNF for Core XPath. TR by =T by = L
Core = LocationPath /' LocationPath b R by Ro) — T, Ra if bo=T,01 =1
LocationPath ::= LocationStep (/' LocationStep)* (b, R1) @ (b2, R2) = T,RIURy ifbi=T,bo=T
LocationStep ::= Axis .’ NodeTest 1,0 otherwise
| Axis ' NodeTest ‘' Pred T’ T,RIURy ifbi=T,bo=T
Pred = Pred ‘and’ PredPred ‘or’ Pred (b1, B1) @ (b2, R2) = 1,0 otherwise

| ‘not’ ‘(" Pred )" | Core| ‘( Pred ‘)
A data valueis the value of an attribute or the content of
a text node. Here, all data values are considered as strings.
If an XPath expression selects only data values, i.e., itd fin
location step is the attribute-axis or a text() test, thercaleit

avalue expressiarOur XPath fragment (“Core+"), consists of

Core XPath olus the followina data value comparisons whi transition function, wheré" is a set of Boolean formulas. A
P 9 P téoolean formulap is generated by the following EBNF.

Fig. 2. Inference rules defining the evaluation of a formula

may appear inside filters (that is, may be generated by the
nonterminal Pred of above). Let be a string ang a value ¢ == T|L|oVo|dAd]| ¢ |alp (formula)
expression; ifp equals . (dot) or self and the XPath expression ¢ = |, q| |2gq (atom)

to the left of the filter is a value expression, thefs a value
expression as well.

« p = w (equality): tests if a string selected byis equal

wherep € P is a built-in predicateand ¢ is a state. We call
F the set of well-formed formulas.
Definition 5.2 (Evaluation of a formula):

to “; . - tests if the strinau i tained | i Given an automaton.A and an input treet, the
* coln atlnﬁut;),p). esisitine stringus containedin a string o\ aiyation of a formula is given by the judgement
Seeeed b Ry, Ra,t' Fa ¢ = (b, R)

« starts-witl{p, w): tests if the stringw is a prefix of a

. whereR; andR. are mappings from states to sets of subtrees
string selected by.

of ¢, t' is a subtree of ¢ is a formulay € {T, L} andRis a
set of subtrees of We define the semantics of this judgment
by the mean of inference rules, given in Figure 2.

Itis well-known that Core XPath can be evaluated using treeThese rules are pretty straightforward and combine the
automata; see, e.g., [31]. Here we use alternating treerati¢o rules for a classical alternating automaton, with the raés
(as in [32]). Such automata work with Boolean formulas over marking automaton. Ruléor) and (and) implements the
states, which must become satisfied for a transition to fines T Boolean connective of the formula and collect the marking
allows much more compact representation of queries throufglund in their true sub-formulas. Rulegeft) and (right)
automata, than ordinary tree automata (without formufasy. (written as a rule schema for concision) evaluate to trubsf t
tree automata work over a binary tree view of the XML trestateq is in the corresponding set. Intuitivelit,; (resp.R>) is
where the left child is the first child of the XML node and thehe set of states accepted in the left (resp. right) subtiréeeo
right child is the next sibling of the XML node. input tree. Rulgpred) supposes the existence of an evaluation

Definition 5.1 (Non-deterministic marking automaton):  function for built-in predicates. Among the latter, we sope
An automatond is a tuple(£, Q,Z, ¢), whereL is the infinite the existence of a special predicater k which evaluates to
set of all possible tree labelg is the finite set of states, T and returns the singleton set containing the current seibtre
7T C Q is the set of initial states, anfl: Q x 2 — F is the We can now give the semantics of an automaton, by the means

A. Tree Automata Representation



of a run function are considered. If, in statqo,¢:} it finds a node labeled

Algorithm 5.1 (Top-down run function): keywor d then this node is marked as a result node.
Input: A = (£, Q,Z,0),t,r Output: R

where A is the automatont the input treey a set of states an® C. General Optimizations, On-the-Fly Memoization
a mapping from states of to sets of subtrees of and such that . . L
dom(R) C . In Algorithm 5.1 the most expensive operation is in Line 11,

which is evaluating the set of possible transitions and accu

; f ulnfctt Ii:?héogr;ng\{;nt:gg ﬁe?rr ;t urn @ mulating the mappings. First, note that only the statesideits

3 el se of filters actually accumulate nodes. All other states abvay
4 let trans={(¢,¢) — ¢ | ¢ € r and Tagt) € £} yield empty bindings. Thus we can split the set of states into
5 in marking and regular states. This reduces the number aifd

3 : ﬁt =g liq€¢,Ve € transt ® operations on results sets. Note also that given a transitio
8 l et Ry = top.downrun A FirstChildg) r: g, ¢ =11 ¢V |2 gk Wher_eqi, g; and ¢, are marking states,

9 and R = top_down.run A NextSibling¢) r» all nodes accumulated ig; are subtrees of the left subtree
10 inreturn of the input tree. Likewise, all the nodes accumulatedyin

u {ge—Rr| FuRettao= (T, R), } are subtrees of the right subtree of the input tree. Thus both

V(g £ — ¢) € trans sets of nodes are disjoint. Therefore, we do not need to keep

The algorithm is straightforward. Although we called thisorted sets of nodes but only need sequences which support

function top.downrun, it is clear that it corresponds to theO(1) concatenation. Thus, computing the union of two result

classical notion ofoottom-uprun for an automaton. Indeed,setsR; and R;, can be done in constant time and therefore

even though this function is called on the root node with thend® can be implemented in constant time.

initial set of states, the sequence of recursive calls #&thes  Another important practical improvement exploits the fact

the leaves of the tree and starts evaluating the transititiile  that the automata are very repetitive. For instance if antixPa

“returning” from a recursive call, hence when moving upwarduery does not contain any data value predicate (such as

in the tree. This algorithm works in a very general setting.ont ai ns) then its evaluation only depends on the tags of

Considering any subtreeof our input tree, lelR be the result the input tree. We can use this to our advantagen&moize

of t op_down_r un(A,t, Q). Then donfR) is the set of states the results based on the tag of the input tree and the.set

which accepts$ andVq € dom(R), R(q) is the set of subtrees Indeed, the set and the tag of the input treeuniquely define

of ¢ marked during a run starting frony on the treet. It the settrans of possible transitions. So instead of computing

is easy to see that the evaluationtafp_down_run(A,¢,r) such a set at every step, we can cache it in a hash-table

takes timeO(|.A| x |t|), provided that the operations, ® and where the key is the pair (Té&Q,r); this corresponds to an

eval _pred can be evaluated in constant time. on-the-fly determinization of automata. Of course computin

B E the hash of such a key must be fast for the operation to be
. From XPath to Automata

_ i beneficial. Labels are not a problem since, they are intigrnal
The translation from XPath to alternating automata igpresented as integers. Sets however are trickier. Wehese t

simple and can be done in one pass through the parse ¥&&nique described in [33]. Basically, we represent séts o
of the XPath expression. Roughly speaking, the resultifgegers (which can be used for set of states, sets of tags,
automaton is ‘isomorphic” to the original query (andig(s of transitions,...) asash-consed Patricia-tregsvhich
has approximately the same size). All our optimizatiog,pnort0(1) hashing and)(1) equality checking. In practice
discussed later aren-the-fly algorithms; for instance, We ihe number of different values for the input se very small.
only determinize the automaton during its run on th@e can further improve the running time by using an array of
input tree. Here, we only give an example of a quefyashiaples instead of a hashtable indexed IBbel (t),r).
and its corresponding automaton: Consider the Qquejje can apply a similar technique for the other expensive
/descendant::listitenfdescendant::keyword. gneration, that is, the evaluation of the set of formulas.
The correspo_ndlng automz_aton %3 :__(E,{QO,m},{QO}v(s) This operation can be split in two parts: the evaluation of
whered contains the following transitions: the formulas and the propagation of the result sets for the
1 qo,{listitem—|1q 4 q,{keyword}—mark  corresponding marking states. Again, if the formulas do not
2 g, L-{@# —ligw 5 @, L-{@# —liq  contain data value predicates, then their value only depend
3 @£ — 12 q 6 a,L —laat  gnthe states presentf®; andR;, the results of the recursive
The automaton starts in stafig, } and traverses the tree until itcalls. Using the same technique, we can memoize the results
finds a subtree labeldd st it em At such a subtree, the au-in a hash table indexed by the key (do® ), dom(Rz)). This
tomaton changes to sta{eo, g1} on the left subtree (becausehash table contains the pair dgR) of the states in the result
it is nondeterministic and two transitions fire), looking @ mapping and a sequence of affectation to evaluate, of the
tag keywor d or possibly another tapi stitemand it will form [ ¢;: =concat (g;, gx), . . . ], which represents that need
recurse on the right subtree in stdig} again. Transitions to be propagated between the different marking states.hnot
2 and 5 make sure that, according to the semantics of thgtimization is for the result set associated with the &hitate
descendant axis, only element nodes (and not text or attspu of the automaton, which is answer of the query. This result



set is “final” in the sense that anything that was propagated
up to it will be in the result set. We can exploit this fact and
. bottom up_run
use a more compact data-structure for this set of results (fo /’
instance the one described in Section IV-D). Thus we caretrgdd

time complexity (since insertion i9(log(n)) in this structure) bottom_up_run \ bottom_up_run
for space. Using this scheme, we are able to answer quefies /’ (\
containing billions using little memory. 4 /9

t
D. Leveraging the Speed of the Low-Level Interface
Conventionally, the run of a tree automaton visits every top_down_run
node of the input tree. For highly efficient XPath evaluation
this is not good enough and we must find ways to restrict
the run to the nodes that are “relevant” for the query (this Fig. 3. lllustration of the bottom-up run
is precisely what is also done through “partitioning and

pruning” in the staircase join [34]). Consider the query
/descendant ::listitem descendant: : keyword

of before. Clearly, we only care about listitem and keyword Tg achieve this goal, we devise a rémdt t om up eval-
nodes for this query, and how they are situated with respggition algorithm of an automaton. The algorithm takes an
to each other. This is precisely the information that igytomaton and a sequence of potential matching nodes (in our
provided through the TaggedDesc and TaggedFoll functioggample, the text nodes containing the strihgni que").
of the tree representation. These functions allow us to hayethen moves up to the root, using thEar ent function
a “contracted” view of the tree, restricted to nodes Withnd checks that the automaton arrives at the root node in its
certain labels of interest (but preserving the overall trefitial state ¢;. This scheme is illustrated in Figure 3. The
structure). For instance, to solve the above query we cdn Gakhnique used is similar to shift-reduce parsing. Comside
TaggedDesc(Root,listitem) which selects the first ligtiteode 5 sequencé t1,... ,] (ordered in pre-order) of potentially
x. Now we can apply recursively TaggedDesc(x,keyworghatching subtrees. In our previous example these were text
and TaggedFoll(y,keyword) in order to select all keyworthodes but this is not a necessary condition. The algorithm
descendants of. We do this optimization of “jumping run” starts on tree;. First, if the tree is not a leaf, we call the
based on the automaton: for a given set of states of th@p_dovvn_r un function ont; with » = Q. This returns the
automaton we compute the set of relevant transitions whighappingR, of all states accepting. We now want to move
cause a state change. For instance, in the automaton for §3eto the root fromt; in state donfR); and by taking the
above query which is shown in Section V-B only transitions gansitions upward. As illustrated in Figure 3 however, vee d
and 4 are relevant. Thus, in stafg } the automaton can usengt want to move blindly front; to the root. Indeed, once we
TaggedDesc to jump to listitem nodes, and in stffg g1} arrive at a node) which is an ancestor of the next potential
it can jump to listitem or keyword nodes. matching subtre&,, then we stop at/, and start the algorithm

Bottom-up run: While the previous technique worksont, until it reaches the lowest common ancegforOnce this
well for tree-based queries it still remains slow fois done, we can merge both mappings and continue upward
value-based queries. For instance, consider the quefyfromt; until we reach the root or a common ancestot/of
I1listitem /keyword[contains(.,"Unique")]. andt; and so on. The idea ahergingthe runs at the lowest
The text interface described in Section Il can answ@bmmon ancestor makes sure that we never touch any nodes
the string query very efficiently returning the set of texinore than once, in a bottom-up move. We now give formally
nodes matching thisontainsquery. It is also able to countthe bottom up algorithm.
globally the number of such results. If this number is low, Algorithm 5.2 (Bottom-up run function):
and in particular smaller than the number lof stit em Int?(lejrtejiss a(r?lglﬁ)tuotrznzto a sequence of subtrees of the input tree
or key_wor d t?‘gs in-the document (which can _also bglndR a mapping from srztes o?t to subtrees of the input treF()a. ’
determined efficiently through the tree structure intezjac .
then it would be faster to take these text nodes as starting functi on bottomup.run A s =

. . . . if s=[Jthenreturn g

point for query evaluation and test if their path to the root; | ¢e
matches the XPath expressidri | i stitenl/keyword. 4 let ¢, =hd(s), t1(9)in

top_down_run

This scheme is particularly useful for text oriented querie 5 |et R =top.downrun At Qin
with low selectivity. However, it also applies for tree only 6 |et R',s” = matchabove At s' R #
7 In

gueries: imagine the query/ 1 i stitenl/keyword on a
tree with many listitem nodes but only a few keyword nodes.g
We can start bottom-up by jumping to the keyword nodes, function matchaboveA ¢ s R, stop=
and then checking their ancestors for listitem nodes. 11 if t=stopthen Ri,s

R’'U (bottomup.run A s")



12 else Qizx/DB: We used version 3.0 of Qizx/DB engine (free
13 let pt=Parent()in edition), running on top of the 64-bit version of the JVM

14 let Ros' = ; ; ;

P (with the- ser ver flag set as recommended in the Qizx user
12 ltLesn—wl]sOF not (IsAncestorpthd(s))) manual). The maximal amount of memory of the JVM set
17 el se to the maximal amount of physical memory (using thérx
18 I et ta2,s’ =hd(g),tl(s)in flag). We also used the flagr of the Qizx/DB command
19 l'et R =top.downrun At Qin line interface, which allows us to re-run the same query
20 matchaboveAd 2 s" R pt without restarting the whole program (this ensures that the
2t 3¢’ € dom(R)s.t. s ¢ € JVM’s garbage collector and thread machinery do not impact
22 let trans= {g,{ — ¢ | |gbe| et 1 } the performance). We used the timing provided by Qizx
23 in debugging flags, and reported tkerialization time(which

/ R1,Ra,tba, ¢ =(T,R), actually includes the materialization of the results in rogm

2 et Ri={g— R v(q,t — ¢) € trans } and the serialization).

25 in

26 matchabove A pt s R’ stop MonetDB/XQuery: We used version Feb2009-SP2 of

) ) o MonetDB, and in particular, version 4.28.4 of MonetDB4

In the light of Figure 3, it is easy to understand the tWgeryer and version 0.28.4 of the XQuery modyiattfinde).
functions defined in Algorithm 5.2. The first one iterate§ye ysed the timing reported by the t” flag of MonetDB
the auxiliary functionmat ch.above on every tree in the client programntl i ent . We kept the materialization time
sequence. Themat ch_above function is the one “climbing- ang the serialization time separated.
up” the tree. We assume that the Pafenfunction returns the  Running times and memory reportingor each query, we
empty tree when applied to the root node. If the input tree igpt the best of five runs. For Qizx/DB, each individual run
not equal to the trestop (which is initially the empty treé#, consists of two repeated runs ¢ 2”), the second one being
allowing to stop only after the root node has been processeglyays faster. For MonetDB, before each of the five runs, the
then we first check whether the next (we use the fundidn server was exited properly and restarted. We monitored the
andt| which returns the first element of the list and its tailljzemory usage by reading, every 200 ms during the duration
potential tree is a descendant of our parent (Line 14). 81t bf the tested program, theepr oc/ pi d/ st at m pseudo-file
so, then we pause for the current branch and recursively Galbvided by Linux. More specifically, we monitored the so-
matchabovewith our parent astoptree. Once it returns, We cajjed resident set sizewhich corresponds to the amount of
compute all the possible transitions that the auton_wataajem tprocess memory actually mapped in physical memory. For
from the parent node to arrive on the left and right subtrg@onetDB, we kept track of the memory usage of both server
with the correct configuration (Line 21). Once this is dongynqg client. The peak of memory reported was the sum of
we mergeboth configuration using the same computation as fient's peak plus servers peak.
the top-down algorithm (Line 23). Finally, we recursiveBlic oy the tests where serialization was involved, we sesliz
mat ch_above on the parent node, with the new configuratiofy the / dev/ nul | device (that is, all the results were

and sequence of potential matching nodes (Line 25). discarded without causing any output operation).

VI. EXPERIMENTAL RESULTS .
B. Indexing

We have implemented a prototype XPath evaluator based imol tation feat tile index. It is didid
on the data structures and algorithms presented in previoué?ur implementation Teatures a versatiie Index. it 1s didide

sections. Both the tree structure and the FM-Index wel&° three .parts. First, the tree representation compobéteo
renthesis structure, as well as the tag structure. Setiond

developed in C++, while the XPath engine was written usi . i . .
b g -Index encoding the text collection. Third, the auxiiar

the Objective Caml language. X : .
text representation allowing fast extraction of text comte

A. Protocol It is easy to determine from the query which parts of

To validate our approach, we benchmarked our implemetite index are needed in order to solve it, and thus load
tation against two other well established XQuery implemenly those into main memory. For instance, if a query only
tations, namely MonetDB/XQuery and Qizx/DB. We describvolves tree navigation, then having the FM-Index in meynor
our experimental settings hereatfter. is unnecessary. On the other hand, if we are interested in

Test machine:Our test machine features an Intel CoreRery selective text-oriented queries, then only the treg pa

Xeon processor at 3.6Ghz, 3.8 GB of RAM and a S-ATAand FM-Index are needed (both for counting and serializing
hard drive. The OS is a 64-bit version of Ubuntu Linux. Théhe results). In this case, serialization is a bit slowere(tw
kernel version is 2.6.27 and the file system used to store tiie cost of text extraction from the FM-Index) but remains
various files is ext3, with default settings. All tests weua r acceptable since the number of results is low.
on a minimal environment where only the tested program andFigure 4 shows the construction time and the memory used
essential services were running. We used the standard mympluring the indexing process. For these indexes, a sampling
and libraries available on this distribution (namely g+8.2, factor! = 64 (cf. Section Ill) was chosen. As we see, the
libxml2 2.6.32 for document parsing and OCaml 3.11.0). wholeindex, including tree structure, FM-index and auxiliary
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Fig. 4. Indexing of XMark documents 600
400
= st st shal bl ikl
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Q02 /site/closedhuctions SR S S S R I A S g
QO3 /site/regions/europe/item/mailbox/mail/text/keyds _
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parlist/listitem ) . |
QO5 /site/closedauctions/closeguction/annotation/descriptiop/ Fig. 7. Peak memory use of the three engines (116 MB XMark filg)

parlist/listitem/parlist/listitem/*//keyword
QO06 /site/regions/*/item
QO07 /Nistitem//keyword
Q08 /site/regions/*/item//keyword
Q009 /site/regions/*/person| address and (phone or honeddag model. First, queries Q01 to Q06 —which are fully qualified

Q10 //listitem[.//keyword and .//femph]/parlist paths— illustrate the sheer speed of the tree structure and
Q11 /site/regions/*/item[ mailbox/mail/date ]/mailbaxail in particular the efficiency of its basic operations (such as
Q12 /*[ descendant::* ] FirstChild and NextSibling, which are used for tiedi | d

Sﬁ Z://* axis), as well as the efficient execution scheme provided by
Q15 II*I1*I14I1* the automaton. Query Q07 to Q11 illustrate the impact of the
Q16 /I jumping. Moreover, it shows that filters do not impact the

execution speed: the conditions they express are effigientl
checked by the formula evaluation procedure. Finally, Qi2 t
Q16 illustrate the robustness of our automata model. Indeed
while such queries might seem unrealistic, the good perfor-
mances that we obtain are only the consequence of using an
automata model, which factors in its states all the necgssar
computation and thus do not materialize uneeded interrteedia
results. This coupled together with the compact dynamiofet
Section IV-D allows us to keep a very low memory foot-print
C. Tree queries even when the query generates lots of result or that each step
5 a lot of intermediate results (cf. Figure 7).

Fig. 5. Tree oriented queries

text representation, is always smaller than twice the dizkeo

original document. Since it is always possible to choosectvhi
text representation to use, the actual main-memory fautpri
of the index is close to the original document size.

We benchmarked tree queries using the queries givenq
Figure 5. Queries Q01 to Q11 were taken from the XPathM
benchmark [35], derived from the XMark XQuery benchmar
suite. Q12 to Q16 are “crash tests” that are either simpl€(Q1 We tested the text capabilities of our XPath engine against
selects only the root since it always has at least one deanendhe most advanced text oriented features of other queryengi
in our files) or generate the same amount of results but with Qizx/DB: We used the newly introducdelll-Text exten-
various intermediate result sizes. For this experiment sexlu sion of XQuery available in Qizx/DB v. 3.0. We tried to write
XMark documents of size 116MB and 1GB. In the cases gueries as efficiently as possible while preserving the same
MonetDB and Qizx, the files were indexed using the defawdemantics as our original queries. The query we used always
settings. Figure 6 reports the running times for both cawnti gave better results than their pure XPath counterpart. ticpa
and materialization+serialization. We report in Figureh® t ular, we used thét cont ai ns text predicate, introduced in
peak memory use for each query, for the 116MB documenf36] and implemented by Qizx/DB. Thiet cont ai ns pred-

From the results of Figure 6, we see how the differemtate allows one to express not ordgntainslike queries but
components of SXSI contribute to the efficient evaluatioalso Boolean operations on text predicates, regular esjores

. Text queries



| | Q01 ] Q02 | Q03 [ Q04 | Q05 ] Q06 [ Q07 [ Q08 | Q09] Q10 | Q11 | Q12| Q13 | Q14 [ Q15 [ Q16 |

116 MB Document, counting
14 16 24 12 36 31 5 70 34 1 309 309 | 313 | 330

SXSI 1 1

Monet 7 7 28 24 40 16 24 30 87 61 60 183 75 239 | 597 | 957

Qizx 1 1 26 29 31 17 19 39 48 109 158 1 2090 | 8804 | 28005 34800

116 MB Document, materialising and serializing

SXsl 1 1 15 21 26 | 120 | 64 65 5 83 52 1 974 | 975 | 987 | 465
198 66 7 36 7 25 | 74 8 | 01 ] 43 96 | 566 | 5847 | 5295 | 4076 | 573

Monet 7 7 28 27 40 16 25 25 29 88 60 179 71 238 | 591 | 966

672 208 10 76 10 671 90 81 0.1 | 104 181 | 1653 | 10023 | 8288 | 4959 | 667
Qizx 3153 | 1260 65 567 103 | 3487 | 1029 | 307 50 991 | 1179 | 8387 | 45157 | 44264 | 8181 | 21680

1 GB Document, counting

SXSI 2 2 107 149 207 79 665 | 342 5 990 | 317 2 4376 | 4371 | 4382 | 4500

Monet 8 8 519 576 597 | 1557 | 3383 | 1623 | 1557 | 3719 | 1799 | 16274| 7779 | 25493| 60555| 77337

Qizx 1 1 185 135 230 45 101 | 302 | 291 | 185 186 14 17368 | ++ ++ ++

1 GB Document, materialising and serializing

SXSI 2 2 140 238 256 [ 1110 | 1654 | 771 5 1372 | 543 2 15246 | 15254 15461| 6567
1920 | 637 74 359 69 2488 | 727 | 835 | 0.1 | 411 | 927 | 5413 | 57880 | 51915| 40103| 5662

Monet 8 8 587 617 648 | 1554 | 3405 | 1710 | 1600| 3739 | 1810 | 18203 * * * 80394
20999| 200770| 22586| 158548| 37469| 11740| 53067| 16360| 0.1 | 43688| 16882 | 26858 * * * 31818

Qizx 29998| 9363 | 368 | 4517 | 417 | 29543| 9061 | 1989 | 317 | 8452 | 9424 | 74843| 414086| ** Hok Hok
++: Running time exceeded 20 minutes x: MonetDB server ran out of memory. x: Qizx/DB ran out of memory.

We mark inbold face the fastest query execution time and we undertime fastest execution and serialization time.

Fig. 6. Running time for the tree based queries (in milliseks)

matchmg and so on. It is more efficient than Fhe standdrd T1  /MedlineCitation//*/text()[contains( ., "brain”)]
cont ai ns. In particular we used regular expression matching 12  /MediineCitation//Country/text()[

in lieu of the starts-w th and ends-wi t h operators contains(., "AUSTRALIA™)]
since the latter were slower in our experiments. T3  /ICountry/text()[ contains(. , "AUSTRALIA")]

MonetDB: MonetDB supports some full-text capabilites 14 //*/text()[ contains( . , "1930")]
bp b 5 /MediineCitation//*ftext()[ contains( . , 1930 |

thr_OI_'Igh the use C_)f the PF/TI_Jah text-lndex ( [37])' While more T6 //MedlineCitation/Article/AuthorList/Author/
efficient than using the built-in string functions, the sét g LastName/text()[startswith(., "Bar’)]
gueries expressible with this index is quite limited. Theetr T7 //MedlineCitation[ MedlineJournalinfo/
navigation partis limited to theescendant andsel f axes, Country/text()[ ends-with(.,"LAND")]]

T8 II*[ Year = "2001"]
T9 //*[ LastName = "Nguyen”]

Fig. 8. Text oriented queries

while the only text predicate availableadout , which allows
selecting nodes which are “relevant” with respect to a given
string. We used it to expresont ai ns and used the built-in
string functions for other queries.
Experiments were made against a 122MB Medline file. This
file contains bibliographic information about life of scts
and bio medical publications. This test file featured 5,739, (Auto. runline in the table of Figure 9)
text elements, for a total amount of 95MB of text contenfs it is clear from the experiments the bottom-up strategy
Figure 8 shows the text queries we tested. We used copals off. The only down-side of this approach is that the
queries for both MonetDB and Qizx —enclosing the querjutomaton uses Parent moves, which are less efficient than
in afn:count () predicate— while in our implementationFirstChild and NextSibling. This is clear in queries T7 and
we ran the queries in “materialization” mode but withour8 where the increase in number of results makes the relative
serializing the output. The table in Figure 9 summarizes th¢wness of the automata more visible. However our evatuato
running times for each query. As we target very selective tetill outperforms the other engines even in those cases.
gueries, we also give, for each query, the number of results
it returned. Since for these queries our automata worked fn Remarks
“bottom-up” mode, we detail the two following operations:  We also compared with Tauro [3]. Yet, as it uses a tailored
« Calling the text predicatglobally on the text collection, query language, we could not produce comparable results.
thus retrieving all the probable matches of the quaek{ We limited the experiments to natural language XML,
queryline in the table of Figure 9) although our engine (unlike the inverted file -based engines
« Running the automaton bottom up from the set of probaupports as well queries on XML databases of continuous
ble matches to keep those satisfying the path expresssByuences such as DNA and proteins. Realistic queries tin suc




| [T1[T2[T3[TA[T5[T6[ T7[ T8 T9] (6]

Text query 10| 4| 4104/04 9] 6 | 59]0.7 7
Auto. run 28] 830915/ 17|108] 96 | 2

SXSI: Total | 38 | 12| 7 |1.3|1.9] 26| 144] 175] 2.7 (8]
MonetDB 336|118117252301180 256| 473| 505 o]
Qizx/DB 108[ 10| 6 | 99107244 259|2469139
[# of results 1493438439 32| 32]68069356685 36 | [10]

Peak Memory Use (MB)

[11]

[12]

[13]

[14]

W sxsi [ MonetpB M Qizx/DB
[15]
Fig. 9. Running times and memory consumption for the teidred

queries [16]

[17]

(18]
biosequence XMLs require approximate / regular expressiglg]
search functionalities, that we already support but whose

experimental study is out of the scope of this paper. 0]
VII. CONCLUSIONS AND FUTURE WORK 21]

We have presented SXSI, a system for representing an XML
collection in compact form so that fast indexed XPath queri&?l
can be carried out on it. Even in its current prototype stages
SXSl is already competitive with well-known efficient syste
such as MonetDB and Quizx. As such, a number of avenu[??]
for future work are open. We mention the broadest ones here:

Handling updates to the collections is possible in prirgipl
as there are dynamic data structures for sequences, treks,[#P!
text collections [7], [8], [13]. What remains to be verifies! i g
how practical can those theoretical solutions be made.

As seen, the compact data structures support several fal#éy
operations beyond those actually used by our XPath evaluagg
A matter of future work is to explore other evaluation strate
gies that take advantage of those nonstandard capabilites [2°]
an example, the current XPath evaluator does not use the rapg
search capabilities of structureoc of Section IIl.

A clear direction for future work is to extend the current®l]
system to support XQuery operations. Even within full XPatBZ]
1.0 there are very sophisticated primitives such as datesjoi

which would be challenging to support efficiently. [33]
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