
Semantic Navigation on the Web of Data: Specification of

Routes, Web Fragments and Actions

Valeria Fionda

KRDB, Free University of

Bozen-Bolzano, Italy

Claudio Gutierrez

DCC, Universidad de Chile,

Santiago, Chile

Giuseppe Pirró

KRDB, Free University of

Bozen-Bolzano, Italy

ABSTRACT
The massive semantic data sources linked in the Web of Data
give new meaning to old features like navigation; introduce
new challenges like semantic specification of Web fragments;
and make it possible to specify actions relying on semantic
data. In this paper we introduce a declarative language to
face these challenges. Based on navigational features, it is
designed to specify fragments of the Web of Data and actions
to be performed based on these data. We implement it in
a centralized fashion, and show its power and performance.
Finally, we explore the same ideas in a distributed setting,
showing their feasibility, potentialities and challenges.

Keywords
Navigation, Web of Data, Linked Data, Semantic Web

1. INTRODUCTION
Classically the Web has been modelled as a huge graph

of links between pages [4]. This model included Web fea-
tures such as links without labels and only generated by
the owner of the page.1 Although Web pages are created
and kept distributively, their small size and lack of struc-
ture stimulated the idea to view searching and querying
through single and centralized repositories (built from pages
via crawlers). With the advent of the Web of Data, that is,
semantic data at massive scale [3, 16], these assumptions, in
general, do not hold anymore. First, links are semantically
labelled (thanks to RDF triples) thus can be used to orient
and control the navigation, are generated distributively and
can be part of any data source. Hence, it has become a
reality –using the words of Tim Berners-Lee– that anyone
can say anything about anything and publish it anywhere.
Second, data sources have a truly distributed nature due to
their huge size, autonomous generation, and standard RDF
structure. This makes inconvenient and impractical to re-
organize them in central repositories as for Web pages.

1Even though the spec. XLink [7] allows to define links in a
third page, it was never used massively.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The Web

The Web of Data

r

<2>
<3>

1
<4>
2

<5>
3

<3>
<5>

4

5

Search/Query

 <2>
<3>

<4>

1

2

<3>
<5>

<5>
3

4

5

href

<uri2,q,uri3>
<uri1,p,uri2>

...
 uri2

<uri1,r,uri4>
<uri2,p,uri1>

...
 uri1

<uri3,m, uri4>
<uri1,n, uri3>

...
uri3

<uri4,t,uri2>
...

uri4
 Description of

urij

p q
n t m

Figure 1: Classical Web versus Web of Data. Size,
distributive character, and semantic description of
data gives navigation a prominent role.

In this setting, navigation along the nodes of the Web of
Data, using the semantics stored in each data source, be-
comes significant. To model these issues, rather than as a
graph, theWeb of Data is better represented as a set of nodes
plus data describing their semantic structure“hanging” from
each node (see Fig. 1). This model permits to better ex-
press the distributed creation and maintenance of data, and
the fact that its structure is provided by dynamical and dis-
tributed data sources. In particular, it reflects the fact that
at each moment of time, and for each particular agent, the
whole network of data on the Web is unknown [19].

This new scenario calls for new models and languages to
query and explore this semantic data space. In particular we
highlight three functionalities: (1) a new type of navigation
emerges as an important feature, in order to traverse sites
and data sources; (2) closely tied to it, navigation charts or
specifications, that is, semantic descriptions of fragments of
the Web; (3) specification of actions one would like to per-
form over this data (e.g., retrieving data, sending messages,
etc.) also becomes relevant. Navigation, specifications of re-
gions, and actions appear as part of the basic functionalities
for exploring and doing data management over the Web of
Data. Ideally, one would like to have a simple declarative
language that integrates all of them.

In this paper we present such a language, which we call
NautiLOD, and show that it can be readily implemented
on the current Linked Open Data (LOD) network [16]. In
fact, we introduce the swget tool that exploits current Web
protocols and work on LOD data. Finally, we explore its dis-
tributed version and implement an application as proof-of-
concept to show its feasibility, potentialities and challenges.

linkedmdb..9749

/film/334

31519

31536

Producer

lmdb:
actor

lmdb:
actor

lmdb:
producer

rdf:type

Quentin
Tarantino

Pulp
Fiction

Knowville
Tenesee

David
Lynch

Film
Director

Missoula
Montana

Isabella
Rossellini

Rome

Blue
Velvet

Stanley
Kubrick

Film
Editing

New
York

owl:sameAs

dbpo:occupation

dbpo:influenced

dbpo:birthPlace

dbpo:
director

dbpo:influenced

dbpo:partner

dbpo:
starring

dbpedia.org

linkedmdb.org

dbpo:director

Blue
Velvet

David
Lynch

Angelo
Badalamenti

Dennis
Hopper

fb:music
by

fb:genrefb:cast
member

owl:sameAs

freebase.org

Cult

fb:music
by

dbpo:birthPlace

dbpo:
birthPlacedbpo:

birthPlace
dbpo:

occupation

Stanley
Kubrickowl:sameAs

Path of
Glory

fb:director

dbp:<http://dbpedia.org/>

fb:<http://rdf.freebase.com/ns/>lmdb:<http://lindedmdb.org/>

dbpo:<http://dbpedia.org/ontology/>

owl:<http://www.w3.org/2002/07/owl/>
rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

http://en.wikipedia.org/
wiki/Quentin_Tarantino

http://en.wikipedia.org/
wiki/Stanley_Kubrick

http://en.wikipedia.org/
wiki/David_Lynch

foaf:page

foaf:page

foaf:<http://xmlns.com/foaf/spec/>

foaf:page

Figure 2: An excerpt of data that can be navigated from dbpedia:StanleyKubrick.

NautiLOD by example. To help the reader to get a more
concrete idea of the language, we present some examples
using an excerpt of real-world data shown in Fig. 2. (The
formal syntax and semantics is introduced in Section 3).

Example 1.1. (Aliases via owl:sameAs) Specify what
is predicated from Stanley Kubrick in DBPedia and also con-
sider his possible aliases in other data sources.

The idea is to have <owl:sameAs>-paths, which start from
Kubrick’s URI in DBPedia. Recursively, for each URI u

reached in this way, check in its data source the triples
hu, owl:sameAs, vi. Select all v’s found. Finally, for each
of such v, return all URIs w in triples of the form hv, p, wi
found in v’s data source. The specification in NautiLOD is
as follows:

(<owl:sameAs>) ⇤ /<_>

where <_> denotes a wild card for RDF predicates. In Fig.
2, when evaluating this expression starting from the URI
dbp:StanleyKubrick we get all the di↵erent representations
of Stanley Kubrick provided by dbpedia.org, freebase.org
and linkedmdb.org. From these nodes, the expression <_>

matches any predicate. The final result is: {dbp:DavidLynch,
dbp:New York, dbp:FilmEditing,lmdb:Producer,lmdb:/film/334,fb:Path

of Glory,http://en.wikipedia.org/wiki/Stanley_Kubrick}. Note that
the naive search for Kubrick’s information in DBPedia, would
only give {http://en.wikipedia.org/wiki/Stanley_Kubrick, New York,

David Lynch, Film Editing}.

A more complex example, which extends standard naviga-
tional languages with actions and SPARQL queries is:

Example 1.2. URIs of movies (and their aliases), whose
director is more than 50 years old, and has been influenced,
either directly or indirectly, by Stanley Kubrick. Send by
email the Wiki pages of such directors as you get them.

This specification involves influence-paths and aliases as
in the previous example; tests over the dataset associated to
a given URI (if somebody influenced by Kubrick is found,

check if it has the right age), a test expressed in NautiLOD
using ASK-SPARQL queries; and actions to be taken using
data form the data source. The NautiLOD specification is:

(<dbpo:influenced>)+[Test]/Act/<dbpo:director>/

/(<owl:sameAs>)?

where the test and the action are as follows:
Test= ASK ?p <dbpo:birthDate> ?y. FILTER(?y<1961-01-01).

Act= sendEmail(?p)[SELECT ?p WHERE {?x <foaf:page> ?p.}].
In the expression, the symbol + denotes that one or more

levels of influence are acceptable, e.g., we get directors like
David Lynch and Quentin Tarantino. From this set of re-
sources, the constraint on the age enforced by the ASK query
is evaluated on the data source associated to each of the re-
sources already matched. This filter leaves in this case only
dbp:DavidLynch. At this point, over the elements of this
set (one element in this case), the action will send via email
the page (obtained from the SELECT query). The action
sendEmail, implemented by an ad-hoc programming proce-
dure, does not influence the navigation process. Thus, the
evaluation will continue from the URI u =dbp:DavidLynch,
by navigating the property dbpo:director (found in the
dataset D obtained by dereferencing u). For example, in
D we found the triple hu, dbpo:director, dbp:BlueVelveti.
Then, from dbp:BlueVelvet we launch the final part of
the expression, already seen in Example 1.1. It can be
checked that the final result of the evaluation is: (1) the set
{dbp:BlueVelvet, fb:BlueVelvet}, that is, data about the
movie Blue Velvet from dbpedia.org and freebase.org; (2)
the set of actions done; in this case one email sent.

Contributions of the paper. The following are main the
contributions of this paper:

(1) First: we define a general declarative specification lan-
guage, called NautiLOD, whose navigational features ex-
ploit regular expressions on RDF predicates, enhanced with
existential tests (based on ASK-SPARQL queries) and ac-
tions. It allows both: to specify a set of sites that match the
semantic description, and to orient the navigation using the

information that these sites provide. Its basic navigational
features are inspired both by wget and XPath, enhanced with
semantic specifications, using SPARQL to filter paths, and
with actions to be performed while navigating. We present a
simple syntax, a formal semantics and a basic cost analysis.

(2) Second: we implement a version of the language, by
developing the application swget that evaluates NautiLOD
expressions in a centralized form (at the distinguished ini-
tial node). Being based on NautiLOD, swget permits to
perform semantically-driven navigation of the Web of Data
as well as retrieval actions. This tool relies on the computa-
tional resources of the initial node issuing the command and
exploits the Web protocol HTTP. It is readily available on
the current Linked Open Data (LOD) network. Its limita-
tion is, of course, the scalability: the tra�c of data involved
could be high, making the navigation costly.

(3) Third: we implement swget in a distributed environ-
ment. Based on simple assumptions on third parties (a small
application that each server should run to join it, and that
in many ways extends the idea of current endpoints), we
show the feasibility of such an application that simulates a
travelling agent, and hint at the powerful uses it can have.
From this proof-of-concept, we explore the potentialities of
this idea and its challenges.

The paper is organized as follows. Section 2 provides a
quick overview of the Web of Data. In Section 3 the Nau-
tiLOD language is introduced: syntax, semantics and its
evaluation costs. In Section 4 swget, a centralized imple-
mentation of NautiLOD is introduced: its architecture,
pseudo-code and experimental evaluation. Section 5 deals
with the distributed version of swget, showing the feasibil-
ity and potentialities of this application. Section 6 discusses
related work. Finally, in Section 7 we draw conclusions and
delineate future work.

2. PRELIMINARIES: THE WEB OF DATA
This section provides some background on RDF and Linked

Open Data (LOD) that are at the basis of the Web of Data.
For further details the reader can refer to [3, 11].

RDF. The Resource Description Framework (RDF) is a
metadata model introduced by the W3C for representing
information about resources in the Semantic Web. RDF is
built upon the notion of statement. A statement defines the
property p holding between two resources, the subject s and
the object o. It is denote by hs, p, oi, and thus called triple in
RDF. A collection of RDF triples is referred to as an RDF
graph. RDF exploits Uniform Resource Identifiers (URIs)
to identify resources. URIs represent global identifiers in
the Web and enable to access the descriptions of resources
according to specific protocols (e.g., HTTP).

2.1 Web of Data - the LOD initiative
The LOD initiative leverages RDF to publish and inter-

linking resources on the Web. This enables a new (semantic)
space called Web of Data. Objects in this space are linked
and looked-up by exploiting (Semantic) Web languages and
technologies. LOD is based on some principles, which can
be seen more as best practices than formal constraints:
(1) Real world objects or abstract concepts must be as-

signed names on the form of URIs.
(2) In particular, HTTP URIs have to be used so that

people can look them up by using existing technologies.

(3) When someone looks up a URI, associated information
has to be provided in a standard form (e.g., RDF).

(4) Interconnections among URIs have to be provided by
including references to other URIs.

An important notion in this context is that of dereference-
able URI. A dereferenceable URI, represents an identifier of
a real world entity that can be used to retrieve a represen-
tation, by an HTTP GET, of the resource it identifies. The
client can negotiate the format (e.g., RDF, N3) in which it
prefers to receive the description.

2.2 Data in the LOD
Data in the LOD are provided by sites (i.e., servers),

which cover a variety of domains. For instance, dbpedia.org
or freebase.org provide cross-domain information, geon-
ames.org publishes geographic information, pubmed.org in-
formation in the domain of life-science whereas acm.org cov-
ers information about scientific publications.

Theoretically in each server resides an RDF triple-store
(or a repository of RDF data). In order to obtain informa-
tion about the resource identified by a URI u, a client has to
perform an HTTP GET u request. This request is handled
by the Linked Data server, which answers with a set triples.
This is usually said to be the dereferencing of u.

In the Web of Data, resources are not isolated from one
another, in spirit with the fourth principle of LOD, but are
linked. The interlinking of these resources and thus of the
corresponding sites in which they reside forms the so called
Linked Open Data Cloud 2.

3. A NAVIGATION LANGUAGE FOR THE
WEB OF DATA

As we argued in the Introduction, there are data man-
agement challenges emerging in the Web of Data that need
to be addressed. Particularly important are: (i) the speci-
fication of parts of this Web, thus of semantic fragments of
it; (ii) the possibility to declaratively specify the navigation
and exploit the semantics of data placed at each node of
the Web; (iii) performing actions while navigating. To cope
with this needs, this section presents a navigation language
for the Web of Data, inspired by two non-related languages:
wget, a language to automatically navigate and retrieve Web
pages; and XPath, a language to specify parts of documents
in the world of semi-structured data. We call it Navigational
language for Linked Open Data, NautiLOD.

NautiLOD is built upon navigational expressions, based
on regular expressions, filtered by tests using ASK-SPARQL
queries (over the data residing in the nodes that are being
navigated), and incorporating actions to be triggered while
the navigation proceeds. NautiLOD allows to: (i) semanti-
cally specify collections of URIs; (ii) perform recursive navi-
gation of the Web of Data, controlled using the semantics of
the RDF data hanging from the URIs that are visited (that
can be obtained by dereferencing these URIs); (iii) perform
actions on specific URIs, as for instance, selectively retrieve
data from them.

Before presenting the language, we present in Section 3.1
an abstract data model of the Web of Data. Then we present
the syntax of NautiLOD (Section 3.2), and the formal se-
mantics (Section 3.3). Finally, we provide a basic cost model
for the complexity of evaluating NautiLOD expressions.

2
http://richard.cyganiak.de/2007/10/lod/

3.1 Data model
We define a minimal abstract model of the Web of Data

to highlight the main features required in our discussion.
Let U be the set of all URIs and L the set of all liter-

als. We distinguish between two types of triples. RDF links
hs, p, oi 2 U⇥U⇥U that encode connections among resources
in the Web of Data. Literal triples, hs, p, oi 2 U ⇥ U ⇥ L,
which are used to state properties or features of the resource
identified by the subject s. Note that the object of a triple,
in the general case, can be also a blank node. However, here
we will not consider them to simplify the presentation of the
main ideas (note also that the usage of blank nodes is dis-
couraged [16]). Let T be the set of all triples in the Web of
Data. The following three notions will be fundamental.

Definition 3.1 (Web of Data T). Let U and L be
infinite sets. The Web of Data (over U and L) is the set of
triples hs, p, oi in U ⇥ U ⇥ (U [L). We will denote it by T .

Definition 3.2 (Description Function D). A func-
tion D : U ! P (T) associates to each URI u 2 U a subset
of triples of T , denoted by D(u), which is the set of triples
obtained by dereferencing u.

Definition 3.3 (Web of Data Instance W). A Web
of Data instance is a pair W = hU ,Di, where U is the set of
all URIs and D is a description function.

Note that not all the URIs in U are dereferenciable. If a
URI u 2 U is not dereferenciable then D(u) = ;.

3.2 Syntax
NautiLOD provides a mechanism to declaratively: (i)

define navigational expressions; (ii) allow semantic control
over the navigation via test queries; (iii) retrieve data by per-
forming actions as side-e↵ects along the navigational path.

The navigational core of the language is based on regu-
lar path expressions, pretty much like Web query languages
and XPath. The semantic control is done via existential
tests using ASK-SPARQL queries. This mechanism allows
to redirect the navigation based on the information present
at each node of the navigation path. Finally, the language
allows to command actions during the navigation according
to decisions based on the original specification and the local
information found.

path ::= pred | (pred)�1 | action | path/path
| (path)? | (path)⇤ | (path|path) | path[test]

pred ::= <RDF predicate> | < >
test ::= ASK-SPARQL query

action ::= procedure[Select-SPARQL query]

Table 1: Syntax of the NautiLOD language.

The syntax of the language NautiLOD is defined accord-
ing to the grammar reported in Table 1. The language is
based on Paths Expressions, that is, concatenation of base-
case expressions built over predicates, tests and actions. The
language accepts concatenations of basic and complex types
of expressions. Basic expressions are predicates and actions;
complex expressions are disjunctions of expressions; expres-
sions involving a number of repetitions using the features of
regular languages; and expressions followed by a test. The
building blocks of a NautiLOD expression are:

1. Predicates. The base case. pred can be an RDF predi-
cate or the wildcard <_> used to denote any predicate.

2. Test Expressions. A test denotes a query expression.
Its base case is an ASK-SPARQL query.

3. Action Expressions. An action is a procedural specifi-
cation of a command (e.g., send a notification message,
PUT and GET commands on the Web, etc.), which
obtains its parameters from the data source reached
during the navigation. It is a side-e↵ect, that is, it
does not influence the subsequent navigation process.

If restricted to (1) and (2), NautiLOD can be seen as a
declarative language to describe portions of the Web of Data,
i.e., set of URIs conform to some semantic specification.

3.3 Semantics
NautiLOD expressions are evaluated against a Web of

Data instance W and a URI u indicating the starting point
of the evaluation. The meaning of a NautiLOD expression
is a set of URIs defined by the expression plus a set of actions
produced by the evaluation of the expression. The resulting
set of URIs are the leaves in the paths according to the
NautiLOD expression, originating from the seed URI u.

For instance, the expression type, evaluated over u, will
return the set of URIs u

k

reachable from u by “navigat-
ing” the predicate type, that is, by inspecting triples of the
form hu, type, u

k

i included in D(u). Similarly, the expres-
sion type[q] will filter, from the results of the evaluation
of type, those URIs u

k

for which the query q evaluated on
their descriptions D(u

k

) is true. Finally, the evaluation of an
expression type[q]/a will return the results of type[q] and
perform the action a (possibly using some data from D(u

k

)).
The formal semantics of NautiLOD is reported in Ta-

ble 2. The fragment of the language without actions follows
the lines of formalization of XPath by Wadler [27]. Actions
are treated essentially as side-e↵ects and evaluated while
navigating. Given and expression, a Web of Data instance
W = hU ,Di, and a seed URI u the semantics has the fol-
lowing modules:

• EJpathK(u,W): Evaluates the set of URIs selected by
the navigational expression path starting from the URI
u in the Web of Data instance W. Additionally, it
collects the actions associated to each of such URIs.

• UJpathK(u,W): Defines the set of URIs specified by
the expression path when forgetting the actions.

• AJpathK(u,W): Executes the actions specified by the
evaluation of the navigational expression path.

• SemJpathK(u,W): Outputs the meaning of the expres-
sion path, namely, the ordered pair of two sets: the set
of URIs specified by the evaluation of path; and the
set of actions performed according to this information.

Note on some decisions made: Any sensible real implemen-
tation can benefit from giving an order to the elements of
the output action set. As far as the formal semantics, at this
stage we assumed that actions are independent from one an-
other and that the world W is static during the evaluation
(to avoid to overload our discussion with the relevant issue
of synchronization, that is at this point orthogonal to the
current proposal). Thus, we decided to denote the actions

EJ<p>K(u,W) = {(u0,?) | hu, <p>, u0i 2 D(u)}
EJ(<p>)�1K(u,W) = {(u0,?) | hu0, <p>, ui 2 D(u)}

EJ<_>K(u,W) = {(u0,?) | 9<p>, hu, <p>, u0i 2 D(u)}
EJactK(u,W) = {(u, act)}

EJpath1/path2K(u,W) = {(u00, a) 2 EJpath2K(u0,W) : 9b, (u0, b) 2 EJpath1K(u,W)}
EJ(path)?K(u,W) = {(u,?)} [EJpathK(u,W)
EJ(path)⇤K(u,W) = {(u,?)} [

S1
1 EJpath

i

K(u,W) | path1 = path ^ path

i

= path

i�1/path

EJpath1|path2K(u,W) = EJpath1K(u,W) [EJpath2K(u,W)
EJpath[test]K(u,W) = {(u0, a) 2 EJpathK(u,W) : test(u0) = true}

UJpathK(u,W) = {v : 9a, (v, a) 2 EJpathK(u,W)}
AJpathK(u,W) = {Exec(a, v) : (v, a) 2 EJpathK(u,W)}

SemJpathK(u,W) = (UJpathK(u,W), AJpathK(u,W))

Table 2: Semantics of NautiLOD. The semantics of an expression is composed of two sets: (1) the set of URIs
of W satisfying the specification; (2) the actions produced by the evaluation of the specification. Exec(a, u)
denotes the execution of action a over u. ? indicates the empty action (i.e., no action).

produced by the evaluation of an expression as a set. It is
not di�cult to see that one could have chosen a list as the
semantics for output actions.

3.4 Evaluation of Costs and Complexity
We present a general analysis of costs and complexity of

the evaluation of NautiLOD expressions over aWeb of Data
instance W. We can separate the costs in three parts, where
E are expressions, E action-and-test-free expressions, A ac-
tions and T tests:

cost(E,W) = cost(E,W) + cost(A) + cost(T). (1)

Since actions do not a↵ect the navigation process we can
treat their cost separately. Besides, in our language, tests
are ASK-SPARQL queries having a di↵erent structure from
the pure navigational path expressions of the language. Even
in this case we can treat their cost independently.

Actions. NautiLOD is designed for acting on the Web
of Data. In this scenario, the cost of actions has essentially
two components: execution and transmission. The execu-
tion cost boils down to the cost of evaluating the SELECT
SPARQL query that gives the action’s parameters. As for
transmission costs, a typical example is the wget command,
where the cost is the one given by the GET data command.

Action-and-test-free. This fragment of NautiLOD can
be considered essentially as the PF fragment of XPath (lo-
cation paths without conditions), that is well known to be
(with respect to combined complexity) NL-complete under
L-reductions (Thm. 4.3, [10]). The idea of the proof is sim-
ple: membership in NL follows from the fact that we can
guess the path while we verify it in time L. The hardness
essentially follows from a reduction from the directed graph
reachability problem. Thus we have:

Theorem 3.4. With respect to combined complexity, the
action-and-test-free fragment of NautiLOD is NL-complete
under L-reductions.

Combined refers to the fact that the input parameters are
the expression size and the data size. Note that what really
matters is not the whole Web (the data), but only the set of
nodes reachable by the expression. Thus it is more precise to
speak of expression size plus set-of-visited nodes size. The
worst case is of course the whole size of the Web.

Tests. The evaluation of tests (i.e., ASK-SPARQL queries)
has a cost. This cost is well known and one could choose
particular fragments of SPARQL to control it [21]. How-
ever, tests will possibly reduce the size of the set of nodes
visited during the evaluation. Thus the cost(E,W) has to
be reduced to take into account the e↵ective subset of nodes
reachable thanks to the filtering performed by the tests. Let
W

T

be W when taking into account this filtering. We have:

cost(E,W) = cost(E,W
T

) + cost(A) + cost(T). (2)

Section 4.2 will discuss some examples on real world data by
underlining the contribution of each component of the cost.

Final Considerations. In a distributed setting, with
partially unknown information and a network of almost un-
bound size, the notion “cost of evaluating an expression e”
appears less significant than in a controlled centralized envi-
ronment. In this scenario, a more pertinent question seems
to be: “given an amount of resources r and the expression
e, how much can I get with r satisfying e ?”. This calls for
optimizing (according to some parameters) the navigation
starting from a given URI u, according to equation (2).

4. IMPLEMENTATION OF NautiLOD

This section deals with swget, a tool implementing Nau-
tiLOD. The tool swget implements all the navigational fea-
tures of NautiLOD, a set of actions centred on retrieving
data, and adds (for practical reasons) a set of ad-hoc op-
tions for further controlling the navigation from a network-
oriented perspective (e.g., size of data transferred, latency
time) that today’s are not yet found as RDF statements.
swget has been implemented in Java and is available as:

(i) a developer release, which includes a command-line tool
that is easily embeddable in custom applications; (ii) an
end user release, which features a GUI. Further details, ex-
amples, the complete syntax along with the downloadable
versions are available at the swget’s Web site 3.

4.1 Architecture
The high level architecture of swget is reported in the left

part of Fig. 3. The Command interpreter receives the input,
i.e., a seed URI, aNautiLOD expression and a set of options.

3
http://swget.wordpress.com

The input is then passed to the Controller module, which
checks if a network request is admissible and possibly passes
it to the Network Manager. A request is admissible if it com-
plies with what specified by the NautiLOD expression and
with the network-related navigation parameters (see Sec-
tion 4.1.1). The Network Manager performs HTTP GET
requests to obtain streams of RDF data. These streams are
processed for obtaining Jena RDF models, which will be
passed to the Link Extractor. The Link Extractor takes in
input an automaton constructed by the NautiLOD inter-
preter and selects a subset of outgoing links in the current
model according to the current state of the automaton. The
set is given to the Controller Module, which starts over the
cycle. The execution will end either when some navigational
parameter is satisfied or when there are no more URIs to be
dereferenced.

..

URI
Command
interpreter

Network
Manager

Controller

Link
Extractor

NAutiLOD
interpreter

RDF
Manager

user

NAutiLOD
expression

automaton
Jena
model

List<URI>

seed URI +
options

Linked Open Data (LOD)
 Cloud

HTTP GET URI

D(URI)

RDF
data

URI

URI
URI

Graphical User
Interface

input

URI

URI

URI

URI

result

Figure 3: swget architecture and scenario.

4.1.1 Network-based controlled navigation

NautiLOD is designed to semantically control the nav-
igation. However, it can be the case that a user wants to
control the navigation also in terms of network tra�c gen-
erated. A typical example is a user running swget from
a mobile device with limited Internet capabilities. This is
why swget includes features to add more control to the nav-
igation through the parameters reported in Table 3. Each
option is given in input to swget as a pair hparam, valuei.
Table 3: Network params to control the navigation

Parameter Value Meaning
maxDerTriples int max. number of triples al-

lowed in each dereferencing
saveGraph boolean Save the graphs dereferenced
maxSize int tra�c limit (in MBs)

timeoutDer long connection time-out
timeout long total time-out
domains List<String> trusted servers

To illustrate a possible scenario where the navigation can
be controlled both from a semantic and network-based per-
spective consider, the following example.

Example 4.1. (Controlled navigation) Find informa-
tion about Rome, starting from its definition in DBPedia and
includes other possible definitions of Rome linked to DBPe-
dia but only if their description contains less than 500 triples
and belongs to DBPedia, Freebase or The New York Times.

swget < dbp:Rome> (<owl:sameAs>)* -saveGraph

-domains {dbpedia.org,rdf.freebase.com,

data.nytimes.com} -maxDerTriples 500

The command, besides the NautiLOD expression, contains
the -domains and -maxDerTriples parameters to control
the navigation on the basis of the trust toward information
providers and the number of triples, respectively.

4.2 Evaluating NautiLOD expressions
Given a NautiLOD expression e it is possible to build an

automaton that can recognize NautiLOD expressions. The
transitions between states of the automaton implements the
navigation process.

4.2.1 The swget Navigation Algorithm

The swget controlled navigation algorithm is reported in
Algorithm 1. Moreover, Table 4 describes the high level
primitives used in the pseudo-code to interact with the au-
tomaton.

Algorithm 1: swget pseudo-code
Input : e=NautiLOD expression; seed=URI; par=Parms<n,v>
Output: set of URIs and literals conform to e and par;

1 a = buildAutomaton(e);
2 addLookUpPair(seed, a.getInitial());
3 while (9 p=<uri,state> to look up and checkNet(par)=OK) do
4 desc=getDescription(p.uri);
5 if (a.isFinal(p.state)) then
6 addToResult(p.uri);
7 if (not alreadyLookedUp(p)) then
8 setAlreadyLookedUp(p);
9 if (t=getTest(p.state)6= ; and evalT(t,desc)=true) then

10 s=a.nextState(p.state,t));
11 addLookUpPair(p.uri,s);
12 if (act=getAction(p.state)6= ;) then
13 if(evalA(act.test,desc)) then exeC(act.cmd);
14 s=a.nextState(p.state,act));
15 addLookUpPair(p.uri,s);
16 out=navigate(p,a,desc);
17 for (each URI pair p’=<uri,state> in out) do
18 addLookUpPair(p’);
19 for (each literal pair lit=<literal,state> in out) do
20 if (a.isFinal(lit.state)) then
21 addToResult(lit.literal);
22 return Result;

Function navigate(exp,a,desc)
Output: List of <uri,state> and <literal,state>

1 for (each pred in a.nextP(p.state)) do
2 nextS=a.nextState(p.state,pred);
3 query= "SELECT ?x WHERE

{{ ?x pred p.uri} UNION{ p.uri pred ?x}}";
4 for (each res in evalQ(query, desc)) do
5 addOutput(res,nextS);
6 return Output;

Table 4: Primitives for accessing the automaton.
Primitive Behaviour

getInitial() returns the initial state q0
nextP(q) returns the set {� | �(q,�) = q1} of tokens (i.e.,

predicates) enabling a transition from q to q1
getTest(q) returns the test to perform into the current au-

tomaton state
getAction(q) returns the action to perform into the current

automaton state
nextState(q,�) returns the state that can be reached from q by

the token �
isFinal(q) returns TRUE if q is an accepting state

The algorithm takes as input a seed URI, a NautiLOD ex-
pression and a set of network parameters, and returns a set
of URIs and literals conform to the expression and the net-
work parameters. For each URI involved in the evaluation,
possible tests (line 9) and actions (line 12) are considered.

The procedure navigate is exploited to extract links (line
3) from a resource identified by p.uri toward other re-
sources. According to the Linked Data initial proposal [2]
[section on browsable graphs] p.uri may appear either as
the subject or the object of each triple.

84# 87# 101#

104# 161#

1600#

61# 64#
91#

125#

1763#

20018#

10#

100#

1000#

10000#

100000#

σ[1.1]# σ[1.2]# σ[1.3]# σ[1.4]# σ[1.5]# σ[noAT]#

Expression2#

Expression1#

(a) Time (secs)

400# 400# 442#

442#
458#

1277#

221# 221# 221#
357#

646#

6053#

100#

1000#

10000#

σ[1-1]# σ[1-2]# σ[1-3]# σ[1-4]# σ[1-5]# σ[noAT]#

Expression2#

Expression1#

(b) #Dereferenced URIs

39477% 39477%

96798% 96798%

97649%

273955%

44261% 44261%

44261%
59013%

125521%

660515%

10000%

100000%

1000000%

σ[1.1]% σ[1.2]% σ[1.3]% σ[1.4]% σ[1.5]% σ[noAT]%

Expression2%

Expression1%

(c) # Triples retrieved

Figure 4: Evaluation of swget. Each expression has been executed 4 times. Average results are reported.

4.3 Experimental Evaluation
To show real costs of evaluating the di↵erent components

of swget expressions over real-world data, we choose two
complex expressions (shown in Fig. 5) to be evaluated over
the Linked Open Data network. We report the results of
swget in terms of execution time (t), URIs dereferenced (d)
and number of triples retrieved (n). Each expression has
been divided in 5 parts (i.e., �

i

, i 2 {1..5}). They have been
executed as whole (i.e., �[1�5]) and as action-and-test-free
expressions (i.e., �[noAT]), which correspond to E1 and E2,
respectively (see Section 3.4). Moreover, the various sub-
expressions (i.e., �[1�i], i 2 {1..4}) have also been executed.
This leads to a total of 12 expressions. For each expression,
the corresponding sub-Web has been locally retrieved. That
is, for each reachable URI the corresponding RDF graph
has been locally stored. The aim of the evaluation is to
investigate how the various components in the cost model
presented in Section 3.4 a↵ect the parameters t, d and n.

!1: <dbpo:influenced><3>
!2: [ASK ?p <dbpo:birthData> ?y.FILTER(?y > 1961-01-01)]
!3: {sendEmail(?p)[SELECT ?p WHERE {?x <foaf:name> ?p. }]}
!4: <dbpo:director>
!5: <owl:sameAs>?

E1"##$%&'()%*http://dbp:Stanley_Kubrick

!1: <dbpo:homeTown>
!2: [ASK ?person <rdf:type> <dbpo:Person>.
 ?person <rdf:type> <dbpo:MusicalArtist>]
!3: <dbpo:birthPlace>
!4: [ASK ?t <dbpo:populationTotal> ?p. FILTER(?p <15000)]
!5: <owl:sameAs>*

E2"##$%&'()*http://dbp:Italy

Figure 5: Expressions used in the evaluation

The results of the evaluation, in logarithmic scale, are re-
ported in Fig. 4(a)-(c). In particular, in the X axis are
reported from left to right: the 4 sub-expressions, the full
expression (i.e., �[1�5]) and the action-and-test-free expres-
sion (i.e., �[noAT]). Note that in some cases, the number of
results is higher than the number of dereferenced URIs re-
ported because not all the results were dereferenceable URIs.

The first expression (E1) starts by finding people influ-
enced by Stanley Kubrick up to a level 3 (subexpr. �[1�1]).
This operation requires about 61 secs., for a total of 221
URIs dereferenced. On the description of each of these 221
URIs, an ASK query is performed to select only those en-
tities that were born after the 1961 (subexpr. �[1�2]). The
execution time of the queries is of about 4 secs. (i.e., '
0.02 secs., per query). Hence, 31 entities have been selected.
At this point, an action is performed on the descriptions of

these 31 entities by selecting their <foaf:name> to be sent
via email (subexpr. �[1�3]). In total, the select, the render-
ing of the results in an HTML format and the transmission
of the emails cost about 25 secs. The navigation continues
from the 31 entities before the action to get movies through
the property <dbpo:director> (subexpr. �[1�4]). The cost
is of about 34 secs., for a total of 136 movies. Finally, for
each movie only one level of possible additional descriptions
is searched by the <owl:sameAs> property (the whole expr.
�[1�5]) whose cost is 1638 secs., for a total of 409 new URIs
available from multiple servers (e.g., linkedmdb.org, free-
base.org) of which only 289 were dereferenceable.

By referring to the cost model in Section 3.4 we have that
cost(E1,W) = cost(E1,WT1) + cost(A1) + cost(T1) = 1763.
Here, the factor cost(A1) ' 25 secs., whereas cost(T1) ' 4
secs., and cost(E1,WT1) ' 1738 secs. If we consider the
test-and-action-free expression executed over the whole Web
of Data (i.e., W), we have that cost(E1,W) ' 20018 secs.
Note that the ASK queries costs about 4 secs., and permits
to reduce the portion of the Web of Data navigated by E1,
which enables to save about 20018 � 1738 = 18280 secs.
Such a larger di↵erence in the execution times is justified
by the fact that the 222 initial URIs, selected by �[1�1] are
not filtered in the case of (E1,W) and then cause an larger
amount of paths to be followed at the second level. Indeed,
the total number of dereferenced URIs for (E1,W) is 6053
while for (E1,WT1) is 646 with about 660K triples retrieved
in the first case and 125K in the second case.

The second expression (E2) starts by navigating the prop-
erty <dbpo:homeTown> to find entities living in Italy (subexpr.
�[1�1]) with an execution time of about 84 secs., and a total
of 400 dereferenced URIs, one seed and 399 URIs of enti-
ties. On the description of each of these 399 URIs, an ASK
query filters entities that are of type <dbpo:Person> and
<dbpo:MusicalArtist> (subexpr. �[1�2]). Hence, 399 ASK
queries are performed for a total of about 3.8 secs., with
an average time per query of 0.01 secs., to select 156 enti-
ties. For these entities, the navigation continues through the
property <dbpo:birthPlace> to find the places where these
people were born (subexpr. �[1�3]), which costs about 101-
87=14 secs. In total, 43 new URIs have been reached. The
navigation continues with a second ASK query to select only
those places in which live less than 15000 habitants (subexpr.
�[1�4]). The cost of performing 43 ASK queries on the re-
sults of the previous step is of about 3 secs. Here 5 places are
selected. Finally, for each of the 5 places additional descrip-
tions are searched by navigating the <owl:sameAs> property
(the whole expr. �[1�5]). This allows to reach a total of 29

URIs, some of which are external to dbpedia.org. The cost
for this operation is of about 57 secs.

As for the cost, we have cost(E2,W) = cost(E2,WT2) +
cost(A2) + cost(T2) = 161. The factor cost(A2) = 0 since
E2 does not contain any action whereas cost(T2) ' 6 secs.
Hence, cost(E2,WT2) = 155 secs. The cost of the test-and-
action-free expression (i.e., E2) over W is cost(E2,W) '
1600 secs., for a total of 1277 dereferenced URIs. This is
because the expression is not selective since it performs a
sort of ”semantic” crawling only based on RDF predicates.
In fact, the number of triples retrieved (see Fig. 4(c)) is
almost three times higher than in the case of the expression
with tests. By including the tests, the evaluation of E2 is
1445 secs., faster.

5. A PROPOSAL FOR DISTRIBUTED swget

This section presents and overview of Distributed swget

(Dswget), which has the peculiarity that the processingNau-
tiLOD expressions occurs in a cooperative manner among
LOD information providers. The tool has been implemented
and tested on a local area network.

5.1 Dswget: making LOD servers cooperate
swget enables controlled navigation but it heavily relies on

the client that initiates the request. However, one may think
of the Linked Data servers storing RDF triples as to peers in
a Peer-to-Peer (P2P) network, where links are given by URIs
in RDF triples. For instance hdbp:Rome, owl:sameAs, fb:Romei
links dbpedia.org with freebase.org. Indeed, there are
some di↵erences w.r.t. a traditional P2P network. First,
Linked Data servers are less volatile than peers. Second,
it is reasonable to assume that the computational power
of Linked Data servers is higher than that of a traditional
peers. This enables to handle a higher number of connec-
tions with the associated data.

Our proposal is to leverage the computational power of
servers in the network to cooperatively evaluate swget com-
mands. This enables to drastically reduce the amount of
data transferred. In fact, data is not transferred from servers
to the client that initiates the request (in response to HTTP
GETs). Servers will exchange swget commands plus some
metadata and operate on their data locally. This can be
achieved by installing on each server in the network a Dswget
engine and coordinating the cooperation by an ad-hoc dis-
tributed algorithm.

Table 5: Primitives of Dswget

Primitive Behaviour

sendResults sends to the original client (partial) results,
which are URIs (line 14) and literals (line 18)

fwdToServers forwards to other servers, the initial client ad-
dress, the NautiLOD expression and a set of
pairs <URI, A State>. For each pair, the com-
putation on a URI will be started from the cor-
responding A state

A Dswget command is issued by a Dswget client to the
server to which the seed URI belongs. Each server involved
in the computation will receive, handle and forward com-
mands and results by using the Procedure handle. Note
that in this procedure there are calls to some primitives re-
ported in Table 4 and to the function navigate described
in Section 4.2.1. The specific primitives needed by Dswget

are reported in Table 5.

Procedure handle(client_id,e,URIs, metadata)
Input: client_id=address of the client; e=NautiLOD

expression; URIs=set of pairs <URI,A state>;
metadata=additional data (e.g., current state of the
automaton, request id)

1 a=buildAutomaton(e);
2 for (each p=<uri,state> in URIs) do
3 desc=getDescription(p.uri); //local call no deref. needed
4 if (not alreadyLookedUp(p)) then
5 setAlreadyLookedUp(p);
6 if (t=getTest(p.state)6= ; and evalT(t,desc)=true) then
7 s=a.nextState(p.state,t));
8 addLookUpPair(p.uri,s);
9 if (act=getAction(p.state)6= ;) then

10 if(evalA(act.test,desc)) then exeC(act.cmd);
11 out=navigate(p,a,desc);
12 for (each URI pair p’=<uri,state> in out) do
13 if (a.isFinal(p’.state)) then
14 addtoResults(p’.uri);
15 else addLookUpPair(p’);
16 for (each literal pair lit=<literal,state> in out) do
17 if (a.isFinal(lit.state)) then
18 addToResult(lit.literal);
19 sendResults(client_id);
20 fwdToServers(client_id,e);

5.1.1 A Running example

To see an example of how Dswget works, consider the fol-
lowing request originated from a Dswget client:

Example 5.1. (Dswget) Starting from DBPedia, find cities
with less than 15000 persons, along with their aliases, in
which musicians, currently living in Italy, were born.

The Dswget command is reported in Fig. 6, which also re-
ports a possible Dswget interaction scenario. On each linked
data server a Dswget engine has been installed. Each server
exposes a set of dereferenceable URIs for which the corre-
sponding RDF descriptions are available. RDF data enables
both internal references (e.g., dbp:Rome and dbp:uri1) and
external ones (e.g., fb:Enrico and geo:Paris).

In Fig. 6 references between URIs are represented by dot-
ted arrows. When not explicitly mentioned, it is assumed
that the reference occurs on a generic predicate. The au-
tomaton associated to this expression, having q4 and q5 as
accepting states, is also reported. The state(s) of the au-
tomaton on which a server is operating is(are) reported in
grey. Dswget protocol messages have been numbered to em-
phasize the order in which they are exchanged.

The command along with some medatada (e.g., the ad-
dress of the client) is issued by the client’s Dswget engine
toward the server to which the seed URI belongs (i.e., dbpe-
dia.org in this example). The Dswget engine at this server,
after locally building the automaton, starts the processing of
the NautiLOD expression at the state q0. It obtains from
its local RDF store, the description of Rome D(dbp:Rome)
and looks for URIs having dbpo:hometown as a predicate. In
Fig 6, the URI fb:Enrico satisfies this pattern. The Dswget
engine at dbpedia.org performs the first transition of state,
that is, �(q0,�1) = q1. The automaton does not reach a
final state, and then the process has to continue. Since the
URI fb:Enrico belongs to another server, the Dswget engine
at dbpedia.org, communicates with that at freebase.org

by seeding the initial NautiLOD expression, the URI for
which freebase.org is involved in the computation (i.e.,
fb:Enrico) and the current state of the automaton. In the
case in which multiple URIs have to be sent, they are packed
together in a unique message.

freebase.org geonames.org

geo:Solarolo!3:<dbpo:birthPlace>

!5:<owl:sameAs>

Client

Dswget
engine

Dswget <dbp:Italy>
!1[!2]/!3[!4]/!5

q4q5

q1
q0

q2

q3

!1 !2
!3

!4!5
!5 q4q5

q1
q0

q2

q3

!1 !2
!3

!4!5!5

q4q5

q1
q0

q2

q3

!1 !2
!3

!4!5
!5

Dswget engine Dswget engine

q4q5

q1
q0

q2

q3

!1 !2
!3

!4!5
!5

Dswget engine Dswget engine

fb:uri1

fb:uri4

fb:uri2

fb:uri3

geo:uri1

geo:uri2

geo:uri3

geo:uri4

dbpedia.org

dbp:Italy

dbp:uri1

dbp:uri1

dbp:uri1

!1:<dbpo:homeTown>

yago.org

yago:Solarolo

yago:uri3

yago:uri1yago:uri2

RDF predicate
Dswget protocol

message

Network

fb:Enrico

(1)

(2)

(3)

(4)

(4')

!1: <dbpo:homeTown>!2: [ASK ?person <rdf:type> <dbpo:Person>.
?person <rdf:type> <dbpo:MusicalArtist>]
!3: <dbpo:birthPlace>
!4: [ASK ?town <dbpo:populationTotal> ?pop.

FILTER(?pop <15000)]!5:<owl:sameAs>*

Command

q4q5

q1q0 q2

q3

!1 !2
!3

!4!5!5

Automaton

Figure 6: Distributed Dswget interaction scenario.

With a similar reasoning the request reaches the Dswget

engine at geonames.org, which checks if it is possible to
reach the next state of the automaton starting from the URI
passed by freebase.org. It has to check onD(geo:Solarolo)
if the query represented by �4 can be satisfied, that is,
whether this city has less than 15K habitants. Then, the
state q4 is reached, which is a final state. The Dswget en-
gine at geonames.org contacts directly the Dswget engine of
the client that issued the request and send the result (i.e.,
the URI geo:Solarolo). The address of the client is passed
at each communication among Dswget engines.

Note that the automaton has another final state, that
is, q5 that can be reached if there exist some triples in
D(geo:Solarolo) having an owl:sameAs predicate. Such
a triple is hgeo:Solarolo, owl:sameAs, yago:Solaroloi.
Therefore, the Dswget engine at geonames.org sends to the
engine at yago.org the URI in the object of this triple, the
expression and the current state of the automaton. Here, as
the automaton is in a final state, the Dswget engine sends to
the client the result and continues the process. In this case
since in D(yago:Solarolo) there are no more triples having
owl:sameAs as predicate, the process ends.

5.2 Dswget Design issues: an overview
In designing Dswget several issues, typical of the distributed

systems, have been faced. Here we briefly report on the main
of them without getting into too technical details.

In the Web of Data, a client in order to get information
about a resource issues an HTTP GET request toward the
HTTP server where the resource is hosted. In the stan-
dard case, the HTTP protocol o↵ers a blocking semantics
for its primitives, which means that once a request is is-
sued the client has to wait for an answer or until a time-
out. In Dswget, since engines exchange messages and data
in a P2P fashion, a blocking semantics for communications
would block the whole execution. To face this issue, specific
asynchronous communication primitives and a job delegation
mechanism have been implemented. With job delegation we
mean that the sending Dswget engine delegates part of the
execution and evaluation of a (sub)NautiLOD expression
to the receiving engine(s). In this respect, since a request,
through the mechanism of job delegation is spread among
multiple Dswget engines it is necessary to handle the ter-

mination of requests to avoid to keep consuming resources
in an uncontrolled way. Dswget tackles this issue from two
di↵erent perspectives:

(1) Loop detection: each Dswget engine keeps track, for
each request, of each URI along with the state of the au-
tomaton on which it has been processed.

(2) Termination: this problem can be addressed by each
Dswget engine which, for each request it receives informs the
client that initially issued the request about the fact that it
has operated on this request and whether it has delegated
other Dswget engines. Then, the client can keep track of the
list of the active engines on a particular request. The Dswget
engine may additionally send back to the client the state of
the automaton on which it is operating, thus enabling the
client to know how far the execution is from a final state.

6. RELATED WORK
Many of the ideas underlying our proposal have been around

in particular settings. We owe inspiration to several of them.
Navigation and specification languages of nodes in a graph

have a deep research background. Nevertheless, most of its
developments assume that data is stored in a central repos-
itory (e.g. Web query languages [9], XPath, navigational
versions of SPARQL [22, 1]). They were inspiration for the
navigational core of NautiLOD.

Specification (and retrieval) of collections of sites was early
addressed, and a good example is the well known tool wget.
Besides being non-declarative, it is restricted to almost purely
syntactic features. At semantic level, Hart et al. [18] pro-
posed LDSpider, a crawler for the Web of Data able to re-
trieve RDF data by following RDF links according to dif-
ferent crawling strategies. They have little flexibility and
are not declarative. The execution philosophy of wget was
a source of inspiration for the incorporation of actions into
NautiLOD and to the design of swget.

Distributed data management has been explored and im-
plemented by P2P and similar approaches [26]. For RDF,
RDFPeers [5] and YARS2 uses P2P to answer RDF queries.
Systems for distributed query processing on the Web have
also been devised, e.g. DIASPORA [24]. Our distributed
version of swget borrows some ideas from these approaches.

Finally, it is important to stress the fact that there is a

solid body of work on query processing and navigation on
the Web of Data. Three lines of research can be identified:

(1) Load the desired data into a single RDF store (by
crawling the LOD or some sub-portions) and process queries
in a centralized way. There is a large list of Triple Stores [17].
There have been also developments in indexing techniques
for semantic data. Swoogle [8], Sindice [20] and Watson
[6] among the most successful. Recently, Hart et al. [13]
proposed an approximate index structure for summarizing
the content of Linked Data sources.

(2) Process the queries in a distributed form by using a
federated query processor. DARQ [23] and FedX [25] pro-
vide mechanisms for transparently query answering on mul-
tiple query services. The query is split into sub-queries that
are forwarded to the individual data sources and their re-
sult processed together. An evaluation of federated query
approaches can be found in [12].

(3) Extend SPARQL with navigational features. The
SERVICE feature of SPARQL 1.1 and proposals like the one
of Hartig et al. [15] extend the scope of SPARQL queries with
navigational features [15, 14]. The system SQUIN, based on
link-traversal, a query execution paradigm that discover on
the fly data sources relevant for the query, permits to auto-
matically navigate to other sources while executing a query.

As it can be seen, our approach has a di↵erent depar-
ture point: it focuses on navigational functionalities, thus
departing from querying as in (2); emphasizes specification
of autonomous distributed sources, as opposed to (1); uses
SPARQL querying to enhance navigation, while (3) pro-
ceeds in the reverse direction; and incorporates actions that
in some sense generalize procedures implicit in the evalua-
tion over the Web (e.g., “get data” in crawlers and “return
data” in query languages).

7. CONCLUSIONS AND FUTURE WORK
We presented a language to navigate, specify fragments

and perform actions on the Web of Data. It explicitly ex-
ploits the semantics of the data “stored” at each URI. We
implemented it in a centralized setting to run over real-world
data, namely the LOD network, showing the benefits it can
bring. We also developed a distributed version as proof-of-
concept of its feasibility, potentialities and challenges.

The most important conclusion we can draw from this re-
search and development is that the semantics given by RDF
specifications can be used with profit to navigate, specify
places and actions on the Web of Data. We presented a lan-
guage that can be used as the basis for the development of
agents that get data; navigate and report while navigating;
and that can work immediately over LOD.

A second relevant finding we would like to report here,
are the limitations found to take full advantage of the lan-
guage and tools we developed. They refer essentially to (1)
lack of standards in the sites regarding the dereferencing of
data; (2) lack of standard RDF metadata regarding prop-
erties of the sites themselves (e.g., provenance, summary of
contents, etc.); (3) weak infrastructure to host delegation of
execution and evaluation (of the language) to permit distri-
bution. Tackling these issues can be considered as our wish
list to leverage the Web of Data.

8. REFERENCES
[1] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending

SPARQL with Regular Expression Patterns (for
querying RDF). J. Web Sem., 7(2):57–73, 2009.

[2] T. Berners-Lee. Linked data design issues.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
The Story So Far. IJSWIS, 5(3):1–22, 2009.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer Networks
and ISDN Systems, 30(1-7):107–117, 1998.

[5] M. Cai and M. Frank. RDFPeers: a Scalable
Distributed RDF Repository based on A Structured
Peer-to-Peer Network. In WWW, 2004.

[6] M. d’Aquin and E. Motta. Watson, more than a
Semantic Web Search Engine. Semantic Web,
2(1):55–63, 2011.

[7] S. J. DeRose, E. Maler, D. Orchard, and N. Walsh.
XML Linking Language (XLink) Version 1.1.
Technical report, 3 2010.

[8] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost,
Y. Peng, P. Reddivari, V. C. Doshi, and J. Sachs.
Swoogle: A Search and Metadata Engine for the
Semantic Web. In CIKM, 2004.

[9] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the World-Wide Web: a survey.
SIGMOD Rec., 27:59–74, 1998.

[10] G. Gottlob, C Koch, and R. Pichler. The Complexity
of XPath Query Evaluation. In PODS, 2003.

[11] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, and
J. Pérez. Foundations of Semantic Web Databases. J.
Comput. Syst. Sci., 77(3):520–541, 2011.

[12] P. Haase, T. Mathäb, and M. Ziller. An Evaluation of
Approaches to Federated Query Processing over
Linked Data. In I-SEMANTICS, 2010.

[13] A. Harth, K. Hose, M. Karnstedt, A. Polleres,
K. Sattler, and J. Umbrich. Data Summaries for
On-demand Queries over Linked Data. In WWW.

[14] O. Hartig. Zero-Knowledge Query Planning for an
Iterator Implementation of Link Traversal Based
Query Execution. In ESWC, 2011.

[15] O. Hartig, C. Bizer, and J.-C. Freytag. Executing
SPARQL Queries over the Web of Linked Data. In
ISWC, 2009.

[16] T. Heath and C. Bizer. Linked Data: Evolving the Web
into a Global Data Space. Morgan & Claypool, 2011.

[17] K. Hose, R. Schenkel, M. Theobald, and G. Weikum.
Database Foundations for Scalable RDF Processing.
In Reasoning Web, volume 6848, pages 202–249, 2011.

[18] R. Isele, A. Harth, J. Umbrich, and C. Bizer.
LDspider: An open-source crawling framework for the
Web of Linked Data. In Poster - ISWC, 2010.

[19] A. O. Mendelzon, G. A. Mihaila, and T. Milo.
Querying the World Wide Web. Int. J. on Digital
Libraries, 1(1):54–67, 1997.

[20] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: A
document-oriented lookup index for open linked data.
Int. J. of Metad., Semant. and Ontolog., 3(1), 2008.

[21] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. ACM TODS, 34(3), 2009.

[22] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A
Navigational Language for RDF. JWS, 8(4), 2010.

[23] B. Quilitz and U. Leser. Querying Distributed RDF
Data Sources with SPARQL. In ESWC, 2008.

[24] M. Ramanath and J. R. Haritsa. DIASPORA: A
Highly Distributed Web-Query Processing System.
World Wide Web, 3(2):111–124, 2000.

[25] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. FedX: Optimization Techniques for
Federated Query Processing on Linked Data. In
ISWC, 2011.

[26] P. Valduriez and E. Pacitti. Data Management in
Large-Scale P2P Systems. In VECPAR, 2004.

[27] P. Wadler. Two semantics for XPath, 1999.
http://www.cs.bell-labs.com/who/wadler/topics/

xml.html.

