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Abstract. Given a sequence of characters T1...u (the text) over an al-
phabet Σ, and given another sequence P1...m (the search pattern) over
Σ, then the full-text search problem consists of finding (or counting, or
reporting) all the occ occurrences of P in T . In indexed text searching
we build a data structure (or index ) on the text to restrict the search
to a small portion of the text, improving search time but increasing the
space requirement to solve the problem. The current trend in indexed
text searching is that of compressed full-text self-indexes, which replace
the text with a more space-efficient representation of it, and at the same
time this representation provides indexed access to the text.
In this thesis we propose a deep study of compressed full-text self-indexes
based on the Ziv-Lempel compression algorithm, contributing with new
theoretical developments in this area. Specifically, we will focus our stud-
ies on the Navarro’s LZ-index [38–40]. We aim at a compressed full-text
self-index with many interesting properties: fast full-text searching and
text recovery; using little space for construction and operation; allowing
insertion and deletion of text; providing a range of space/time trade-offs;
and efficient construction and search in secondary memory.

1 Introduction and Previous Work

Text searching is a classical problem in Computer Science. Given a sequence of
characters T1...u (the text) over an alphabet Σ of constant size σ, and given
another (short) sequence P1...m (the search pattern) over Σ, then the full-text

search problem consists of finding (or counting, or reporting) all the occ occur-
rences of P in T . There are two general approaches for solving the full-text
searching problem:

Sequential Text Searching : we search for the pattern P directly on the plain
representation of T . That is, we do not construct any data structure on the
text, mainly because the text is small, highly dynamic, or it is not available
in advance. See [42] for a complete review on sequential text searching.

Indexed Text Searching : we build a data structure (or index ) on the text to
restrict the search to a small portion of the text, improving search time but
increasing the space requirement to solve the problem. This approach is used
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when the text is so large that a sequential scanning is prohibitively costly,
many searches (using different patterns) must be performed on the same
text, the text does not change so frequently, and there is sufficient storage
space to maintain the index and provide efficient access to it. In this thesis
we focus on indexed text searching.

A full-text database is a system providing fast access to a large mass of
textual data. By far its most challenging requirement is that of performing fast
text searching for user-entered patterns. Typical text databases contain natural
language texts, DNA or protein sequences, MIDI pitch sequences, program code,
etc. Modern text databases have to provide fast access to the text, using as little
space as possible. These goals are opposed because, in order to provide fast
access, an index has to be built on the text. This index is a data structure stored
in the database, hence increasing the space requirement. In recent years there
has been much research on compressed text databases, focusing on techniques to
represent the text and the index using little space, yet permitting efficient text
searching.

Text compression is a technique to represent a text using less space. It has
two main advantages [3]:

– Advantage 1: It reduces the space requirement of the text, and

– Advantage 2: It reduces the cost and increases the effective speed of text
transmission, both between computers in a network and from secondary to
main memory (where a compressed text is read faster than its uncompressed
form).

The main disadvantage of compression is that processing time is increased, but
the accesses to secondary memory are reduced (that is, there is a trade-off CPU
time/secondary memory accesses). A concept related to text compression is that
of the k-th order empirical entropy of a text T , denoted by Hk(T ) [32]. The value
uHk(T ) provides a lower bound to the number of bits needed to compress T using
any compressor that encodes each character considering only the context of k
characters that precede it in T . Also it holds that 0 6 Hk(T ) 6 Hk−1(T ) 6

· · · 6 H0(T ) 6 log σ (log means log2 in this proposal).

Despite that there has been some work on space-efficient inverted indexes
for natural language [47, 41] (able of finding whole words and phrases), until a
short time ago it was believed that any general index for text searching (such
as those that we are considering in this thesis) would need much more space.
In practice, the smallest indexes available were the suffix arrays [31], requiring
u logu bits to index a text of u characters. Since the text requires u log σ bits
to be represented, this index is usually much larger than the text (typically 4
times the text size). With the huge texts available nowadays (for example, the
human genome consists of about 3 × 109 base pairs), one solution is to store
the indexes on secondary memory. However, this has significant influence on the
running time of an application, as access to secondary memory is considerably
slower.
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Since the last decade, several attempts to reduce the space of the suffix trees
[2] or arrays have been made by Kärkkäinen [19], Kurtz [25], Mäkinen [27], and
Abouelhoda et al. [1]. These approaches have been mainly practical, in the sense
that it was easy to obtain an implementation from the algorithmic formulation,
and the results have been remarkable, but not spectacular.

A parallel, more principled track, started at about the same time, thanks to
Kärkkäinen and Ukkonen [22, 23, 20], Grossi and Vitter [15], Sadakane [44, 45],
Ferragina and Manzini [9–11], and later Grossi, Gupta and Vitter [13], Navarro
[38–40], and Mäkinen and Navarro [28, 29]. All these works present compressed

indexes, which take advantage of the regularities of the text to operate in space
proportional to that of the compressed text (e.g., 3 times the zero-order entropy
of the text). Especially, in some of those works [44, 45, 9–11, 13, 14, 38–40, 28, 29,
12], the indexes replace the text and, using little space (sometimes even less than
the original text), provide indexed access. This feature is known as self-indexing,
since the index allows one to search and retrieve any part of the text without
storing the text itself. This is an unprecedented breakthrough in text indexing
and compression.

As with text compression, using compressed indexes increases processing
time. However, given the relation between main and secondary memory access
times, it is preferable to handle compressed indexes entirely in main memory,
rather than handling them in uncompressed form but in secondary storage. When
the compressed index is so large that it does not fit in main memory, then Ad-

vantage 2 allows to reduce the cost of transmission between secondary and main
memory, since a smaller index potentially requires less disk accesses.

Most works on compressed full-text indexes are based on suffix arrays [44,
45, 9, 10, 13, 14, 28, 29, 12]. However, there exist other works based on Ziv-Lempel
compression algorithm [48]. Below we review those Ziv-Lempel-based works. An
important property is that, if the Ziv-Lempel parsing cuts the text into n phrases

(see Section 2), then n log u = uHk(T ) + o(kn log σ) for any k [24].

Kärkkäinen and Ukkonen [22, 20] propose a suffix tree that indexes only the
beginnings of the blocks produced by a Ziv-Lempel compression. This index
requires O( 1

ε
uHk(T )) + O(u log log u/ log u) + u log σ bits (the last term is for

the text), and the occ occurrences of P in T can be found in O(m2 + muε + occ)
and even in O(m2 + m log u + 1

ε
occ logε n) time, depending on the structures

used [20], where k = O(logσ log u) and 0 < ε < 1 (not necessarily a constant).
As can be seen, this is not a self-index since it needs the text to operate. On the
other hand, Ferragina and Manzini [11] present an index based on Ziv-Lempel
compression, although combined with Burrows-Wheeler compression [4]. This
is the only existing compressed full-text self-index taking O(m + occ) time to
locate the occ occurrences of P in T . The index requires O(uHk(T ) logγ u) bits of
storage, for any constant γ > 0. Finally, Navarro [38–40] presents the LZ-index,
which is a full-text self-index based on the Ziv-Lempel parsing of the text. If the
text is parsed into n phrases by the LZ78 algorithm, then the LZ-index takes
4n logn(1 + o(1)) bits of space, which is 4 times the size of the compressed text
and also 4 times the k-th order text entropy, i.e. 4uHk(T ) + o((1 + Hk(T ))u),
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for any k = O(logσ log u) [24, 11]. The LZ-index answers queries in O(m3 log σ +
(m + occ) log n) worst case time. The index also replaces the text (that is, is a
self-index ): it can reproduce a text context of length L around an occurrence
found (and in fact any sequence of phrases) in O(L log σ) time, or obtain the
whole text in time O(u log σ). The index is built in O(u log σ) time.

The most basic problems for compressed self-indexes are that of searching
and reproducing the text. However, there are many other functionalities that
a self-index must provide in order to be fully useful. Many of those have been
obtained separately in the indexed text searching literature. For example, there
are

– indexes like the suffix trees, allowing to search for a pattern in optimal O(m+
occ) time;

– the suffix arrays, which are one of the most used indexes in practice;
– compressed indexes using little space (and many times including the text);
– indexes requiring little space to be built [26, 16, 18]: Compressed indexes are

usually derived from a classical one. Although it is usually simple to build
a classical index and then derive its compressed version, there might not be
enough space to build the classical index first. Secondary memory might be
available, but many classical indexes are costly to build in secondary memory.
Therefore, an important problem is how to build compressed indexes without
building their classical versions first;

– indexes allowing efficient construction and search in secondary memory [8, 6]:
Although their small space requirements might permit compressed indexes
fit in main memory, there will always be cases where they have to operate
on disk. There is not much work yet on this important issue. A good survey
on full-text indexes in secondary memory is by Kärkkäinen and Rao [21];

– and others allowing efficient insertion and deletion of texts [8, 9, 17, 5]: Most
indexes in the literature are static, in the sense that they have to be re-
built from scratch upon text changes. This is currently a problem even on
uncompressed full-text indexes, and not much has been done.

However, no existing data structure for text searching fits all the requirements.
In this thesis we propose a deep study of compressed full-text self-indexes

based on the Ziv-Lempel compression algorithm. Specifically, we will focus our
studies on Navarro’s LZ-index. We aim at a compressed full-text self-index with
the following properties:

– Fast full-text searching,
– Fast text recovery,
– Using little space for construction and operation,
– Allowing insertion and deletion of text,
– Providing a range of space/time trade-offs, and
– Efficient construction and search in secondary memory (using Advantage 2

to improve performance).

Currently, the LZ-index has the following properties: fast full-text searching, fast
text recovery, uses little space for operation, does not allow insertion nor deletion
of text, only operates in main memory, and it needs much construction space.
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2 Ziv-Lempel Compression

The general idea of Ziv-Lempel compression is to replace substrings in the text
by a pointer to a previous occurrence of them. If the pointer takes less space
than the string it is replacing, compression is obtained. Different variants over
this type of compression exist, see for example [3]. We are particularly interested
in the LZ78/LZW format, which we describe as follows.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [48])
is based on a dictionary of blocks (or phrases), in which we add every new
block computed. At the beginning of the compression, the dictionary contains
a single block b0 of length 0. The current step of the compression is as follows:
if we assume that a prefix T1...j of T has been already compressed into a se-
quence of blocks Z = b1 . . . br, all them in the dictionary, then we look for the
longest prefix of the rest of the text Tj+1...u which is a block of the dictionary.
Once we have found this block, say bs of length `s, we construct a new block
br+1 = (s, Tj+`s+1), write the pair at the end of the compressed file Z, i.e.
Z = b1 . . . brbr+1, and add the block to the dictionary. It is easy to see that this
dictionary is prefix-closed (that is, any prefix of an element is also an element of
the dictionary) and a natural way to represent it is a trie.

LZW [46] is just a coding variant of LZ78, so we will focus in LZ78 in this
thesis, understanding that the algorithms can be trivially ported to LZW.

An interesting property of this compression format is that every block rep-
resents a different text substring. The only possible exception is the last block.
We use this property in our algorithm, and deal with the exception by adding a
special character “$” (not in the alphabet and considered to be smaller than any
other character) at the end of the text. The last block will contain this character
and thus will be unique too.

The compression algorithm is O(u) time in the worst case and efficient in
practice if the dictionary is stored as a trie, which allows rapid searching of the
new text prefix (for each character of T we move once in the trie).

Another concept that is worth reminding is that a set of strings can be
lexicographically sorted, and we call the rank of a string its position in the lexi-
cographically sorted set. Moreover, if the set is arranged in a trie data structure,
then all the strings represented in a subtree form a lexicographical interval of
the universe. We remind that, in lexicographic order, ε 6 x, ax 6 by if a < b,
and ax 6 ay if x 6 y, for any strings x, y and characters a, b.

3 The LZ-index Data Structure

Suppose that the text T1...u has been partitioned using the LZ78/LZW algorithm
into n + 1 blocks T = B0 . . . Bn, such that B0 = ε; ∀k 6= `, Bk 6= B` (that is, no
two blocks are equal); and ∀k > 1, ∃` < k, c ∈ Σ, Bk = B` · c (that is, every
block except B0 is formed by a previous block plus a letter at the end).
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3.1 Data Structures

The following data structures conform the LZ-index [38–40]:

1. LZTrie: is the trie formed by all the blocks B0 . . . Bn. Given the properties of
LZ78 compression, this trie has exactly n + 1 nodes, each one corresponding
to a string. LZTrie stores enough information so as to permit the following
operations on every node x: (a) idt(x) gives the node identifier, i.e., the num-
ber k such that x represents Bk; (b) leftrankt(x) and rightrankt(x) give the
minimum and maximum lexicographical position of the blocks represented by
the nodes in the subtree rooted at x, among the set B0 . . . Bn; (c) parentt(x)
gives the tree position of the parent node of x; and (d) childt(x, c) gives the
tree position of the child of node x by character c, or null if no such child ex-
ists. Additionally, the trie must implement the operation rtht(rank), which
given a rank r yields the block identifier representing the lexicographically
r-th string of {B0, . . . , Bn}.

2. RevTrie: is the trie formed by all the reverse strings Br
0 . . . Br

n. For this
structure we do not have the nice properties that the LZ78/LZW algorithm
gives to LZTrie: there could be internal nodes not representing any block.
We call these nodes empty. We need the same operations for RevTrie than
for LZTrie: idr, leftrankr, rightrankr, parentr, childr, and rthr .

3. Node: is a mapping from block identifiers to their node in LZTrie.
4. Range: is a data structure for two-dimensional searching in the space [0 . . . n]×

[0 . . . n]. The points stored in this structure are

{(revrank(Br
k), rank(Bk+1)), k ∈ 0 . . . n − 1},

where revrank is the lexicographic rank in {Br
0 . . . Br

n} and rank is the
lexicographical rank in {B0 . . . Bn}. For each such point, the corresponding
k value is stored.

Each of these data structures requires n log n(1+ o(1)) bits of storage, which
makes the index space 4uHk(T )(1 + o(1)) bits.

3.2 Search Algorithm

Let us consider now the search algorithm for a pattern P1...m [38–40]. We distin-
guish three types of occurrences of P in T , depending on the block layout (see
Fig. 1):

1. the occurrence lies inside a single block (there are occ1 occurrences of this
type);

2. the occurrence spans two consecutive blocks, Bk and Bk+1, such that a prefix
P1...i matches a suffix of Bk and the suffix Pi+1...m matches a prefix of Bk+1

(there are occ2 occurrences of this type); and
3. the occurrence spans three or more blocks, Bk . . . B`, such that Pi...j =

Bk+1 . . . B`−1, P1...i−1 matches a suffix of Bk and Pj+1...m matches a prefix
of B` (there are occ3 occurrences of this type).
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1 2 3 4 5 6 7

LZ78 block numbers

P inside a
block

P spans 2
blocks

P spans 4
blocks

Fig. 1. Different situations in which P can match inside T .

Note that each of the occ = occ1 + occ2 + occ3 possible occurrences of P
lies exactly in one of the three cases above. We explain now how each type of
occurrence is found.

Occurrences Lying Inside a Single Block. Given the properties of LZ78/
LZW, every block Bk containing P is formed by a shorter block B` concatenated
to a letter c. If P does not occur at the end of Bk, then B` contains P as well.
We want to find the shortest possible block B in the referencing chain for Bk

that contains the occurrence of P . This block B finishes with the string P , hence
it can be easily found by searching for P r in RevTrie. Occurrences of type 1 are
located in O(m2 log σ + occ1) time.

Occurrences Spanning Two Blocks. P can be split at any position, so we
have to try them all. The idea is that, for every possible split, we search for
the reverse pattern prefix in RevTrie and the pattern suffix in LZTrie. Now we
have two ranges, one in the space of reversed strings (i.e., blocks finishing with
the first part of P ) and one in that of the normal strings (i.e. blocks starting
with the second part of P ), and need to find the pairs of blocks (k, k + 1)
such that k is in the first range and k + 1 is in the second range. This is what
the range searching data structure is for. Occurrences of type 2 are located in
O(m3 log σ + (m + occ2) logn) time.

Occurrences Spanning Three Blocks or More. We need one more obser-
vation for this part. Recall that the LZ78/LZW algorithm guarantees that every
block represents a different string. Hence, there is at most one block matching
Pi...j for each choice of i and j. This fact severely limits the number of oc-
currences of this class that may exist, occ3 = O(m2). The idea is to identify
maximal concatenations of blocks Pi...j = Bk . . . B` contained in the pattern,
and thus determine whether Bk−1 finishes with P1...i−1 and B`+1 starts with
Pj+1...m. If this is the case we can report an occurrence. Occurrences of type 3
are located in O(m2 log σ + m3) time.

Overall, the query time is upper bounded by O(m3 log σ + (m + occ) log n).
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3.3 Implementation of the Data Structures

The above data structures are built as follows [40, 39]. For the construction of
LZTrie we traverse the text and at the same time build a normal trie (using
one pointer per parent-child relation) of the strings represented by Ziv-Lempel
blocks. At step k (assume Bk = Bi · c), we read the text that follows and step
down the trie until we cannot continue. At this point we create a new trie leaf
(child of the trie node of block i, by character c, and assigning the leaf block
number k), go to the root again, and go on with step k + 1 reading the rest
of the text. The process completes when the last block finishes with the text
terminator “$”. In Fig. 3 (upper left) we show the normal Ziv-Lempel trie for
the text “alabar a la alabarda para apalabrarla$”.

Once we build the normal trie, we have enough information to build the final
representation of LZTrie, using the parentheses representation of [36], with some
practical considerations, such as representing the trie in its general tree form,
instead of making it binary. To build the balanced parentheses representation we
traverse the normal trie in preorder, writing an opening parenthesis each time a
node is visited for the first time, traversing all subtrees of the node recursively
in preorder, and then writing a closing parenthesis.

The LZTrie structure contains a sequence of parentheses representing the
trie structure, a sequence lets of characters that label each edge of the trie, in
preorder, and a sequence ids of block identifiers, also in preorder. In Fig. 3 (lower
left) we show the balanced parentheses representation of LZTrie for the running
example. We identify a trie node x with its opening parenthesis in the repre-
sentation. The subtree of x contains those nodes (parentheses) enclosed between
the opening parenthesis representing x and its matching closing parenthesis.

Once the LZTrie is built we free the space of the normal trie, and build Node.
This is just an array with the n nodes of LZTrie, using dlog ne bits for each. Node

is constructed from the ids array in the following way. If the i-th position of the
ids array belongs to the k-th block identifier, then the k-th position of Node
stores the number i. In other words, Node is the inverse of permutation ids.

To construct RevTrie we traverse LZTrie in a depth-first order, generating
each string stored in LZTrie in constant time, and then inserting it into a normal

trie of reversed strings. For simplicity, the empty unary paths are not compressed
in the normal trie. When we finish, we traverse the trie and represent RevTrie

using a sequence of parentheses and block identifiers, rids. Empty unary nodes
are removed only at this step, and so the number of nodes in RevTrie is n 6 n′ 6

2n. If we use n′ log n bits for the rids array, in the worst case RevTrie requires
2uHk(T )+ o(u) bits of storage, and the whole index requires 5uHk(T )(1+ o(1))
bits. Instead, we can represent the rids array with n log n bits (i.e., only the
non-empty nodes), plus a bitmap of 2n(1 + o(1)) bits supporting rank queries
in O(1) time 1 [43]. The j-th bit of the bitmap is 1 if the node represented
by the j-th open parenthesis is not an empty node, otherwise the bit is 0. The

1 In this context rank(j) is the number of 1’s occurring before and including the j-th
bit of the bitmap.
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rids index corresponding to the j-th opening parenthesis is rank(j). Using this
representation, RevTrie requires uHk(T )+o(u) bits of storage. This was unclear
in the original LZ-index paper [40, 39]. See Fig. 2 for an illustration.

( ( ) ( ) ( ) ) ( ) ( ( ) ( ) ) ( ( ) )

1  1  1  1  1  0  1  1  0  1

parentheses:

bitmap:

rids:

rank

Fig. 2. A uHk(T ) + o(u) bits representation of RevTrie.

In practice, the Range data structure is replaced by RNode, a mapping from
block identifiers to RevTrie nodes [40, 39]. RNode is built as the inverse of per-
mutation rids.

In the experiments of the original LZ-index [40, 39], the largest extra space
needed to build LZTrie is that of the normal trie, which is 1.7–2.0 times the
text size. The largest extra space to build RevTrie is that of the normal reverse
trie, which is, in some cases, 4 times the text size. This is, mainly, because of
the empty unary nodes. This space dictates the maximum indexing space of the
algorithm. The overall indexing space was 4.8–5.8 times the text size for English
text, and 3.4–3.7 times the text size for DNA. As a comparison, the construction
of a plain suffix array without any extra data structure requires 5 times the text
size. However, after we build the index we are left with a succinct representation,
while a normal suffix array needs those 5 times the text size forever.

4 Thesis Proposal

In this section we present our thesis proposal. In the following subsections, for
each part of the thesis we give an introduction, and then we define the objective,
the main aspects of the proposed research, and expected results.

4.1 Space-efficient Construction of LZ-index

Many works on compressed full-text self-indexes do not consider the space-
efficient construction of the indexes. For example, construction of compressed

suffix array (CS-array) [44] and FM-index [9] involves building first the suffix
array of the text. Similarly, the LZ-index is constructed over a non-compressed
intermediate representation. In both cases, one needs about 5 times the text size.
Thus, the final indexes require little working memory, but the memory required
to build them may be excessive. For example, the Human Genome may fit in 1
Gb of main memory using these indexes (and thus it can be operated entirely in
RAM on a desktop computer), but 15 Gb of main memory are needed to build
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Fig. 3. Different representations of the Ziv-Lempel trie for the running example.

them! Using secondary memory for the construction is usually rather inefficient,
thus we seek to avoid the use of secondary memory whenever possible.

The works of T.-W. Lam et al. [26] and W.-K.Hon et al. [16] deal with the
space (and time) efficient construction of CS-array. The former work presents an
algorithm that uses (2H0(T )+1+ ε)u bits of space to build the CS-array, where
ε is any positive constant; the construction time is O(σu log u), which is good
enough if the alphabet is small (as in the case of DNA), but may be impractical
in the case of proteins and Oriental languages, such as Chinese or Japanese. The
second work [16] addresses this problem by requiring (H0(T ) + 2 + ε)u bits of
main memory, and O(u log u) time to construct the CS-array. Also, they show
how to build the FM-index from CS-array in O(u) time.

The main memory requirement to build the LZ-index comes from the normal
tries used to build LZTrie and RevTrie. In this part of the thesis, we aim at a
practical and efficient algorithm to build those tries in little memory, by replacing
the normal tries with space-efficient data structures that support insertions.
These can be seen as hybrids between normal tries and the final parentheses
representations.

We base the space-efficient construction of the tries in a representation of
balanced parentheses [36], modified to allow a fast incremental construction as we
traverse the text. In a linear sequence of balanced parentheses, the insertion of a
new node at any position of the sequence may force rebuilding the sequence from
scratch. To avoid that cost, we define a hierarchical representation of balanced

parentheses (hrbp for short), such that we rebuild only a small part of the entire
sequence to insert a new node. In a hrbp we cut the trie into pages, that is,
into subsets of trie nodes such that if a node x is stored in page q, then node y,
the parent of x, is: (1) also stored in q (enclosing x), or (2) stored in a page p,
the parent page of q, and hence y is ancestor of all nodes stored in q. We store
in p information indicating that node y encloses all nodes in q. In a hrbp we
arrange the pages in a tree, thus the entire trie is represented by a tree of pages.
A page is represented as a contiguous block of memory. In Fig. 3 (right) we show
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a hrbp for LZTrie. When we insert a new node in the hrbp (corresponding to
a Ziv-Lempel block), we only need to recompute the page were the insertion is
done.

Objective: To design, analyze, implement, and evaluate the empirical perfor-
mance of an algorithm to construct LZ-index using little space.

Aspects to Consider in the Research:

– To define how much information is stored in each page of the hrbp, and how
much is computed on the fly.

– To define a policy to achieve a minimum fill ratio α in the pages of the hrbp,
thus controlling the wasted space.

– To define a method to solve page overflows (i.e., insertions in full pages).
This method must minimize the number of pages in the hrbp, thus reducing
the space wasted in pointers between pages.

– To compress empty unary paths when constructing RevTrie, and thus re-
ducing even more the indexing space of this trie. To this end, we plan to use
a PATRICIA tree [33] to represent RevTrie.

– To perform a theoretical analysis for construction time and indexing space
of the algorithm.

– To perform an efficient implementation of a prototype of the space-efficient
algorithm to construct the LZ-index.

– To use the prototype to obtain experimental results on the space-efficient
construction of LZ-index. To compare against the method of W.-K.Hon et
al. [16] and others.

Expected Results: A practical and space-efficient algorithm to construct LZ-
index, such that the index can be used in many more practical situations. As
in related works [26, 16], and using the properties of Ziv-Lempel compression,
we hope to relate the space needed in the construction with the size of the
compressed text. Also, we expect an indexing space close to that of the final
index.

4.2 Reducing the Space Requirements of LZ-index

The space requirement of LZ-index is relatively large compared with competing
schemes, such as CS-array and FM-index, which in practice require 0.6 to 0.7
and 0.3 to 0.8 times the text size respectively, versus 1.2 to 1.6 times the text
size of LZ-index.

When we replace Range by RNode structure, the result is actually a “naviga-
tion” scheme that permits us moving back and forth from trie nodes to positions,
both in LZTrie and RevTrie. The block identifiers are common to both tries and
permit moving from one trie to the other.

Figure 4 shows the navigation scheme. Dashed arrows are “for free” in terms
of memory, since they are followed by applying rank. The other four arrows are
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in fact the four main components in the space usage of the index: node identifiers
in LZTrie (ids) and in RevTrie (rids), and tree nodes in LZTrie (Node) and in
RevTrie (RNode). The structure is symmetric and we can move from any point
to any other.

node in
LZTrie

position in
LZTrie

position in
RevTrie

block
identifier

node in
RevTrie

rank

ids

rank

rids

Node RNode

Fig. 4. The navigation structure over index components.

The structure, however, is redundant, in the sense that the number of arrows
is not minimal. Given n nodes, n − 1 arrows are sufficient to connect them in
both directions (actually forming a ring structure). Figure 5 gives an alternative
navigation scheme [37] where the minimum number of links are used. Note that
arrays rids and Node have disappeared and have been replaced by mapping Rev,
which given a rank position in the RevTrie directly gives the corresponding node
in LZTrie, that is, Rev(rpos) = Node(rthr(rpos)).

node in
LZTrie

position in
LZTrie

position in
RevTrie

block
identifier

node in
RevTrie

rank

ids

rank

Rev

RNode

Fig. 5. The reduced navigation structure over index components.

The result is that the index works in about 3/4 of the space originally needed,
at the expense of somewhat longer navigation paths in the query process. In some
cases queries are even faster under this scheme, since the direct link Rev is faster
than the direct application of Node(rthr(rpos)). However, there are cases where
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we need to compute Node(id), but as we do not have Node now, we are forced
to use Rev(rank(RNode(id))) instead, which triples the cost. There are other
cases where also the path length is 3. All these are needed for finding occurrences
of type 2 and 3, and so the search time is increased.

In this part of the thesis we propose better ways to reduce the redundant
information in the LZ-index with the aim of improving the space requirement of
it. In Figure 6 we show a variant of the navigation scheme presented in Figure
5. In this new scheme we replace RNode by rids−1, the inverse of permutation
rids, and we add ids−1, the inverse of permutation ids. However, the idea is not
to store explicitly the inverse permutations. Instead, we use the idea of Munro et
al. [35], which present a method requiring (1+ ε)n log n+O(1) bits of storage to
represent a permutation and compute its inverse in O(1/ε) time, for a constant
0 < ε < 1. Note that we need 2n log n bits to represent both permutations,
and the time to compute a value of a permutation is O(1). This new scheme
has the advantage that the largest useful path length is 2. However, the cost
of computing ids−1 and rids−1 is not constant, and thus paths including these
arrows have an additional cost. We hope that this new version will work also
in about 3/4 of the space of the original LZ-index (plus the space of the data
structures to compute the inverses), and that the search time will be competing
with that of the original LZ-index.

node in
LZTrie

position in
LZTrie

position in
RevTrie

block
identifier

node in
RevTrie

rank

ids

rank

Rev

ids−1 rids−1

rids

Fig. 6. A new variant of the navigation structure over index components.

Another navigation scheme is shown in Figure 7. In this case we replace
the Rev array by a data structure to compute select (which is just the inverse
of rank) in O(1) time [34]. Given a position in LZTrie, select computes the
corresponding LZTrie node. Thus, this version of the index requires less space
(we hope about 0.6 times the size of the original LZ-index). It is important to
note that the data structure of Munro et al. allows space/time trade-offs, and in
this way we expect that this introduce space/time trade-offs to LZ-index.

Objective: To design, analyze, implement, and evaluate the empirical perfor-
mance of different methods to reduce the space requirement of LZ-index, mainly
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node in
LZTrie

position in
LZTrie

position in
RevTrie

block
identifier

node in
RevTrie

rank

ids

ids−1 rids−1

rids

rankselect

Fig. 7. Our navigation structure over index components.

by eliminating some of the redundancy in it, also providing space/time trade-offs
to the index.

Aspects to Consider in the Research:

– To define the versions of LZ-index corresponding to the above schemes. We
also plan to study the convenience of other navigation schemes.

– To define the construction and search algorithms on this new version of LZ-
index. For the scheme of Figure 6, the search algorithm must to use the
optimal paths in the navigation scheme, avoiding to use ids−1 or rids−1

whenever exists an alternative path of the same length.
– To perform a theoretical analysis of working space and search time of this

new alternatives. As the data structure to compute inverse permutations
allows space/time trade-offs [35], we hope to obtain versions of LZ-index
providing space/time trade-offs.

– To perform efficient implementations of prototypes of this new indexes.
– To use the prototypes to obtain experimental results of the space usage and

search time of the new indexes, comparing against the original LZ-index and
others.

Expected Results: To reduce the space requirements of LZ-index, and to get
compressed full-text self-indexes providing a complete range of space/time trade-
offs. We hope a version of LZ-index requiring about 0.6 times the space of the
original index.

4.3 A Secondary Memory Prototype of LZ-index

Although compressed full-text self-indexes require little memory, there are cases
where the text is so large that the corresponding self-index does not fit entirely
in main memory. In these cases, the index must be stored in secondary storage,
and the search proceeds by loading to main memory the relevant parts of the
index. Because of its high cost, the problem here consists in reducing the number
of accesses to secondary storage at search and construction time.
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Remember that the initial statement in behalf of compressed full-text self-
indexes was that larger texts could be indexed and stored in main memory, with-
out accessing secondary memory. However, the advantage of using compressed
full-text self-indexes on secondary storage is that the cost of transmission of
the index from secondary to main memory can be reduced (recall Advantage 2,
Section 1).

There do not exist many works on full-text indexes on secondary memory,
which definitely is an important issue. One of the best known indexes for sec-
ondary memory is the String B-tree [8], although this is not a compressed data
structure, requiring about 12 times the text size (not including the text) [7].
On the other hand, Clark and Munro [6] present a representation of suffix trees
on secondary storage (the Compact Pat Trees, or CPT for short). They use a
space-efficient representation of the trie structure, requiring 3u + o(u) bits of
storage (i.e., this is not a compressed index, because the space requirement is
not related to Hk(T )). Also, the index needs the text to operate. The represen-
tation is organized in such a way that the number of disk accesses is reduced to
3–4 per text search. The authors claim that the space requirement of their index
is comparable to that of the suffix arrays, since it needs about 5–6 times the
text size to operate. Finally, Mäkinen et al. [30] propose a technique to store the
CS-array on secondary storage, based on backward searching [45]. This is the
only proposal to store a compressed full-text self-index on secondary memory,
requiring less than u(H0(T ) + log log σ) bits of storage.

In this part of the thesis we propose to define a version of LZ-index that can
be efficiently handled on secondary storage, both for constructing and searching.
In this sense, the hrbp used in Subsection 4.1 to construct LZ-index can be useful,
since it cuts the trie into pages which can be stored on secondary memory. Also
it is a good idea to replace the Node and RNode mappings as in Subsection
4.2, modifying the technique of Munro et al. [35] to work on secondary storage.
This reduces the secondary memory accesses when navigating from a trie to the
other.

Objective: To design, analyze, implement, and evaluate empirical performance
of an efficient version of LZ-index working on secondary memory.

Aspects to Consider in the Research:

– Definition of the data structures to effectively store the index on secondary
memory. The trie operations (Subsection 3.1) must be efficiently imple-
mented on this new representation.

– To define a construction algorithm that works on secondary memory, mini-
mizing the navigation from RevTrie to LZTrie (when constructing RevTrie).

– To define a method that minimizes the navigation from LZTrie to RevTrie

(and vice versa) at search time, reducing the accesses to secondary memory.
– To perform a theoretical analysis of space occupancy and number of sec-

ondary memory accesses at search and construction time.
– To perform an efficient implementation of a prototype of LZ-index on sec-

ondary memory.
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– To use the prototype to obtain experimental results, comparing against other
data structures working on secondary memory (such as String B-trees and
CPT ).

Expected Results: To obtain an efficient version of LZ-index working on sec-
ondary memory (both for constructing and searching).

4.4 A Dynamic LZ-index

Generally, in indexed text searching research, the text is modeled as a static
sequence of characters. However, in real situations the insertion and deletion of
parts of the text is rather common. This does not introduce major problems in
sequential text searching scenarios, since there is not any data structure built
on the text. However, in indexed text searching, the indexes must be updated
upon text changes. This is currently a problem even on uncompressed full-text
indexes, and not much has been done on this important issue.

Some works on dynamic full-text indexes are [8, 9, 17, 5], of which the last
three are compressed self-indexes. Yet, those are very preliminary.

The model of the problem is the following. Let ∆ = {T1, . . . , Ts} be a dynamic
collection of texts having arbitrary lengths and total size u. Collection ∆ may
shrink or grow over time due to insert and delete operations which allow to
add or remove from ∆ an individual text string.

It is important to note that the intermediate hrbp of the tries in Subsection
4.1 can be made searchable, so that it could be taken as the final index. The
result would be a LZ-index supporting efficient insertion of new text, since it
can be seen as the insertion of a new text Ts+1 at the end of ∆. The problem
here arises with the deletion of text, since it can be performed at any part of the
collection.

Objective: To design, analyze, implement, and evaluate empirical performance
of a version of LZ-index allowing insertions and deletions of text (both on main
and secondary memory).

Aspects to Consider in the Research:

– To define an algorithm to allow efficient insertion of text to LZ-index. We
plan to use the hrbp of Subsection 4.1 to avoid recomputing the whole index
on insertions of text.

– To perform the theoretical analysis for the cost of updating the index upon
insertions.

– To perform an efficient implementation of a prototype of this semi-dynamic
LZ-index.

– To use the prototype to obtain experimental results on the viability of the
method in practice.

– To define, on the above representation, a deletion algorithm such that the
index can be updated on deletions of part of the text, in order to get a
fully-dynamic index.
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– To perform a theoretical analysis of the cost of updating the index on dele-
tions.

– To perform an efficient implementation of the deletion algorithm on the
semi-dynamic prototype, thus obtaining a fully-dynamic one.

– To use the prototype to obtain experimental results on dynamic texts both
in main and secondary memory.

Expected Results: An efficient version of LZ-index, which can be efficiently up-
dated on text changes. We hope that the results will be of independent interest
for dinamizing other Ziv-Lempel schemes.

5 Deliverables

– The main contributions of our thesis will be new theoretical developments
in the area of compressed full-text self-indexes based on the Ziv-Lempel
compression algorithm.

– We hope to publish our main results in at least four high-level international
conferences, and in two ISI Journals.

– We plan to implement prototypes of our algorithms, which will be publicly
available such that they can be used by the scientific community as well as
practitioners looking for particular solutions to practical problems in Com-
putational Biology, Digital Libraries, and full-text databases in general.

6 Work One on Advance

We have already worked on the goals of Section 4.1, that is, the space-efficient
construction of LZ-index. As a result we have obtained a space-efficient and
practical construction algorithm with the following main properties:

– Allowing to choose a minimum fill ratio α in the pages of the hrbp, 0 < α < 1,
and with a method to solve page overflows that minimizes the number of
pages in the hrbp.

– Requiring (4 + ε)uHk(T ) + o(u) bits to construct LZ-index in O(σu) time
(recall that the final index requires 4uHk(T )(1 + o(1)) bits of storage).

– In practice, by choosing appropriately the value of α, the indexing space is
close to that of the final index, as predicted by the theoretical analysis. That
is, whenever the LZ-index can be used, we can build it.

– The indexing speed is approximately 5 sec/Mb (in a 2GHz machine), which
seems much better than competing schemes [26, 16] (although we have not
yet directly compared our method to those approaches).

All these results have been submitted to the 16th Annual International Sym-

posium on Algorithms and Computation (ISAAC 2005 ), whose proceedings are
published by Springer in the Lecture Notes in Computer Science series. We
attach to this proposal the submitted paper.
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7 Conclusions

The current trend in indexed full-text searching is that of compressed full-text
self-indexes, which replace the text with a more space-efficient representation of
it, and at the same time this representation provides indexed access to the text.
As a consequence, larger texts can be indexed and stored in main memory.

There is much work on indexed text searching, and many goals have been
obtained separately. In this proposal we have defined the working plan for our
thesis. As a general objective we hope to contribute in the track of compressed
full-text self-indexes based on Ziv-Lempel compression. Our specific objective is
to add many interesting features to the LZ-index compressed full-text self-index
[38–40], obtaining an index with the following properties: fast full-text searching
and text recovery; using little space for construction and operation; allowing
insertion and deletion of text; providing a range of space/time trade-offs; and
efficient construction and search in secondary memory.
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